删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

1936—2018年环北极典型流域气温与降水时空变化

本站小编 Free考研考试/2021-12-29

黄其威,1,2, 刘诗奇1, 王平,1,2, 王田野3, 于静洁1,2, 陈晓龙4, 杨林生2,51.中国科学院地理科学与资源研究所陆地水循环及地表过程重点实验室,北京 100101
2.中国科学院大学,北京 100049
3.郑州大学水利科学与工程学院,郑州 450001
4.中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG),北京 100029
5.中国科学院地理科学与资源研究所陆地表层格局与模拟院重点实验室,北京 100101

Spatiotemporal variability of temperature and precipitation in typical Pan-Arctic basins, 1936-2018

HUANG Qiwei,1,2, LIU Shiqi1, WANG Ping,1,2, WANG Tianye3, YU Jingjie1,2, CHEN Xiaolong4, YANG Linsheng2,51. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, CAS,Beijing 100101, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China
4. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, CAS, Beijing 100029, China
5. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China

通讯作者: 王平,男,安徽肥西人,博士,副研究员,主要从事水文水资源研究。E-mail: wangping@igsnrr.ac.cn

收稿日期:2020-09-2修回日期:2020-10-6网络出版日期:2020-11-25
基金资助:国家科技基础资源调查专项课题.2017FY101302
国家科技基础资源调查专项课题.2017FY101301
中国科学院战略性先导科技专项子课题.XDA2003020101
中国科学院重点部署项目.ZDRW-ZS-2017-4
中国博士后科学基金面上项目.O7Z76095Z1


Received:2020-09-2Revised:2020-10-6Online:2020-11-25
作者简介 About authors
黄其威,男,河南信阳人,硕士生,研究方向为水文水资源。E-mail: huangqw. 19s@igsnrr.ac.cn









摘要
降水是环北极地区水资源的主要来源。定量分析气温与降水时空变化是深入理解环北极地区陆地水循环过程的基础。本文选取鄂毕河、叶尼塞河、勒拿河流域为对象,利用167个俄罗斯国家气象站点1936—2018年的气温与降水观测数据,结合线性趋势分析和Mann-Kendall突变点检验,揭示环北极典型流域气温与降水的时空变化特征。结果表明:①鄂毕河、叶尼塞河和勒拿河流域多年平均气温为0.06 ℃、-2.98 ℃、-7.41 ℃,年均增温速率分别为0.27 ℃/10 a,0.22 ℃/10 a,0.15 ℃/10 a。年内极端最低温(TNn)上升尤为明显,约为年均增温速率的1.3倍,春、冬季增温速率大于夏、秋两季;②鄂毕河、叶尼塞河和勒拿河流域多年平均降水量为496 mm、428 mm、369 mm;年降水量显著增加,其中叶尼塞河流域增速较慢(3.36 mm/10 a),而鄂毕河(13.02 mm/10 a)和勒拿河(9.59 mm/10 a)流域增速较快,降水增加集中在春、秋、冬三季;③在空间上,增温较快的区域集中在西伯利亚高原和山地,最大增温速率达0.60 ℃/10 a,而平原地区普遍偏低;降水的空间差异大,西伯利亚南部高海拔地区(>1100 m)年降水量达1000 mm左右,北部低海拔地区普遍为300~ 600 mm。上述观测数据指示,环北极流域正在变暖变湿,且空间差异大,可能与“北极放大”及流域下垫面条件有关。
关键词: 气候变化;北极放大;气温;降水;趋势分析;环北极流域

Abstract
Precipitation is the main source of water resources in the Pan-Arctic regions. Temperature and precipitation are important indicators of climate change, and quantitative analysis of their spatial and temporal variations is important for a deeper understanding of the water cycling process in the Arctic and Pan-Arctic regions. In this study, we used the temperature and precipitation observation data from 167 meteorological stations in the Ob, Yenisei, and Lena River basins during 1936-2018, and combined linear trend analysis and Mann-Kendall change point detection to reveal the spatial and temporal changes of temperature and precipitation in typical Pan-Arctic basins, as well as the interrelationship between temperature and precipitation. The results show that: (1) During 1936-2018, the multi-year mean temperature at the meteorological stations in the Ob, Yenisei, and Lena River basins was 0.06 °C, -2.98 °C and -7.41 °C, respectively, with a significant upward trend in the annual mean temperature, and the warming rate was 0.27 °C/10 a, 0.22 °C/10 a and 0.15 °C/10 a. Temperature increases were greater in the spring and winter than in the summer and autumn, and the TNn warming rate was about 1.3 times that the annual average; (2) The multi-year mean precipitation in the Ob, Yenisei, and Lena of River basins was 496 mm, 428 mm, and 369 mm, respectively, with a significant increasing trend. The increase rate in the Yenisei River basin was relatively slow (3.36 mm/10 a), while those of the Ob (13.02 mm/10 a) and Lena (9.59 mm/10 a) River basin were faster. Precipitation increases more in the spring, autumn, and winter than in the summer. (3) The faster warming regions were mainly in the Central Siberian Plateau and the East Siberian Highlands, with a maximum warming rate of 0.60 °C/10 a, while the warming rate in the West Siberia Plain was relatively low. The spatial differences in precipitation were large, with annual precipitation of about 1000 mm in southern regions of Siberia (altitude >1100 m). These changes in temperature and precipitation indicate that the Pan-Arctic region is warming and wetting, with large spatial variations, possibly related to the “Arctic Amplification” and sub-basin conditions. Under the background of continued global warming, changes in temperature and precipitation of the Pan-Arctic region will require further observation and in-depth study.
Keywords:climate change;Arctic Amplification;temperature;precipitation;linear trend analysis;Pan-Arctic basins


PDF (13140KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
黄其威, 刘诗奇, 王平, 王田野, 于静洁, 陈晓龙, 杨林生. 1936—2018年环北极典型流域气温与降水时空变化. 资源科学[J], 2020, 42(11): 2119-2131 doi:10.18402/resci.2020.11.06
HUANG Qiwei, LIU Shiqi, WANG Ping, WANG Tianye, YU Jingjie, CHEN Xiaolong, YANG Linsheng. Spatiotemporal variability of temperature and precipitation in typical Pan-Arctic basins, 1936-2018. RESOURCES SCIENCE[J], 2020, 42(11): 2119-2131 doi:10.18402/resci.2020.11.06


