Response of low water level change to bed erosion and the operation of Three Gorges Reservoir in upper Jingjiang reach
ZHULingling通讯作者:
收稿日期:2016-12-5
修回日期:2017-02-23
网络出版日期:2017-08-07
版权声明:2017《地理学报》编辑部本文是开放获取期刊文献,在以下情况下可以自由使用:学术研究、学术交流、科研教学等,但不允许用于商业目的.
基金资助:
展开
摘要
关键词:
Abstract
Keywords:
-->0
PDF (4869KB)元数据多维度评价相关文章收藏文章
本文引用格式导出EndNoteRisBibtex收藏本文-->
1 引言
在水库蓄水拦沙和径流条件等作用下,必然带来坝下游河段不同程度的冲刷下切,河床作为枯水位的边界条件,其冲刷往往造成枯水位的下降,这种现象在国内外已建成的多个水库下游都较为明显[1-3]。三峡水库蓄水后,拦截入库超75%的泥沙,位于水库下游的上荆江遭遇“清水”下泄的影响,河床冲刷发展剧烈,枯水位下降幅度最大,至2015年,沙市站6000 m3/s流量水位下降约1.74 m。关注上荆江枯水位变化的主要原因有3个方面:首先,上荆江枯水位变化是影响宜昌枯水位的重要下边界条件,上荆江紧邻上游沙卵石河段,其枯水下降幅度是引起沙卵石河段枯水位下降的重要因素之一[1],沙卵石河段剧烈冲刷后,对于枯水位下降向上传递的控制作用逐渐减弱,影响宜昌枯水位的稳定,事关葛洲坝船闸的正常运行;其次,上荆江一直是制约长江“黄金水道”航道标准提升的瓶颈段之一,分布有多个著名的碍航河段如芦家河、沙市、周公堤等,存在的“坡陡流急”、“水浅流急”、“航宽不足”等航道问题均与枯水位降幅密切相关[5-7],局部航道整治工程的实施减缓了小范围内的枯水位下降速度,但上荆江枯水位整体下降的趋势难以控制;再者,沿江两岸分布有大量多类别生活、生产取用水及涉水工程,枯水位降幅也会对这些工程的正常运行造成影响。上荆江枯水位变化的重要性决定了以往不乏相关研究,三峡水库论证阶段及蓄水运行以来,均认同水库蓄水将对坝下游河道调整、水位变化产生极为深刻的影响[8],多数研究认为三峡工程运行后前10年(2003-2012年),上荆江河床大幅度冲刷,沙卵石过渡段枯水位降幅在0.3~0.4 m左右[9],沙质河床沙市站枯水位降幅在1~3 m不等[10-11]。三峡水库蓄水后2003-2015年,上荆江河床冲刷剧烈,且以枯水河槽冲刷为主[12],河床下切带来的枯水位降幅十分显著[13]。同时三峡水库175 m试验性蓄水后,开展了枯期补水调度,水库蓄水带来的河床下切和流量过程改变双重作用于枯水位变化[14],两种效应的综合评估尚未有系统论述,尤其是枯水期补水流量大小与枯水位变化的具体关系尚不明确。本文以上荆江河床强冲刷状态和枯水位实际降幅为切入点,阐述了同流量枯水位、枯期水位、最低水位及极枯水位历时的变化特征,及其与三峡水库蓄水的直接和间接响应关系。本文取得的研究成果,有助于系统地认识上荆江的枯水情势,对其航运及其他相关功能的维持有重要参考意义。
2 研究区域和数据源
2.1 研究区域
上荆江上起枝城(上距三峡大坝坝址约60 km),下迄藕池口,全长约171.7 km,属于较稳定的微弯分汊型河道,20世纪50年代以来,河道平面形态和洲滩格局变化不大。按河床组成差异可分为两段,上段枝城—杨家脑为沙卵石河床(又称枝江河段),下段杨家脑—藕池口为沙质河床,观音寺上下分别称为沙市河段和公安河段(图1)。20世纪60年代中后期以来,受下游下荆江河段自然和人工裁弯的影响,上荆江河段溯源冲刷明显,此后至1981年葛洲坝水利枢纽运行,该段持续冲刷;三峡水库蓄水拦截了上游入库超75%的泥沙,上荆江进入强冲刷状态。显示原图|下载原图ZIP|生成PPT
图1上荆江河势图
-->Fig. 1Location and sketch of the upper Jingjiang reach
-->
上荆江径流泥沙主要来自于宜昌以上长江干、支流。枝城以上约19 km处有支流清江入汇,沙市河段进口有沮漳河入汇。南岸有松滋口、太平口和藕池口分泄干流的水沙入洞庭湖。枝城站可作为上荆江水沙输移量分析控制站,2003-2015年枝城站年平均径流量为4100亿m3,输沙量为4880万t,年内水沙输移高度集中在汛期5-10月,水、沙输移量分别占年值的74.0%、98.2%,汛期集中输沙现象明显。
2.2 数据来源
本文水文、泥沙研究数据分析分为三峡水库蓄水前和蓄水后2个大时段,为统一时间尺度,同时考虑到枝城站和沙市站均是1991年之后由水位站改为水文站,三峡水库蓄水前分成1956-1990年(枝城站流量采用宜昌站与清江长阳站之和,沙市站流量采用新厂站数据)、1991-2002年,蓄水后为2003-2015年,以水库蓄水为分割的2个时段总历时相近;平滩、中水和枯水河槽分别为宜昌站30000 m3/s、10000 m3/s和5000 m3/s流量水面线以下的河床,冲淤量地形法计算采用1:5000断面观测数据,观测数据均来自于长江水利委员会水文局。2 上荆江的强冲刷状态