1 引言

19世纪末以来,全球气温约上升0.8℃,而同期的北极地区则上升2~3℃[1],是全球平均水平的2倍以上,被称之为“北极放大(Arctic Amplification)”[2,3]。2019年,联合国政府间气候变化专门委员会(IPCC)发布的《气候变化中的海洋和冰冻圈特别报告(Special Report on the Ocean and Cryosphere in a Changing Climate)》指出,仅2007—2016年间,极地的平均气温就已上升0.29±0.12℃[4]。据估计,在高排放情景下(CMIP5 RCP8.5),至21世纪末北极地区气温将上升8.5±4.1℃[5]

北极放大不仅直接改变极地海洋、海冰、积雪/冻土、冰盖与冰川等极地系统要素[6,7],还深刻影响中高纬度地区的生物圈[8]、大气圈[9,10]、水圈[11,12]、以及人类经济社会的发展[13]。作为北冰洋淡水输入的重要源区,广泛发育多年冻土的环北极地区,不仅是气候和环境变化的敏感区域,也是北极气候变化及环境响应研究的重点区域[14,15,16]。随着20世纪下半叶的气候变暖,连续多年冻土发育的环北极地区气温普遍上升[17,18,19],形成了大量的热喀斯特湖,并进一步加剧这一地区的冻土退化[20]。此外,诸多研究通过气候模型预测,在增暖过程中,北极地区降水量也同步增加[21],21世纪末甚至将增加50% ~ 60%,显著高于全球平均水平[21,22]。因此,近百年气候变暖导致的全球尺度水文要素(降水、蒸散发、径流等)变化,加速了环北极地区的水循环[23,24],一方面导致中高纬度地区的极端降水事件增多[25,26],另一方面使得干、湿地区和干、湿季节间的降水差异进一步增大[27]

俄罗斯西伯利亚地区总面积达969万 km2[28],广泛分布连续多年冻土[29,30]。近年来,国内外****围绕西伯利亚环北极流域的气候变化及其驱动机制展开了大量的研究。比如,通过分析大气CO2浓度与太阳辐射强度[31]、冰-雪反射率变化[32,33,34],以及地表、云层、水汽之间的互馈关系[35],发现在冷暖季节分明的北极地区,气候增暖和降水量变化均具有显著的季节性特征[36,37],冬季增温比夏季更为明 显[38,39,40],且降水量变化在冬季最为显著[38]。但不同流域和地区间的温度与降水变化特征具有明显的空间差异[20,41],其在时空上的变化不仅直接影响北极地区积雪的覆盖范围[34],还将对水文与气候系统进行反馈[36],并对冰川物质平衡和流动速度[42]、海 冰[43]、海洋循环[22]、生物及生态系统[44]等带来长期且广泛的影响。目前,多数研究通常仅针对整个北 极[45,46]及西伯利亚地区或单一流域[47]展开,对不同下垫面条件下的流域间气温和降水时空变化开展的对比研究相对较少,对局地增暖及其与降水量增加的关系分析[23]也尚不够深入。

为此,本文基于167个俄罗斯国家气象站1936—2018年的气温与降水观测数据,利用线性趋势分析和Mann-Kendall突变点检验,揭示环北极三大典型流域(鄂毕河、叶尼塞河、勒拿河)的气温和降水时空变化特征及规律。并在此基础上,从地理学地域分异规律的角度,分析研究区气温、降水变化及其与经度、纬度和高程之间的关系,为环北极气候与环境变化研究提供基础。

2 研究区概况、数据来源和研究方法

2.1 研究区概况

环北极三大流域均位于俄罗斯西伯利亚地区,自西向东依次为:鄂毕河、叶尼塞河和勒拿河(图1),其流域面积分别为295万 km2、244万 km2和243万 km2[48]。其中鄂毕河和叶尼塞河向北汇入北冰洋喀拉海域,勒拿河流域则汇入拉普捷夫海域[49,50]。三大流域每年向北冰洋输入的淡水总量可达1600 km3左右[51]。三大流域内广泛发育多年冻土,且覆盖率自南向北随纬度增加而增大[14],不同流域内各类多年冻土发育程度的差异较大:鄂毕河流域连续多年冻土仅占流域总面积的1%,而在叶尼塞河和勒拿河流域,连续多年冻土面积分别达到21%和71%[29]

图1

新窗口打开|下载原图ZIP|生成PPT
图1鄂毕河、叶尼塞河和勒拿河流域站点的多年平均气温、降水空间格局

Figure 1Spatial pattern of multi-year mean temperature and precipitation in the Ob, Yenisei, and Lena River basins



勒拿河流域整体属于大陆性气候,年均降水量较低(200~500 mm)[52],冬季寒冷漫长,温度最低可低至-50℃,而夏季短暂炎热,最高温度可达35℃,流域内年均气温为-6℃,且随纬度升高而不断下降[20]。叶尼塞河流域每年有超过6个月的时间被冰雪覆 盖[53],仅部分南部区域不发育多年冻土[54]。鄂毕河流域内非连续多年冻土之下富集大量泥炭[55,56],气候变化将导致全新世泥炭沉积稳定性变差,预计未来将不断减少[57]。整体而言,气候变化影响着流域多年冻土范围、径流、降水、河流化学组分等各个方面,进而使河流下游生态系统发生变化[58,59]

2.2 数据来源和研究方法

本文所使用的气温与降水数据源自俄罗斯及前苏联气温与降水观测共享平台[60]。数据包含167个站点(鄂毕河流域63个,叶尼塞河流域54个,勒拿河流域50个)的日最高气温、日最低气温、日均气温和日降水数据。观测数据最早始于1900年1月1日,但由于部分站点早期观测数据缺失较多,故本研究时段选取1936—2018年。

本文采用Mann-Kendall突变检验、最小二乘法线性拟合等多种方法进行分析。Mann-Kendall突变检验是被广泛使用的一种非参数统计检验方法。对于样本数为n的时间序列x,构造秩序列 sk

sk=ki=1ri,k=2,3,,n
其中,

ri=1,xi>xj0,xixj,j=1,2,,i
假定时间序列随机独立时,定义统计量:

UFk=sk-EskVarsk,k=1,2,,n
式中:x为时间序列; sk为构造的秩序列; EskVarsk分别是 sk的均值和方差; riUFkUBk是时间序列计算出来的统计量,其中 UF1=0

本文中 UFk是按时间序列x正序x1,x2,…,x83计算出来的统计量序列(1936—2018年共83个数据),按时间序列x逆序x83,x82,…,x1,再重复上述过程,然后使计算值乘-1,即可得到 UBk序列。分别绘制 UFkUBk曲线图,两曲线交点对应的时刻即是突变开始的时间。

3 结果与分析

3.1 气温与降水的时间变化特征

3.1.1 气温的多年变化及季节性特征

1936—2018年间,鄂毕河、叶尼塞河和勒拿河流域167个站点的平均气温上升了1.79 ℃,但各站点气温变化的规律不尽相同。从流域尺度上来看,三大流域站点的多年年均气温(Tmean)差距较大,自西向东依次为0.06 ℃、-2.98 ℃、-7.41 ℃(表1),但研究期内均呈显著上升趋势(图2)。其中,鄂毕河流域站点增温速率最快(0.27 ℃/10 a),约为勒拿河流域(0.15 ℃/10 a)的2倍,而叶尼塞河流域站点的气温增长速率(0.22 ℃/10 a)介于上述两个流域之间。此外,年内极端最高温(TXx)、年内极端最低温(TNn)也呈显著增加趋势,其中TNn增速更快(自西向东3个流域分别为:0.36 °C/10 a、0.33 °C/10 a、0.30 °C/10 a),约为年均气温增长速率的1.3倍(图2)。

Table 1
表1
表11936—2018年鄂毕河、叶尼塞河和勒拿河流域多年平均气温、降水特征统计表
Table 1Statistical characteristics of multi-year average annual temperature and precipitation in the Ob, Yenisei, and Lena River basins, 1936-2018
流域时间段温度降水
平均值/
方差/
增速/
(℃/10 a)
平均值/
mm
方差/
mm
增速/
(mm/10 a)
鄂毕河整年0.061.060.27**4965313.02**
春季0.491.770.39**96184.14**
夏季16.100.840.17**204240.15*
秋季0.201.450.21**129183.96**
冬季-16.872.420.30**66184.68**
叶尼塞河整年-2.981.040.22**428293.36*
春季-2.301.630.31**6991.89**
夏季14.910.830.17**21024-3.21**
秋季-2.771.340.16**102121.65**
冬季-22.172.330.27*4892.16**
勒拿河整年-7.410.970.15**369389.59**
春季-5.761.690.31**54123.00**
夏季14.730.790.10**198272.10*
秋季-7.701.310.05*87123.21**
冬季-30.911.990.20*3361.26**
注:*、**分别代表显著性水平0.05、0.01。

新窗口打开|下载CSV

图2

新窗口打开|下载原图ZIP|生成PPT
图21936—2018年鄂毕河、叶尼塞河和勒拿河流域TXxTNnTmean变化

TXx:年内极端最高温;TNn:年内极端最低温;Tmean:年均气温;浅灰色、深灰色和黑色分别指示鄂毕河、叶尼塞河和勒拿河流域)
Figure 2Changes in TXx, TNn, and Tmean of the Ob, Yenisei, and Lena River basins, 1936-2018

(TXx: Extreme highest temperature of the year; TNn: Extreme lowest temperature of the year; Tmean: Average annual temperature; Light grey, dark grey, and black indicate the Ob, Yenisei, and Lena River basins, respectively)


与19世纪末以来全球增温幅度(0.8 ℃)相比,在过去83年期间(1936—2018),鄂毕河和叶尼塞河流域站点平均增温分别为2.3 ℃和1.8 ℃,是全球平均增温水平的2倍以上,勒拿河流域为全球平均水平的约1.6倍。此外,TXxTNn的变化也比全球更为显著,TNn增温甚至达到全球平均水平的3倍以上(鄂毕河、叶尼塞河和勒拿河流域分别为3.8、3.5、3.2倍)。可以看出,环北极3个流域在过去83年期间不仅显著增温,还存在明显的“放大”效应,尤其是西伯利亚中西部地区的鄂毕河和叶尼塞河流域。

Mann-Kendall突变点检验(置信区间95%,显著性水平α=0.05)显示,过去的83年内,鄂毕河、叶尼塞河和勒拿河流域的167个站点气温均呈波动上升,并依次在1987、1993、2001年前后发生突变(图3)。鄂毕河流域气温突变出现时间最早,与突变前多年平均气温相比,突变后气温上升约1.33 ℃。这一数值高于叶尼塞河和勒拿河的1.25 ℃和1.04 ℃,而更为寒冷的勒拿河流域气温突变时间最晚。此外,气温正向时间序列(UFk曲线)也表明,自西向东的三大流域气象站点观测的多年平均气温依次在1977、1980、1986年后显著上升(或近似直线增加)[47]图3)。因此,相比于年均气温较高的流域而言,气温较低的流域发生气温突变的时间更晚。

图3

新窗口打开|下载原图ZIP|生成PPT
图31936—2018年鄂毕河、叶尼塞河和勒拿河流域内年均气温Mann-Kendall突变点检验

Figure 3Test of Mann-Kendall change points of mean annual temperature in the Ob, Yenisei, and Lena River basins, 1936-2018



环北极流域的气温变化不仅存在区域差异,且在过去的83年间增温规律也发生显著改变。多年冻土广泛分布的勒拿河流域在1936—2018年间以0.15 ℃/10 a的速率变暖,但自1960年起,增温速率快速增加,约为0.33 ℃/10 a;而多年冻土发育程度较低的鄂毕河流域自1960年以来的增温速率(0.34 ℃/10 a)与1936—2018年(0.27 ℃/10 a)相比,没有发生很大的变化。

鄂毕河、叶尼塞河和勒拿河流域的气象站点观测气温呈现出显著的季节性差异。除夏季外,叶尼塞河与勒拿河流域其他三季多年平均气温均低于0 ℃,冬季甚至低于-20 ℃,春、秋两季气温相近 (-10~0 ℃);而西部鄂毕河流域的多年平均气温仅在冬季低于0 ℃(-16.87℃),春、秋季介于0~1 ℃之间,夏季则可达16.10 ℃(表1)。因此,季节尺度上,三大流域依旧保持自西向东递减的气温变化梯度。在气温变化速率上,1936~2018年间各个季节的气温也呈现不同程度的上升。其中,春、冬季增温速率最大(0.20~0.40 ℃/10 a),尤其是春季增温速率(超过0.30 ℃/10 a)远高于其他季节。相比之下,夏、秋两季增暖速率则相对较小,为0.10~0.21 ℃/10 a。