一般而言,大型调节性水库运行对于坝下游河道的水位作用有直接和间接两种响应形式,直接响应表现为水库不同调度方式下,改变下游河道的流量及过程,从而直接引起其水位过程的变化,间接响应主要表现为水库拦沙效应下,下游河道河床因遭遇低含沙水流而冲刷下切,下边界条件改变造成枯水位的变化。上荆江枯水位下降对于三峡水库蓄水的响应同样兼有这两种形式。三峡水库蓄水拦沙造成了上荆江的强冲刷状态。三峡水库蓄水前,自20世纪60年代末开始,上荆江先后遭遇下荆江人工裁弯、自然裁弯和葛洲坝水利枢纽运行等人类活动和突变性自然调整,河道总体呈冲刷状态,1966-2002年河段单位河长年均冲刷量约6.66万m3/km·a。1998年遭遇大水大沙年,河道内淤积了大量泥沙,此后再次进入冲刷状态,上荆江单位河长年均冲刷量一度达到12.2万m3。三峡水库蓄水后,2002年10月至2015年10月,上荆江冲刷强度为21.4万m3/km·a,超过蓄水前均值的3倍。冲刷自上而下发展,从枝江河段—公安河段,河床冲刷强度沿程递减。三峡水库175 m试验性蓄水期,沙卵石河段过渡段枝江河段冲刷强度高达33.5万m3/km·a,沙质河床起始段沙市河段次之,为29.6万m3/km·a,上荆江总体冲刷强度为26.5 m3/km·a(图2a)。受护岸工程的限制,上荆江两岸冲刷展宽的现象不明显,河床冲刷以下切为主要形式[15](图2b、2c),至2015年10月,枝江河段、沙市河段及公安河段河床纵剖面下切幅度分别达到2.85 m、3.38 m及1.33 m。
显示原图|下载原图ZIP|生成PPT
图2三峡工程运用后上荆江河段河床冲淤强度、深泓纵剖面及典型断面变化
-->Fig. 2Variations in erosion intensity, thalweg profile and cross-sections of upper Jingjiang River after water-impoundment of Three Gorges Reservoir (TGR)
-->
三峡工程运用后上荆江全程冲刷,并且主要集中在中枯水河槽内,中水、枯水河槽冲刷量占平滩河槽的比例分别为95.3%、92.5%。受护岸工程的限制,上荆江枯水河槽冲刷展宽、分汊口门段水流分散的现象较为明显,多个河段出现了浅滩碍航现象,为此长江航道部门在多个分汊河道实施了以江心洲(滩)、边滩等守护为主的整治工程,以控制枯水河槽的宽度,保证浅滩水深条件。一方面,守护区域内的滩体冲刷变形幅度得到控制,如沙市河弯的三八滩和金城洲,部分滩体小幅度淤积,如南星洲,枝江河段的董市洲、柳条洲、芦家河河心碛坝及关洲洲体上段等均实施了守护工程,对滩体冲刷有一定限制作用,从而缓解局部枯水位下降幅度和速度[7]。然而,另一方面,滩体守护后,次饱和水流不断地从河槽冲起泥沙对含沙量进行恢复,进一步促进了中、枯水河槽的冲刷。作为河道枯水位的下边界条件,中、枯水河槽冲刷下切带来的枯水位下降效应十分显著。因而,航道整治工程对于上荆江河道整体的枯水位下降的遏制作用仍有限。
3 上荆江的枯水位变化
受多个因素的影响,同时考虑社会关注的热点问题,上荆江枯水位变化大体上可以分为3种形式:① 同流量枯水位变化,即不考虑来流的影响,同时洞庭湖的顶托作用弱,冲淤造成的河床边界变化可作为相对单一的控制因素,河床强冲刷必然对应同流量枯水位的下降;② 枯水期水位变化,三峡水库蓄水后长江干流遭遇枯水周期,水库175 m试验性蓄水后,应干流及两湖地区缓解枯水情势、保障通航条件等要求,汛前枯水期开展补水调度,使得枯水期水位既受水库运行方式的作用,也受河床下切的影响;③ 极枯水位变化,包括最枯水位和极枯水位历时,最枯流量受水库补水而增大,河床冲刷下切,两者作用相反。显示原图|下载原图ZIP|生成PPT
图3上荆江枝城站、沙市站年最小流量和最枯水位变化过程
-->Fig. 3Variations in minimum flow and lowest water level at Zhicheng and Shashi gauging stations
-->
3.1 枯水期水位变化
三峡水库175 m试验性蓄水后2008-2015年,水库对坝下游河段流量过程的调蓄作用有所增强,应坝下游生态、生活用水、航运及防洪安全等要求,先后开展了枯水期补水调度、汛期削峰调度等试验性运行方式。枯期补水调度加大了水库枯水期下泄流量,在河床大幅度冲刷下切的前提下,对于枯水位的影响主要表现为两个方面,一是缓解了上荆江汛前枯期水位下降幅度;二是改变了上荆江最枯水位持续下降的趋势,一定程度上缩短了极枯水位历时。三峡水库蓄水前,上荆江一直处于冲刷状态,因此枯期水位1991-2002年相较于1956-1990年呈下降的趋势,11月-次年4月,枝城站月均水位降幅为0.29~0.97 m,沙市站降幅偏大,为1.30~1.53 m。三峡水库蓄水后,长江流域遭遇相对偏枯的水文周期,坝下游各控制站的年径流量相较于水库蓄水前偏小,宜昌站2003-2015年年均径流量相较于1954-2002年偏少约8.3%,但对于枯水期而言,上荆江除11月受蓄水影响流量有所减小以外,12月-次年4月平均流量均有所增大。枯水期水位变化同时受到水库蓄水对流量调节作用和河床冲刷下切的双重影响,从作用程度来看,11月两者累加作用,其水位降幅偏大,12月开始水库补水调度发挥作用,枯水位降幅减小,随后1-4月,补水强度加大。对于沙卵石河段,枝城站水库加大的下泄流量基本上能够补偿因河床下切带来的枯水位下降幅度,甚至还略有富余,尤其是补水调度的主要作用期2009-2015年,当2月平均流量相较于1991-2002年偏大2180 m3/s时,其平均水位相对抬高约0.53 m,4月枝城流量在7000~8000 m3/s左右时,水库补水近1000 m3/s可抵消河床下切带来的枯水位下降效应。维持葛洲坝水利枢纽三江航道最低通航水位是枯期补水调度的目标之一,从沙卵石河段枯水位变化与补水调度的对应关系来看,这一目标目前尚能满足,但随着河床冲刷继续发展,要维持最低通航水位,水库最小下泄流量需不断增加,至2015年最小下泄流量增至5850 m3/s。对于沙质河床,其河床冲刷下切带来的枯水位降幅较上游显著偏大,尽管补水调度同样能使得枯期流量加大,且变化规律与上游枝城站类似,但并不能抵消河床下切带来的枯水位降幅,仅在2009-2015年的2月,当补水流量接近2000 m3/s时,同期枯水位才能基本与蓄水前持平(表1)。
Tab. 1
表1
表1不同时段枝城和沙市站枯期月平均水位、流量变化统计表
Tab. 1Mean monthly stage and discharge in dry season of different phases at Zhicheng and Shashi gauging stations