3.1.2 降水的多年变化及季节性特征

1936—2018年间的降水观测数据显示,鄂毕河、叶尼塞河和勒拿河流域多年平均降水量依次为496 mm、428 mm、369 mm(表1),均呈波动增加趋势(图4)。其中,叶尼塞河流域降水增加速率较慢(3.36 mm/10 a),而鄂毕河、勒拿河流域的降水均呈现显著增加趋势(13.02 mm/10 a、9.59 mm/10 a)。分析年极端降水量(R99:日降水量99%分位数)发现,鄂毕河、勒拿河流域年极端降水量也呈显著增加趋势,但叶尼塞河流域则略有下降。3个流域年极端降水量与多年平均降水量变化一致,表明两者之间可能存在一定的关联。

图4

新窗口打开|下载原图ZIP|生成PPT
图41936—2018年鄂毕河、叶尼塞河和勒拿河流域年均降水量(Pmean)及极端降水量(R99)变化

(浅灰色、深灰色和黑色分别指示鄂毕河、叶尼塞河和勒拿河流域)
Figure 4Changes in mean annual precipitation (Pmean) and extreme precipitation (R99) in the Ob, Yenisei, and Lena River basins, 1936-2018

(Light grey, dark grey, and black indicate the Ob, Yenisei, and Lena River basins, respectively)


按季节尺度来看,3个流域在夏季的降水量较为接近(表1),其中,叶尼塞河流域夏季多年平均降水量最多(约210 mm),而鄂毕河和勒拿河流域次之(分别为204 mm和198 mm)。但春、秋和冬季各流域间的降水量差异较大,整体上鄂毕河流域降水最多(66~129 mm),叶尼塞河流域次之(48~102 mm),勒拿河流域最少(33~87 mm)。

与气温变化的季节性特征相比,近83年来三大流域降水的季节性特征变化更为复杂。整体而言,除叶尼塞河流域夏季降水略有减少之外,各流域四季的降水均呈现不同程度的增加趋势(表1)。春、冬两季降水的增加速率大于夏、秋两季,其中鄂毕河流域最为显著(春季约4.14 mm/10 a,冬季约4.68 mm/10 a)。另外,鄂毕河秋季和勒拿河流域的春、秋季降水增加速率也较大(均超过3 mm/10 a)。

综上,鄂毕河、叶尼塞河和勒拿河流域在1936—2018年间,整体呈现出“暖湿化”的趋势。各流域降水与气温呈现显著增加的趋势,表明在“北极放大”影响下,北半球中高纬度地区在快速变暖[61]的同时,来自北冰洋由增暖导致的水汽也在增加[62],并引起环北极地区的降水增加[63]、径流增加[48],加速了环北极地区的水循环过程[23]

3.2 气温与降水的空间变化特征

三大流域167个气象站点的气温、降水观测值,随站点经、纬度和海拔高度的变化整体呈现出不同的空间变化特征(图1)。多年平均气温整体呈现“南高北低”的格局,具有自西南向东北方向递减的整体趋势,降水也表现出类似的空间变化格局。降水量与海拔高度也存在一定的相关性,表明海拔高度也是影响这一地区降水量的重要因素之一[64]。下文将进一步分析经纬度和海拔高度对气温、降水的影响。

3.2.1 气温的空间变化特征

1936—2018年期间,勒拿河流域全部站点及叶尼塞河流域85%的站点多年平均气温低于0 ℃,而鄂毕河流域多年平均气温低于0 ℃的气象站点仅占约1/4。三大流域间的温度差异也导致各流域多年冻土发育面积的不同,鄂毕河、叶尼塞河和勒拿河流域多年冻土面积占流域总面积的比例依次为:40%、67%、94%[29]

在空间上,多年平均气温呈现出随纬度增加而下降的典型特征。鄂毕河、叶尼塞河和勒拿河流域内多年平均气温最高的站点均位于南部地区(依次为4.0 ℃、1.6 ℃、-3.1 ℃),且高于相应流域最低气温10 ℃以上(依次为:11.4 ℃、12.2 ℃、10.1 ℃)。同样,随着经度的增加,气温也呈下降趋势,且空间差异性远低于纬度方向,降低速率(-0.15 ℃/°)仅为纬度方向(-0.59 ℃/°)的1/4(图5)。同时,研究区气温的空间变化与冻土空间分布呈现很好的关联性,随着温度降低,西伯利亚地区自西向东多年冻土发育程度逐渐增加,东部的连续、非连续多年冻土覆盖率远高于西部[29]。从地形上来看,自西西伯利亚平原、中西伯利亚高原到东西伯利亚山地,海拔高度自西向东也逐渐增加[28]图1)。因此,海拔高度和多年冻土发育程度及规模与研究区温度的空间差异密切相关。

图5

新窗口打开|下载原图ZIP|生成PPT
图51936—2018年167个站点的多年平均气温随经、纬度变化

(浅灰色、深灰色和黑色分别指示鄂毕河、叶尼塞河和勒拿河流域)
Figure 5Changes in multi-year mean temperature with longitude and latitude at 167 stations in the Ob, Yenisei, and Lena River basins, 1936-2018

(Light grey, dark grey, and black indicate the Ob, Yenisei, and Lena River basins, respectively)


此外,尽管与年均气温类似,各季节气温均随经、纬度的增加而减小,但不同季节的气温变化趋势存在较大差异。夏季气温随经、纬度变化程度明显低于其他三季,而冬季变化程度最大。鄂毕河、叶尼塞河和勒拿河流域的春、夏、秋、冬气温随纬度变化速率分别为-0.67 ℃/°、-0.21 ℃/°、-0.60 ℃/°、 -0.86 ℃/°,而随经度变化速率明显较小,分别为 -0.13 ℃/°、-0.03 ℃/°、-0.16 ℃/°、-0.28 ℃/°。对比不同季节的气温空间变化格局,发现在春、秋、冬3个季节,气温在纬度方向上的减小速率可达经度方向上的3~5倍,夏季甚至高达7倍。因此,3个流域在站点尺度上不同季节的气温变化规律表明,冬季气温在经、纬度方向上的空间差异最大(随经、纬度减小速率最快),夏季则相对较小;纬度方向上气温的空间差异在全年以及各个季节均大于经度方向。