控制站 | 时段 | 月平均水位(m) | 月平均流量(m3/s) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11月 | 12月 | 1月 | 2月 | 3月 | 4月 | 11月 | 12月 | 1月 | 2月 | 3月 | 4月 | |||
枝城站 | 1956-1990年 | 38.67 | 36.86 | 35.97 | 35.72 | 36.00 | 37.16 | 10 200 | 5 900 | 4 260 | 3 860 | 4 490 | 7 030 | |
1991-2002年 | 37.70 | 36.20 | 35.61 | 35.43 | 35.67 | 36.55 | 9 540 | 5 840 | 4 580 | 4 280 | 4 800 | 6 900 | ||
2003-2008年 | 37.49 | 36.10 | 35.64 | 35.51 | 35.86 | 36.59 | 9 400 | 5 950 | 4 890 | 4 650 | 5 500 | 7 430 | ||
2009-2015年 | 36.75 | 35.98 | 35.98 | 35.96 | 36.00 | 36.52 | 8 970 | 6 590 | 6 550 | 6 460 | 6 620 | 8 280 | ||
2003-2015年 | 37.09 | 36.03 | 35.83 | 35.75 | 35.94 | 36.55 | 9 170 | 6 300 | 5 780 | 5 620 | 6 110 | 7 890 | ||
差值1 | -0.97 | -0.66 | -0.36 | -0.29 | -0.33 | -0.61 | -660 | -60 | 320 | 420 | 310 | -130 | ||
差值2 | -0.21 | -0.1 | 0.03 | 0.08 | 0.19 | 0.04 | -140 | 110 | 310 | 370 | 700 | 530 | ||
差值3 | -0.95 | -0.22 | 0.37 | 0.53 | 0.33 | -0.03 | -570 | 750 | 1 970 | 2 180 | 1 820 | 1 380 | ||
差值4 | -0.61 | -0.17 | 0.22 | 0.32 | 0.27 | 0 | -370 | 460 | 1 200 | 1 340 | 1 310 | 990 | ||
沙市站 | 1956-1990年 | 33.82 | 31.99 | 30.98 | 30.61 | 30.95 | 32.26 | 9 520 | 5 870 | 4 300 | 3 870 | 4 380 | 6 460 | |
1991-2002年 | 32.39 | 30.46 | 29.55 | 29.21 | 29.63 | 30.96 | 9 680 | 6 230 | 4 900 | 4 480 | 5 050 | 6 990 | ||
2003-2008年 | 31.84 | 29.86 | 29.05 | 28.77 | 29.46 | 30.59 | 9 290 | 6 140 | 5 030 | 4 750 | 5 680 | 7 440 | ||
2009-2015年 | 30.65 | 29.21 | 29.30 | 29.20 | 29.33 | 30.25 | 8 690 | 6 520 | 6 550 | 6 440 | 6 620 | 8 040 | ||
2003-2015年 | 31.20 | 29.51 | 29.18 | 29.00 | 29.39 | 30.41 | 8 970 | 6 340 | 5 850 | 5 660 | 6 180 | 7 760 | ||
差值1 | -1.43 | -1.53 | -1.43 | -1.40 | -1.32 | -1.30 | 160 | 360 | 600 | 610 | 670 | 530 | ||
差值2 | -0.55 | -0.6 | -0.5 | -0.44 | -0.17 | -0.37 | -390 | -90 | 130 | 270 | 630 | 450 | ||
差值3 | -1.74 | -1.25 | -0.25 | -0.01 | -0.3 | -0.71 | -990 | 290 | 1 650 | 1 960 | 1 570 | 1 050 | ||
差值4 | -1.19 | -0.95 | -0.37 | -0.21 | -0.24 | -0.55 | -710 | 110 | 950 | 1 180 | 1 130 | 770 |
新窗口打开
三峡水库枯期补水调度主要集中在12月-次年4月,期间,沙卵石河段流量增大对水位的抬高作用能够抵消河床下切造成的枯水位降幅,1-3月尚有一定富余,对于维持近坝段最低枯水位稳定有关键作用,沙质河段流量增大同样能够缓解河床下切对于枯水位的影响,由于该段枯水位降幅偏大,当前的补水强度还不足以消除河床下切的影响。
3.2 极枯水位及历时变化