同时,气温变化速率在空间上也存在差异(图1)。研究区167个站点的多年变化速率平均为0.25±0.10 ℃/10 a,可划分为4个区间:I级增温(<0.15 ℃/10 a)、II级增温(0.15~0.25 ℃/10 a)、III级增温(0.25~0.35 ℃/10 a)及IV级增温(>0.35 ℃/10 a)。各流域增温速率高于0.15 ℃/10 a的站点数均超过90%;II级增温的站点数约占各流域总站点数的一半;而增温速率为0.25~0.35 ℃/10 a(III级)的站点数分别占鄂毕河、叶尼塞河、勒拿河流域的46%、26%、28%;IV级增温的站点分别占各流域的2%、20%、16%,且主要位于中西伯利亚高原和东西伯利亚山地地区(图1)。因此,尽管叶尼塞河(0.22 ℃/10 a)和勒拿河(0.15 ℃/10 a)流域平均增温速率相对较低(表1),但空间差异较大,约1/5的站点出现IV级增温;而平均增温速率较高的鄂毕河流域(0.27 ℃/10 a),IV级增温站点极少。整体而言,西伯利亚地区南部增温速率大于北部。其中,IV级增温站点较多的中西伯利亚高原(叶尼塞河流域)和东西伯利亚山地(勒拿河流域)地区,对气候变化响应更为敏感。气温增加速率的空间差异,可能与相应流域的冻土发育程度及覆盖范围有关[29];除此之外,太阳辐射[65]、植被状况[66,67](如:植被类型、覆盖程度、分布范围等)及地表反照率[68]的变化,也是引起空间增温不均的主要影响因素。

3.2.2 降水的空间变化特征

鄂毕河、叶尼塞河、勒拿河流域多年平均降水量分别为(496±53) mm、(428±29) mm、(369±38) mm(表1),自西向东呈逐渐减少的空间格局。分析降水随经、纬度的变化,发现鄂毕河、叶尼塞河流域年均降水量超过900 mm的3个站点主要位于85°E—105°E,51°N—55°N(图6)。其中,年均降水量最大的站点(1040 mm)位于流域东南部海拔高于1400 m的地区(图1)。整体而言,降水随经度的空间变化以85°E、105°E为界分为3个区域(图6a),自西到东,先后呈现上升-下降-趋于稳定的变化趋势。

图6

新窗口打开|下载原图ZIP|生成PPT
图6鄂毕河、叶尼塞河和勒拿河流域多年平均降水量随经、纬度变化

(浅灰色、深灰色和黑色分别指示鄂毕河、叶尼塞河和勒拿河流域)
Figure 6Changes in multi-year mean precipitation with longitude and latitude in the Ob, Yenisei, and Lena River basins, 1936-2018

(Light grey, dark grey, and black indicate the Ob, Yenisei, and Lena River basins, respectively)


纬度方向上,降水空间分布整体相对均匀,鄂毕河、叶尼塞河两个流域的年均降水量向北缓慢增加,而勒拿河流域则逐渐减少(图6b)。55°N以南,降水受地形影响显著,年均降水量空间变化大(80~1100 mm),而55°N以北地区降水量空间差异相对较小(200~600 mm)。其中,北部地区的鄂毕河流域年均降水最多,叶尼塞河流域次之,勒拿河流域最少。

3个流域不同季节的降水量也具有较大的空间差异性,且十分复杂。鄂毕河、叶尼塞河和勒拿河流域在春、夏、秋、冬的降水量随纬度变化速率分别为-0.35 mm/°、-1.57 mm/°、0.29 mm/°、0.33 mm/°,随经度变化速率依次为-0.26 mm/°、-0.04 mm/°、 -0.26 mm/°、-0.23 mm/°。其中,尽管各季节的降水量均随经度的增加而减小,但夏季减小速率最慢,而其他三季较为接近;纬度方向上不同季节降水的变化特征更为复杂,其中春、夏两季降水量呈现下降趋势(-0.35 mm/°、-1.57 mm/°),而秋、冬两季降水量呈现增加趋势(0.29 mm/°、0.33 mm/°)。统计分析结果显示,季节降水与经纬度之间的线性相关系数不高。环北极地区降水的高度时空变异性,不仅受气温和大气湿度的影响[23],还与该地区多年冻土[69]、寒区植被[70,71]及海冰[72]等特有的区域环境有关。

此外,降水随高程变化的规律在不同流域间存在较大差异(图7)。分析海拔1000 m以下气象站点的降水数据,发现3个流域降水量均分布在150 mm~700 mm之间。鄂毕河、勒拿河流域的降水随海拔升高呈增加趋势,平均每升高100 m,降水量平均增加15~20 mm;但叶尼塞河流域的降水量却随海拔升高逐渐减少,海拔每升高100 m,降水量减少10 mm。上述分析只考虑海拔的影响,但不同流域分析结果的差异性表明了研究区降水量在空间上虽然具有一定的分布规律,但影响降水空间格局的因素十分复杂,并不能完全由海拔这一单一影响因子所解释,未来研究应充分考虑如冻土、植被等下垫面因素在内的其他影响。

图7

新窗口打开|下载原图ZIP|生成PPT
图71936—2018年鄂毕河、叶尼塞河和勒拿河流域多年平均降水量与海拔的关系

(浅灰色、深灰色和黑色分别指示鄂毕河、叶尼塞河和勒拿河流域)
Figure 7Relationship between perennial average precipitation and altitude in the Ob, Yenisei, and Lena River basins, 1936-2018

(Light grey, dark grey, and black indicate the Ob, Yenisei, and Lena River basins, respectively)


4 结论

过去的100年间,北极快速增温深刻影响北半球中高纬度地区的气候、冰冻圈、陆地生态和水文系统[7,48]。气温和降水作为重要气象因子,是全球气候变化的关键指示器之一。在全球持续增暖的背景下,受“北极放大”直接影响的环北极地区,其气温与降水时空格局已成为当前全球变化研究的重要内容之一。本文通过分析1936—2018环北极三大典型流域(鄂毕河、叶尼塞河、勒拿河)167个气象观测站的气温与降水观测数据,得到以下主要结论:

(1)受大气环流与下垫面条件的影响,环北极典型流域气温呈上升趋势且存在较大差异。自西向东,鄂毕河、叶尼塞河和勒拿河流域多年平均气温分别为0.06 ℃、-2.98 ℃、-7.41 ℃。上述3个流域年均气温在过去83年期间均呈现显著抬升趋势,平均增温速率介于0.15 ℃/10 a和0.27 ℃/10 a之间。与此同时,极端最高温TXx和极端最低温TNn也呈显著增加趋势,且TNn增速更快,约为年均增温速率的1.3倍。气温抬升速率在年内也存在差异,春、冬两季增温速率(0.2~0.4 ℃/10 a)明显高于夏、秋两季(0.1~0.2 ℃/10 a)。

(2)与气温变化相似,3个流域多年平均降水量也存在较大差异,其中鄂毕河流域降水量最大,为496 mm;叶尼塞河流域次之,为428 mm;勒拿河流域最小,为369 mm。在过去的83年,各个流域的年降水量均呈现显著增加趋势,增速为3~13 mm/10 a,其中鄂毕河流域“变湿”最快(13.02 mm/10 a),勒拿河流域次之(9.59 mm/10 a),叶尼塞河流域最慢(3.36 mm/10 a)。此外,年内季节降水差异较大,降水量增加集中在春、秋、冬三季,夏季降水增加相对较弱,叶尼塞河流域夏季降水量甚至出现微弱的减少趋势(-3.21 mm/10 a)。极端降水(R99)变化趋势与年均降水的变化趋势较为一致。

(3)在空间尺度上,研究区多年平均气温呈现自西南向东北方向递减的格局,增温较快的区域集中在西伯利亚高原和山地(叶尼塞河、勒拿河流域),最大增温速率达0.60 ℃/10 a,而平原地区(鄂毕河流域)相对较低;且南北方向上的气温变化梯度(年均气温、季节气温)约是东西方向的3~5倍;降水的空间差异大,西伯利亚南部高海拔地区(>1100 m)年降水量达1000 mm左右,北部低海拔地区普遍为300~600 mm;鄂毕河、勒拿河流域的降水量随海拔升高呈增加趋势,平均每升高100 m,降水量增加15~20 mm,而叶尼塞河流域降水量随海拔升高略有下降。

最后需要指出的是,受气象站点数量及空间分布位置的限制,本文得到的气温与降水变化规律可能与流域平均水平存在一定数值上的差异。但167个气象站点的观测数据,已足以较好地反映环北极流域气温上升和降水增加的趋势。西伯利亚地区的快速增暖不仅加快冻土退化[30]及热融湖的大量形成[73],还将引起冻土层中CO2和甲烷等温室气体的快速释放[74,75,76],从而进一步加剧全球变暖。伴随着气候增暖,西伯利亚地区的降水整体呈增加趋势,极端降水的频次和强度也都不断增加,不仅引起北冰洋淡水输入量的增加[77],还导致西伯利亚地区洪涝灾害频率增加、强度加剧[28]。由于北极地区特殊的地理位置和环流系统,受“北极放大”直接影响的环北极流域的气温和降水变化仍存在极大的不确定性[7],有待于进一步通过加强地面气象要素的观测以及气候系统模拟进行分析。

致谢:

感谢两位匿名审稿人提出的专业且富有建设性的宝贵建议。


参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Post E, Alley R B, Christensen T R, et al. The polar regions in a 2°C warmer world
[J]. Science Advances, 2019,5(12): eaaw9883.

DOI:10.1126/sciadv.aay0764URLPMID:31976371 [本文引用: 1]
Recent advances in smart contact lenses are essential to the realization of medical applications and vision imaging for augmented reality through wireless communication systems. However, previous research on smart contact lenses has been driven by a wired system or wireless power transfer with temporal and spatial restrictions, which can limit their continuous use and require energy storage devices. Also, the rigidity, heat, and large sizes of conventional batteries are not suitable for the soft, smart contact lens. Here, we describe a human pilot trial of a soft, smart contact lens with a wirelessly rechargeable, solid-state supercapacitor for continuous operation. After printing the supercapacitor, all device components (antenna, rectifier, and light-emitting diode) are fully integrated with stretchable structures for this soft lens without obstructing vision. The good reliability against thermal and electromagnetic radiations and the results of the in vivo tests provide the substantial promise of future smart contact lenses.

Bowen J C, Ward C P, Kling G W, et al. Arctic amplification of global warming strengthened by sunlight oxidation of permafrost carbon to CO2
[J]. Geophysical Research Letters, 2020, DOI: http://www.resci.cn/article/2020/1007-7588/10.1029/2020GL087085.

URLPMID:32999517 [本文引用: 1]

Serreze M C, Barry R G. Processes and impacts of Arctic amplification: A research synjournal
[J]. Global and Planetary Change, 2011,77(1-2):85-96.

[本文引用: 1]

Abram N, Adler C, Bindoff N L, et al. Summary for Policymakers
[A]. Po?rtner H O, Roberts D C, Masson-Delmotte V, et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate[M]. Cambridge: Cambridge University Press, 2019.

[本文引用: 1]

Bintanja R, Krikken F. Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing
[J]. Scientific Reports, 2016, DOI: http://www.resci.cn/article/2020/1007-7588/10.1038/srep38287.

URLPMID:33319843 [本文引用: 1]
Despite increasing conflict at human-wildlife interfaces, there exists little research on how the attributes and behavior of individual wild animals may influence human-wildlife interactions. Adopting a comparative approach, we examined the impact of animals' life-history and social attributes on interactions between humans and (peri)urban macaques in Asia. For 10 groups of rhesus, long-tailed, and bonnet macaques, we collected social behavior, spatial data, and human-interaction data for 11-20 months on pre-identified individuals. Mixed-model analysis revealed that, across all species, males and spatially peripheral individuals interacted with humans the most, and that high-ranking individuals initiated more interactions with humans than low-rankers. Among bonnet macaques, but not rhesus or long-tailed macaques, individuals who were more well-connected in their grooming network interacted more frequently with humans than less well-connected individuals. From an evolutionary perspective, our results suggest that individuals incurring lower costs related to their life-history (males) and resource-access (high rank; strong social connections within a socially tolerant macaque species), but also higher costs on account of compromising the advantages of being in the core of their group (spatial periphery), are the most likely to take risks by interacting with humans in anthropogenic environments. From a conservation perspective, evaluating individual behavior will better inform efforts to minimize conflict-related costs and zoonotic-risk.

Duncan B N, Ott L E, Abshire J B, et al. Space-based observations for understanding changes in the Arctic-Boreal Zone
[J]. Reviews of Geophysics, 2020, DOI: http://www.resci.cn/article/2020/1007-7588/10.1029/2019RG000652.