三峡水库蓄水前,上荆江年最小流量无明显变化趋势,但最枯水位持续下降(图2),河床冲刷是这一现象产生的主要原因。20世纪60年代后期开始,上荆江先后经历了因下荆江自然裁弯和人工裁弯带来的溯源冲刷、葛洲坝水利枢纽运行后的河床冲刷,几十年间河床基本处于冲刷状态,1966-2002年上荆江枯水河槽的河床平均高程累积下降约0.96 m。三峡水库蓄水后,长江流域遭遇相对偏枯的水文周期,2006年是流域性的极枯水文年,2011年长江中游洞庭湖、鄱阳湖遭遇旱情,多项研究指出三峡水库蓄水加速了两湖地区枯水位下降[16],甚至是两湖枯水情势的主要诱因[17]。实际上,三峡水库蓄水补水调度一定程度上改变了最枯水位持续下降的趋势,历年最枯水位变化过程出现转折,由下降转为上升,尤其是枝城站,1991-2002年最低枯水位均值为35.12 m,2003-2015年最低枯水位均值抬升至35.49 m(图3a)。类似地,沙市站1991-2002年最低枯水位均值为28.67 m,在河床大幅度冲刷下切的前提下,2003-2015年最低枯水位均值仍能达到28.58 m,与蓄水前相当(图3b)。可见,水库补水调度对于上荆江最低枯水位的积极效应比较明显。不仅如此,从极枯水位持续历时来看,以1991年以来年内出现频率不超过20%为标准,确定枝城站年内水位低于35.5 m,沙市站低于29.0 m的持续时间如表2所示。三峡水库蓄水前上荆江极枯水位历时呈增加趋势,枝城、沙市站极枯水位历时分别由1956-1990年的16 d、0 d增至1991-2002年内的47 d、18 d。三峡水库蓄水后,沙卵石河段内,水库补水调度基本上能够消除枯水周期及河床冲刷下切对于极枯水位历时的双重影响,补水调度期2009-2015年枝城站基本不再出现低于35.5 m的水位。可见,沙质河段内,补水调度对极枯水位历时也有一定的积极效应,但是枯水周期及河床冲刷下切的影响程度更大。可以预见,若水库不进行枯水补水,即对比2008年前后的情况,沙市站极枯水位历时会更长。三峡水库蓄水后,尽管上荆江同时遭遇枯水周期和河床冲刷下切,其沙卵石极枯水位历时却仍有所下降,不能否认,这与水库的枯期补水调度关系密切;对于下游沙质河床,虽然蓄水后相较于蓄水前极枯水位历时有所增加,但在枯期补水调度主要作用期2009-2015年内,相较于补水调度前的2003-2008年,水库补水对于其枯水历时仍有一定的缩短作用。
Tab. 2
表2
表2上荆江枝城站、沙市站极枯水位历时变化统计
Tab. 2Variation in duration of extremely low water level at Zhicheng and Shashi gauging stations
统计项目 | 特征值 | 1956-1990年 | 1991-2002年 | 2003-2008年 | 2009-2015年 | 2003-2015年 |
---|---|---|---|---|---|---|
枝城站水位低于35.5 m历时(d) | 最大值 | 90 | 85 | 85 | 0 | 85 |
平均值 | 16 | 47 | 28 | 0 | 13 | |
沙市站水位低于29.0 m历时(d) | 最大值 | 0 | 52 | 96 | 68 | 96 |
平均值 | 0 | 18 | 48 | 31 | 39 |
新窗口打开
(1)三峡水库蓄水前
三峡水库蓄水前,上荆江先后经历了下荆江裁弯缩短流程的下边界水位下降、河床溯源冲刷下切及葛洲坝运行沿程冲刷下切等影响,同流量枯水位一直处于持续下降的趋势。但不同工程形式的主要作用区域及影响程度有所区别,下荆江裁弯对于较远的沙卵石河段影响较小,1966-1975年枝城站7000 m3/s对应枯水位累积降幅约0.33 m,且无明显发展趋势,对沙市站枯水位影响较为直接,其降幅为1.07 m。此后直至1993年,上荆江一直处于裁弯工程和葛洲坝枢纽运行的双重影响下,其枯水位下降仍较为明显,至1993年,枝城站、沙市站7000 m3/s下枯水位累积降幅分别达到1.06 m、2.42 m。随着河床逐渐调整,加之1998年长江流域遭遇特大洪水,挟带大量泥沙至长江中下游,上荆江河床普遍淤积[18],使得1993-2003年枯水位下降幅度较小,至2003年枝城站、沙市站枯水位累积降幅分别增至1.12 m、2.63 m(表3)。
Tab. 3
表3
表3三峡水库蓄水前后上荆江枝城站、沙市站同流量下枯水位累积降幅
Tab. 3Drop of low water level at Zhicheng and Shashi gauging stations before and after the water impoundment of TGR
控制站 | 流量(m3/s) | 时段 | 1966 | 1970 | 1975 | 1980 | 1987 | 1991 | 1993 | 1996 | 1998 | 2001 | 2002 | 2003 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
枝城站 | 5000 | 相对于1966年水位累积降幅(m) | 0 | 0.32 | 0.34 | 0.43 | 0.87 | 0.93 | 0.92 | 0.88 | 0.93 | 0.83 | 1.02 | 1.04 |
7000 | 0 | 0.32 | 0.33 | 0.65 | 0.84 | 1.07 | 1.06 | 0.99 | 0.84 | 1.22 | 1.25 | 1.12 | ||
沙市站 | 6000 | 0 | 0.28 | 0.96 | 1.07 | 1.86 | 2.42 | 2.68 | 2.69 | 2.37 | 2.56 | 2.69 | 2.70 | |
7000 | 0 | 0.35 | 1.07 | 1.19 | 1.53 | 2.17 | 2.42 | 2.40 | 2.33 | 2.39 | 2.45 | 2.63 | ||
控制站 | 流量(m3/s) | 时段 | 三峡水库初期运行期 | 三峡水库175 m试验性蓄水期 | ||||||||||
2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | |||
枝城站 | 5000 | 相对于2003年水位累积降幅(m) | 0.01 | 0 | -0.10 | -0.13 | -0.13 | -0.27 | -0.29 | |||||
7000 | 0 | -0.02 | -0.18 | -0.25 | -0.25 | -0.41 | -0.41 | -0.49 | -0.54 | -0.58 | -0.59 | -0.59 | ||