URLPMID:17654788 [本文引用: 1]
Discussion of climate change on a range of time scales has tended to focus on carbon dioxide and a changing greenhouse effect. Because carbon dioxide couples climate to ocean, land, and biota, it has appealed to scientists with an interest in the whole Earth system. Carbon dioxide has left a geological record in fossils, isotopes, and sediments, so we can reasonably expect to reconstruct its history. While important questions of detail remain to be resolved, many published applications of carbon cycle modelling suggest that we understand the biogeochemical cycles of carbon well enough to estimate carbon dioxide concentrations in the past and the future. Furthermore, we have an excellent instrumental record of recent changes in atmospheric carbon dioxide. While these considerations make carbon dioxide attractive to paleoclimatologists, they do not necessarily make it a major component of climate change. I shall argue in this paper that clouds deserve much more attention than they have been getting.

效存德, 苏勃, 窦挺峰, . 极地系统变化及其影响与适应新认识
[J]. 气候变化研究进展, 2020,16(2):153-162.

[本文引用: 3]

[ Xiao C D, Su B, Dou T F, et al. Interpretation of IPCC SROCC on polar system changes and their impacts and adaptations
[J]. Climate Change Research, 2020,16(2):153-162.]

[本文引用: 3]

Berner L T, Beck P S, Bunn A G, et al. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia
[J]. Global Change Biology, 2013,19(11):3449-3462.

DOI:10.1111/gcb.12304URLPMID:23813896 [本文引用: 1]
0.05) in growing year precipitation or climate moisture index (CMIgy ). Mean summer NDVI (NDVIs ) increased significantly from 1982 to 2010 across 20% of the watershed, primarily in cold, shrub-dominated areas. NDVIs positively correlated (P 0.05), which significantly correlated with NDVIs (r = 0.44, P

Cohen J, Zhang X D, Francis J, et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather
[J]. Nature Climate Change, 2020,10(1):20-29.

DOI:10.1038/s41558-019-0662-yURL [本文引用: 1]

Dai A G, Song M R. Little influence of Arctic amplification on mid-latitude climate
[J]. Nature Climate Change, 2020,10(3):231-237.

DOI:10.1038/s41558-020-0694-3URL [本文引用: 1]

Graham R M, Cohen L, Petty A A, et al. Increasing frequency and duration of Arctic winter warming events
[J]. Geophysical Research Letters, 2017,44(13):6974-6983.

DOI:10.1002/2017GL073395URL [本文引用: 1]

Lehnherr I, Vincent L S L, Martin S, et al. The world’s largest High Arctic lake responds rapidly to climate warming
[J]. Nat Commun, 2018, DOI: http://www.resci.cn/article/2020/1007-7588/10.1038/s41467-018-03685-z.

[本文引用: 1]

秦大河, 姚檀栋, 丁永建, . 冰冻圈科学体系的建立及其意义
[J]. 中国科学院院刊, 2020,35(4):394-406.

[本文引用: 1]

[ Qin D H, Yao T D, Ding Y J, et al. Establishment and significance of the scientific system of Cryospheric science
[J]. Bulletin of the Chinese Academy of Sciences, 2020,35(4):394-406.]

[本文引用: 1]

Song C L, Wang G X, Mao T X, et al. Linkage between permafrost distribution and river runoff changes across the Arctic and the Tibetan Plateau
[J]. Science China: Earth Sciences, 2020,63(2):292-302.

[本文引用: 2]

Murphy M J, Porcelli D, Strandmann V P, et al. Tracing silicate weathering processes in the permafrost-dominated Lena River watershed using lithium isotopes
[J]. Geochimica Et Cosmochimica Acta, 2019,245(15):154-171.

DOI:10.1016/j.gca.2018.10.024URL [本文引用: 1]

Serikova S, Pokrovsky O S, Laudon H, et al. High carbon emissions from thermokarst lakes of Western Siberia
[J]. Nature Communications, 2019,10(1):1-7.

DOI:10.1038/s41467-018-07882-8URLPMID:30602773 [本文引用: 1]
Wave-particle duality is an inherent peculiarity of the quantum world. The double-slit experiment has been frequently used for understanding different aspects of this fundamental concept. The occurrence of interference rests on the lack of which-way information and on the absence of decoherence mechanisms, which could scramble the wave fronts. Here, we report on the observation of two-center interference in the molecular-frame photoelectron momentum distribution upon ionization of the neon dimer by a strong laser field. Postselection of ions, which are measured in coincidence with electrons, allows choosing the symmetry of the residual ion, leading to observation of both, gerade and ungerade, types of interference.

Iijima Y, Fedorov A N, Park H, et al. Abrupt increases in soil temperatures following increased precipitation in a permafrost region, central Lena River basin, Russia
[J]. Permafrost and Periglacial Processes, 2010,21(1):30-41.

[本文引用: 1]

Romanovsky V E, Drozdov D S, Oberman N G, et al. Thermal state of permafrost in Russia
[J]. Permafrost and Periglacial Processes, 2010,21(2):136-155.

[本文引用: 1]

Cheng G D, Jin H J. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China
[J]. Hydrogeology Journal, 2013,21(1):5-23.

[本文引用: 1]

Fedorov A N, Ivanova R N, Park H, et al. Recent air temperature changes in the permafrost landscapes of northeastern Eurasia
[J]. Polar Science, 2014,8(2):114-128.

[本文引用: 3]

Bintanja R, Andry O. Towards a rain-dominated Arctic
[J]. Nature Climate Change, 2017,7(4):263-267.

DOI:10.1038/nclimate3240URL [本文引用: 2]

Bintanja R, Selten F M. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat
[J]. Nature, 2014,509(7501):479-482.

DOI:10.1038/nature13259URLPMID:24805239 [本文引用: 2]
Precipitation changes projected for the end of the twenty-first century show an increase of more than 50 per cent in the Arctic regions. This marked increase, which is among the highest globally, has previously been attributed primarily to enhanced poleward moisture transport from lower latitudes. Here we use state-of-the-art global climate models to show that the projected increases in Arctic precipitation over the twenty-first century, which peak in late autumn and winter, are instead due mainly to strongly intensified local surface evaporation (maximum in winter), and only to a lesser degree due to enhanced moisture inflow from lower latitudes (maximum in late summer and autumn). Moreover, we show that the enhanced surface evaporation results mainly from retreating winter sea ice, signalling an amplified Arctic hydrological cycle. This demonstrates that increases in Arctic precipitation are firmly linked to Arctic warming and sea-ice decline. As a result, the Arctic mean precipitation sensitivity (4.5 per cent increase per degree of temperature warming) is much larger than the global value (1.6 to 1.9 per cent per kelvin). The associated seasonally varying increase in Arctic precipitation is likely to increase river discharge and snowfall over ice sheets (thereby affecting global sea level), and could even affect global climate through freshening of the Arctic Ocean and subsequent modulations of the Atlantic meridional overturning circulation.