沙市站 | 6000 | -0.31 | -0.31 | -0.44 | -0.48 | -0.43 | -0.76 | -1.01 | -1.28 | -1.30 | -1.50 | -1.60 | -1.74 | |
7000 | -0.32 | -0.31 | -0.40 | -0.44 | -0.36 | -0.73 | -0.82 | -1.15 | -1.20 | -1.34 | -1.43 | -1.64 |
新窗口打开
为明确引起枯水位下降的主要因素,建立7000 m3/s流量下,上荆江枯水位与枯水河槽平均高程相对于1966年的累积降幅的相关关系,以及两控制站枯水位下降幅度的关系(图4)。两者存在较为明显的正向关系,且沙市站两者关系较好,枝城站较差,表明三峡水库蓄水前河床下切和下游水位下降是枯水位变化的主要控制因素。枯水位下降的沿程差异性有两方面控制因素,一方面主要工程作用程度不同,下荆江裁弯的影响程度较葛洲坝枢纽运行更大[19],且对沙市站的作用更为明显;另一方面沙卵石河段内分布有多个深泓高凸的控制性节点,节点的卡口效应对下游枯水位下降上溯的阻隔作用较强。
显示原图|下载原图ZIP|生成PPT
图4枝城、沙市枯水位降幅相关关系及其与河床平均高程下切的关系
-->Fig. 4Correlation between drop of low water level and bed scour at Zhicheng and Shashi gauging stations
-->
显示原图|下载原图ZIP|生成PPT
图52003年以来上荆江沙卵石河段、沙质河床固定断面床沙< 0.25 mm颗粒沙重百分数变化
-->Fig. 5Variations in bed sands (d<0.025 mm) of gravel and sandy channel in upper Jingjiang reach since 2003
-->
(2)三峡水库蓄水后
三峡水库蓄水后,上荆江进入强冲刷状态,同流量上荆江枯水位下降明显。枝城站7000 m3/s下,2015年相对2003年枯水位累积下降约0.59 m,且下降主要发生在2009年之前,2009年相对于2003年枯水位累积下降约0.41 m,之后枯水位下降幅度减缓;沙市站枯水位下降幅度更大,7000 m3/s下,2015年相对2003年枯水位累积下降约1.64 m,与枝城站相反,沙市站枯水位下降主要发生在2008年之后,2008年相对于2003年枯水位累积下降仅为0.36 m,之后枯水位下降速度加快(表3)。忽略统计时段内流量出现频率的差异,同时,2003年后枯水期荆江南岸的松滋口、太平口及藕池口均基本处于断流状态,河床冲刷下切可以认为是影响同流量枯水位下降的单一控制因素。
紧邻坝下游的沙卵石河段(宜昌—枝城河段)和沙质河床起始段沙市河段冲刷发展十分迅速,河床冲刷以纵向下切为主,横向展宽并不明显,河床高程刷低与枯水位下降的对应关系明确(图4)。上荆江同流量枯水位下降的基本控制因素明确,一是河床的冲刷下切,集中体现在沙市站,其枯水位几乎与枯水河槽平均高程等幅下降,二是下游水位下降的传递效应,枝城站枯水位下降兼有河床下切和下游水位下降两方面因素。显然,枝城站枯水位与下游水位下降的关系并不连续,2009年之前,其枯水位下降速度比沙市站更快,其主要原因在于沙卵石河段冲刷发展极为迅速,尤其是深泓高凸段的覆盖层冲刷集中在这一时期;2009年之后,一方面沙卵石河段冲刷强度下降,且深泓高凸段(一般指芦家河卡口段[9])相对稳定(图2b),对于当地及下游枯水位下降的上溯有较好的阻滞效应,这在以往众多研究中已达成共识[9, 20];另一方面河床粗化显著,由沙卵石河段河床组成粗化成卵石夹沙,2010年之后多个断面无法取到床沙,所有的固定观测断面床沙小于0.25 mm的泥沙颗粒沙量百分数都在下降(图5),17个断面的均值由2003年的69.4%下降至2010年的24.4%,相比较而言,下游沙质河床也在粗化,但粗化程度显然较上游沙卵石河段偏弱,2003-2014年,37个固定断面床沙< 0.25 mm的泥沙颗粒沙量百分数均值仅下降12.7个百分点。两方面综合作用下,下游沙质河床枯水位快速下降,枝城站枯水位下降的速度趋于减缓(图4c)。
三峡水库拦沙效应下,上荆江河床冲刷不可避免,造成同流量枯水位大幅下降。枯水位下降过程、累积降幅与河床冲刷发展过程、平均高程累积降幅的对应关系较好。沙质河段水位降幅显著地较沙卵石河段偏大,产生的原因主要在于沙卵石河段深泓高凸段较为稳定,对枯水位仍有较强的卡口控制作用,且河床粗化显著,糙率增大,也能一定程度上抑制水位降幅,加之沙卵石河段2008年之后陆续实施了以维持枯水位稳定为主要目标的航道整治工程,通过限制关键洲滩来缓解枯水位下降速度[4]。
4 结论
(1)三峡水库蓄水后,同流量枯水位下降与河床冲刷对应关系明显,沙市站枯水位几乎和枯水河槽平均高程等幅下降。2009年之前沙卵石河段枯水位下降速度快,之后趋于缓慢,沙质河段则相反;水位累积下降幅度沙质河段较沙卵石河段显著偏大,深泓高凸段相对稳定、河床粗化、航道整治工程等是沙卵石河段枯水位降幅偏小的主要原因。(2)三峡水库补水调度加大枯水期下泄流量,减缓了上荆江汛前枯期因河床下切造成的水位降幅。1-4月枝城站水库补水调度能够补偿因河床下切带来的枯水位降幅,枯水补水效应沿程递减,沙市站仅在2月,当补水流量接近2000 m3/s时,平均枯水位才能与蓄水前持平。
(3)三峡水库枯期补水调度改变了上荆江最枯水位持续下降的趋势。蓄水后河床大幅冲刷下切条件下,枝城站最低枯水位均有所抬升,沙市站最低枯水位均值与蓄水前基本持平;补水调度使得枝城站年内极枯水位历时缩短明显,调度期内沙市站极枯水位历时也较调度前有所减少。
The authors have declared that no competing interests exist.
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[1] | , Publication » NILE RIVER MORPHOLOGY CHANGES DUE TO THE CONSTRUCTION OF HIGH ASWAN DAM IN EGYPT. |
[2] | , This research detects long-term trends in flow conveyance on the Lower Missouri River, and uses equal-discharge analysis of channel-gaging time series to assess the mechanisms driving these trends. Five long-term gaging stations along the Lower Missouri were examined using specific-gage analysis, which is a technique that holds discharge constant in order to observe trends in water-surface elevation (or stage) over time. This analysis reveals that for all flood conditions on the Lower Missouri River, stages have systematically risen for equal discharge volumes over the period of record. Flows that were fully contained within the Missouri channel in the early 20th century now create floods, and extreme high flows today are associated with stages as much as 3.7 m higher than at the start of the record. Equal-discharge analysis also can be used for analyzing time series of other parameters that co-vary strongly with discharge and that change systematically over time. On the Lower Missouri, long-term records of river gaging measurements, including cross-sectional area, flow velocity, and channel width, have been collected for the past 鈭70 years. Equal-discharge analysis of these parameters illustrates the mechanisms of channel change driving flood magnification. At three stations, decreased flow velocity has been the dominant mechanism driving stage changes. At two other stations, constriction in channel cross-sectional area has increased flood stages. These changes in channel geometry and flow dynamics correlate with wing-dam construction and other engineering of the Lower Missouri River, but the changes occur progressively over the duration of record as a gradual and reach-scale re-equilibration of the fluvial system. Magnification of flood stages should be recognized on the Missouri River and incorporated into current estimates of flood hazard and into strategies for river management and flood mitigation in the future. |
[3] | , Abstract This study describes changes in mean channel-bed elevation, channel width, bed-material sizes, vegetation, water discharges, and sediment loads downstream from 21 dams constructed on alluvial rivers. Most of the studied channels are in the semiarid western US. Flood peaks generally were decreased by the dams, but in other respects the post-dam water-discharge characteristics varied from river to river. Sediment concentrations and suspended loads were decreased markedly for hundreds of kilometers downstream from dams; post-dam annual sediment loads on some rivers did not equal pre-dam loads anywhere downstream from a dam. Bed degradation varied from negligible to about 7.5 meters in the 287 cross sections studied. In general, most degradation occurred during the first decade or two after dam closure. Bed material initially coarsened as degradation proceeded, but this pattern may change during later years. Channel width can increase, decrease, or remain constant in the reach downstream from a dam. Despite major variation, changes at a cross section in stream bed elevation and in channel width with time often can be described by simple hyperbolic equations. Equation coefficients need to be determined empirically. Riparian vegetation commonly increased in the reach downstream from the dams, probably because of the decrease in peak flows. 120 references, 49 figures, 14 tables. |
[4] | |
[5] | , 分析了三峡工程蓄水以来荆江沙 质河段不同类型河床的演变特性,预测计算了水库下游河床冲刷过程,进而探讨了河床演变趋势及其对航道的影响.资料分析表明,蓄水初期,上荆江深泓下切明 显,但分汊放宽段航深不足问题突出;下荆江深泓冲淤相间,长顺直(微弯)河段的深槽过渡段下移,弯道进口处水流较分散,致使航槽不稳定.基于数学模型计算 结果预测,蓄水5—10年,太平口—藕池口河段发生强烈冲刷,分汊放宽段中枯水河槽更宽浅,致使航道条件恶化,而且,支汊发展会影响主汊的通航条件;藕池 口以下处于冲刷初期,过渡段浅滩碍航与否主要与退水过程有关,但弯道发展将使航槽位置发生变动.蓄水15—20年,藕池口以上冲刷基本完成,上荆江微弯分 汊河型趋于稳定;藕池口以下发生强烈冲刷,过渡段浅滩高程降低,有利于航深的增加,弯道可能出现局部撇弯,致使航槽移位. . , 分析了三峡工程蓄水以来荆江沙 质河段不同类型河床的演变特性,预测计算了水库下游河床冲刷过程,进而探讨了河床演变趋势及其对航道的影响.资料分析表明,蓄水初期,上荆江深泓下切明 显,但分汊放宽段航深不足问题突出;下荆江深泓冲淤相间,长顺直(微弯)河段的深槽过渡段下移,弯道进口处水流较分散,致使航槽不稳定.基于数学模型计算 结果预测,蓄水5—10年,太平口—藕池口河段发生强烈冲刷,分汊放宽段中枯水河槽更宽浅,致使航道条件恶化,而且,支汊发展会影响主汊的通航条件;藕池 口以下处于冲刷初期,过渡段浅滩碍航与否主要与退水过程有关,但弯道发展将使航槽位置发生变动.蓄水15—20年,藕池口以上冲刷基本完成,上荆江微弯分 汊河型趋于稳定;藕池口以下发生强烈冲刷,过渡段浅滩高程降低,有利于航深的增加,弯道可能出现局部撇弯,致使航槽移位. |
[6] | , . , |
[7] | |
[8] | , ABSTRACT The impacts of a dam on the river downstream in terms of hydrology and morphology are determined by a complex mix of variables that includes the patterns of release of water through the dam and the characteristics of the downstream channel. Scour of the downstream channel is a common response because large dams cause a significant interruption to sediment continuity. Here we show that in the case of China's Three Gorges Dam on the Yangtze River the outcome is complicated, as is commonly the case in large rivers. The downstream channel and floodplain system compose an area of long-term sediment accumulation and unstable channels with seasonally contrasting erosion and deposition patterns related to the migrating seasonal monsoon rainfall zones. In achieving one of the main purposes of this dam, that of flood control in the middle and lower basins, the pattern of flows released from the dam will closely resemble those seasonal flows that are responsible for channel instability in the middle catchment, thus effectively making erosive conditions the most common during a year. There is obviously concern about the ultimate impact of sediment storage in the dam on the dynamics of the delta and adjacent coast, and we show that this depends on the trajectory and duration of the erosive responses in the middle Yangtze basin. In this particular case, the outcome is of great significance to the well being of the densely populated riparian areas of the river. |
[9] | , . , |
[10] | |
[11] | |
[12] | , 本文较为系统地对比研究了三峡工程蓄水前、后宜昌至大通河段干流河道冲淤规律,并与原预测成果进行了比较。1966年-2002年宜昌至大通河段河道冲淤纵向分布以城陵矶为界,表现为"上冲、下淤",平滩河槽冲淤总体平衡,"冲槽、淤滩"特征明显。三峡工程蓄水运用后,2002年10月至2010年10月长江中下游河道原有的冲淤相对平衡状态被打破,全程冲刷已发展到湖口以下的大通,河床冲淤形态转变为"滩、槽均冲",冲刷主要发生在宜昌至城陵矶河段;与实测成果相比,宜昌至武汉河段河床冲刷预测情况基本吻合,武汉以下河段则在定性上有所差异;坝下游冲刷的速度和范围大于论证阶段的预计,这主要与三峡入、出库水沙条件较原设计成果相差较大,长江中下游河道采砂活动增多和局部航道整治工程有关。 . , 本文较为系统地对比研究了三峡工程蓄水前、后宜昌至大通河段干流河道冲淤规律,并与原预测成果进行了比较。1966年-2002年宜昌至大通河段河道冲淤纵向分布以城陵矶为界,表现为"上冲、下淤",平滩河槽冲淤总体平衡,"冲槽、淤滩"特征明显。三峡工程蓄水运用后,2002年10月至2010年10月长江中下游河道原有的冲淤相对平衡状态被打破,全程冲刷已发展到湖口以下的大通,河床冲淤形态转变为"滩、槽均冲",冲刷主要发生在宜昌至城陵矶河段;与实测成果相比,宜昌至武汉河段河床冲刷预测情况基本吻合,武汉以下河段则在定性上有所差异;坝下游冲刷的速度和范围大于论证阶段的预计,这主要与三峡入、出库水沙条件较原设计成果相差较大,长江中下游河道采砂活动增多和局部航道整治工程有关。 |
[13] | , . , |
[14] | , 三峡水库调度运用改变坝下游水沙条件,会对坝下游河道水文情势产生影响。利用坝下游长河段一维水沙数学模型计算分析了丰水年、平水年与枯水年情况下三峡水库调度运用对坝下游干流河道沿程流量、水位及输沙量的影响。结果表明:枯水期与泄水期出库流量增加,坝下游沿程枯水位相应抬高;蓄水期下泄流量减少,同时期沿程水位下降;遇枯水年,水库蓄水使得坝下游来流量过小(10月下旬大通站平均流量小于 9 000 m<sup>3</sup>/s );遇平水年蓄水期,中下游水位下降较多,沿程水位下降 1.71 ~ 3.68 m ,对坝下游河道的航运及供水等带来一定的影响。 . , 三峡水库调度运用改变坝下游水沙条件,会对坝下游河道水文情势产生影响。利用坝下游长河段一维水沙数学模型计算分析了丰水年、平水年与枯水年情况下三峡水库调度运用对坝下游干流河道沿程流量、水位及输沙量的影响。结果表明:枯水期与泄水期出库流量增加,坝下游沿程枯水位相应抬高;蓄水期下泄流量减少,同时期沿程水位下降;遇枯水年,水库蓄水使得坝下游来流量过小(10月下旬大通站平均流量小于 9 000 m<sup>3</sup>/s );遇平水年蓄水期,中下游水位下降较多,沿程水位下降 1.71 ~ 3.68 m ,对坝下游河道的航运及供水等带来一定的影响。 |
[15] | , <p>为确定三峡水库蓄水后荆江河段平滩河槽形态调整特点,提出基于河段尺度的平滩河槽形态参数的计算方法,计算上、下荆江段2002—2013年汛后河段平均的平滩河槽形态参数.结果表明:三峡工程运用后,坝下游河床冲刷加剧,个别河段河势变化剧烈,但总体河势仍基本稳定;尽管局部河段的崩岸现象较为突出,但河段平滩宽度总体变化不大,上、下荆江平均河宽分别为1 388及1 305 m,而河段平滩水深平均增加1.6及1.0 m,故荆江河段的平滩面积在持续增加.最后建立河段尺度的平滩河槽形态参数与前期5 a平均的汛期水流冲刷强度之间的计算关系,用于预测该河段平滩河槽形态随水沙条件的变化趋势.</p> . , <p>为确定三峡水库蓄水后荆江河段平滩河槽形态调整特点,提出基于河段尺度的平滩河槽形态参数的计算方法,计算上、下荆江段2002—2013年汛后河段平均的平滩河槽形态参数.结果表明:三峡工程运用后,坝下游河床冲刷加剧,个别河段河势变化剧烈,但总体河势仍基本稳定;尽管局部河段的崩岸现象较为突出,但河段平滩宽度总体变化不大,上、下荆江平均河宽分别为1 388及1 305 m,而河段平滩水深平均增加1.6及1.0 m,故荆江河段的平滩面积在持续增加.最后建立河段尺度的平滩河槽形态参数与前期5 a平均的汛期水流冲刷强度之间的计算关系,用于预测该河段平滩河槽形态随水沙条件的变化趋势.</p> |
[16] | , 鄱阳湖近年多次出现罕见的枯水水情,且恰逢三峡工程开始试验性蓄水,三峡工程对鄱阳湖的影响因此广受关注和议论。为明确三峡蓄水对鄱阳湖的影响及其作用机制,本文运用长江中游江湖耦合水动力学模型,以2006年三峡蓄水试验为例,计算了汛末蓄水对鄱阳湖水情的影响分量。结果表明:受蓄水影响,鄱阳湖湖口、星子、都昌和康山水位平均下降0.94m、0.74m、0.50m和0.03m。水位影响格局呈北高南低。湖泊内部的洲滩湿地受水位下降影响,提前出露,受影响最大的是中部的开敞水域。干流水位快速下降,加速湖水下泄是三峡工程蓄水对鄱阳湖水位的主要影响方式。 . , 鄱阳湖近年多次出现罕见的枯水水情,且恰逢三峡工程开始试验性蓄水,三峡工程对鄱阳湖的影响因此广受关注和议论。为明确三峡蓄水对鄱阳湖的影响及其作用机制,本文运用长江中游江湖耦合水动力学模型,以2006年三峡蓄水试验为例,计算了汛末蓄水对鄱阳湖水情的影响分量。结果表明:受蓄水影响,鄱阳湖湖口、星子、都昌和康山水位平均下降0.94m、0.74m、0.50m和0.03m。水位影响格局呈北高南低。湖泊内部的洲滩湿地受水位下降影响,提前出露,受影响最大的是中部的开敞水域。干流水位快速下降,加速湖水下泄是三峡工程蓄水对鄱阳湖水位的主要影响方式。 |
[17] | , The Three-Georges Dam holds many records in the history of engineering. While the dam has produced benefits in terms of flood control, hydropower generation and increased navigation capacity of the Yangtze River, serious questions have been raised concerning its impact on both upstream and downstream ecosystems. It has been suggested that the dam operation intensifies the extremes of wet and dry conditions in the downstream Poyang Lake, and affects adversely important local wetlands. A floodgate has been proposed to maintain the lake water level by controlling the flow between the Poyang Lake and Yangtze River. Using extensive hydrological data and generalized linear statistical models, we demonstrated that the dam operation induces major changes in the downstream river discharge near the dam, including an average "water loss". The analysis also revealed considerable effects on the Poyang Lake water level, particularly a reduced level over the dry period from late summer to autumn. However, the dam impact needs to be further assessed based on long-term monitoring of the lake ecosystem, covering a wide range of parameters related to hydrological and hydraulic characteristics of the lake, water quality, geomorphological characteristics, aquatic biota and their habitat, wetland vegetation and associated fauna. |
[18] | , <p>By using field-survey hydrological data of the related control stations in Dongting Lake and the Yangtze River mainstream in 1951-2010, the evolution characters of water exchange abilities between the two water bodies and their response to the operation of the Three Gorges Reservoir (TGR) from different time scales are analyzed based on their hydraulic relations. The results are shown as follows. Firstly, during July-September, the replenishment ability of Three Outlets to Dongting Lake is stronger, and in January-March, the replenishment ability of Dongting Lake to Yangtze River is stronger. Secondly, there has been an obvious inter-decadal wave on the water exchange coefficient between Dongting Lake and Yangtze River. In 1951-1958 and 1959-1968, the replenishment ability of Three Outlets to Dongting Lake was stronger, but in 2003-2010, the replenishment ability of Dongting Lake to Yangtze River has been strengthened. Thirdly, the spill-division ability of Three Outlets weakens, and the water of Dongting Lake coming from Three Outlets decreases either in typical years or under different dispatching modes of the TGR after the operation of the Three Gorges Reservoir. Furthermore, the water of Dongting Lake coming from Four Rivers takes the dominant position, which obviously enhances the replenishment ability of Dongting Lake to Yangtze River. Fourthly, if the effect of the runoff fluctuation in the basin is not considered, the evolution characters of the exchange capacities and the exchange process between Dongting Lake and Yangtze River in different time scales are generally changed with the variation of the water exchange amount between them, although the factors influencing the water exchange capacities between them is very complex. These show that there is an in-line growth or decline relation between the river-lake water exchange ability and the river-lake water exchange amount.</p> |
[19] | , . , |
[20] | , . , |