Bintanja R. The impact of Arctic warming on increased rainfall
[J]. Science Reports, 2018,8(1):1-6.

[本文引用: 4]

Box J E, Colgan W T, Christensen T R, et al. Key indicators of Arctic climate change: 1971-2017
[J]. Environmental Research Letters, 2019,14(4):045010.

[本文引用: 1]

Dwyer J G, O’gorman P A. Changing duration and spatial extent of midlatitude precipitation extremes across different climates
[J]. Geophysical Research Letters, 2017,44(11):5863-5871.

[本文引用: 1]

姜彤, 孙赫敏, 李修仓, . 气候变化对水文循环的影响
[J]. 气象科技, 2020,46(3):289-300.

[本文引用: 1]

[ Jiang T, Sun H M, Li X C, et al. Impact of climate change on water cycle
[J]. Meteorological Monthly, 2020,46(3):289-300.]

[本文引用: 1]

Held I M, Soden B J. Robust Responses of the hydrological cycle to global warming
[J]. Journal of Climate, 2006,19(21):5686-5699.

DOI:10.1175/JCLI3990.1URL [本文引用: 1]

王平, 王田野, 王冠, . 西伯利亚淡水资源格局与合作开发潜力分析
[J]. 资源科学, 2018,40(11):2186-2195.

DOI:10.18402/resci.2018.11.05URL [本文引用: 3]
2的俄罗斯西伯利亚地区,拥有蓄水量占全球地表淡水资源总量约22%的贝加尔湖,以及总长度约500万km的河流和多座大型水库,其中叶尼塞河、勒拿河、鄂毕河等大型河流的水资源量极为丰富。据分析,该地区多年平均地表水资源量为2.35万亿m3,占全俄水资源总量的55%;水能资源蕴藏量为1.556万亿kW·h,占全俄65%;水运资源量为5.65万km,占全俄55.8%。尽管该地区水资源丰富,但由于人口稀少(不足2400万人,仅占全俄总人口的16%左右),水资源利用程度低,具有很大的开发潜力。西伯利亚山区河流水量丰沛,水能开发及水电发展具有广阔的前景。随着全球变暖,西伯利亚平原区河流的结冰期变短,航运价值不断提高。同时,在俄罗斯西伯利亚周边地区严重缺水的背景下,通过虚拟水贸易或跨流域调水,向中亚、蒙古和中国北方地区输送淡水资源具有重要的战略意义,将推动这一地区的经济与社会协同发展。随着“一带一路”倡议和“中蒙俄经济走廊”的规划实施,中蒙俄三方在水资源与水电能源等方面的合作具有广阔的前景。]]>
[ Wang P, Wang T Y, Wang G, et al. Spatial distribution and potential exploration of water resources in Siberia
[J]. Resources Science, 2018,40(11):2186-2195.]

[本文引用: 3]

Obu J, Westermann S, Bartsch A, et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000-2016 at 1?km2 scale
[J]. Earth-Science Reviews, 2019,193:299-316.

DOI:10.1016/j.earscirev.2019.04.023URL [本文引用: 5]

Biskaborn B K, Smith S L, Noetzli J, et al. Permafrost is warming at a global scale
[J]. Nature Communications, 2019,10(1):1-11.

DOI:10.1038/s41467-018-07882-8URLPMID:30602773 [本文引用: 2]
Wave-particle duality is an inherent peculiarity of the quantum world. The double-slit experiment has been frequently used for understanding different aspects of this fundamental concept. The occurrence of interference rests on the lack of which-way information and on the absence of decoherence mechanisms, which could scramble the wave fronts. Here, we report on the observation of two-center interference in the molecular-frame photoelectron momentum distribution upon ionization of the neon dimer by a strong laser field. Postselection of ions, which are measured in coincidence with electrons, allows choosing the symmetry of the residual ion, leading to observation of both, gerade and ungerade, types of interference.

Stuecker M F, Bitz C M, Armour K C, et al. Polar amplification dominated by local forcing and feedbacks
[J]. Nature Climate Change, 2018,8(12):1076-1081.

DOI:10.1038/s41558-018-0339-yURL [本文引用: 1]

Screen J A, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification
[J]. Nature, 2010,464(7293):1334-1337.

DOI:10.1038/nature09051URLPMID:20428168 [本文引用: 1]
The rise in Arctic near-surface air temperatures has been almost twice as large as the global average in recent decades-a feature known as 'Arctic amplification'. Increased concentrations of atmospheric greenhouse gases have driven Arctic and global average warming; however, the underlying causes of Arctic amplification remain uncertain. The roles of reductions in snow and sea ice cover and changes in atmospheric and oceanic circulation, cloud cover and water vapour are still matters of debate. A better understanding of the processes responsible for the recent amplified warming is essential for assessing the likelihood, and impacts, of future rapid Arctic warming and sea ice loss. Here we show that the Arctic warming is strongest at the surface during most of the year and is primarily consistent with reductions in sea ice cover. Changes in cloud cover, in contrast, have not contributed strongly to recent warming. Increases in atmospheric water vapour content, partly in response to reduced sea ice cover, may have enhanced warming in the lower part of the atmosphere during summer and early autumn. We conclude that diminishing sea ice has had a leading role in recent Arctic temperature amplification. The findings reinforce suggestions that strong positive ice-temperature feedbacks have emerged in the Arctic, increasing the chances of further rapid warming and sea ice loss, and will probably affect polar ecosystems, ice-sheet mass balance and human activities in the Arctic.

Taylor P C, Cai M, Hu A X, et al. A decomposition of feedback contributions to polar warming amplification
[J]. Journal of Climate, 2013,26(18):7023-7043.

DOI:10.1175/JCLI-D-12-00696.1URL [本文引用: 1]
Polar surface temperatures are expected to warm 2-3 times faster than the global-mean surface temperature: a phenomenon referred to as polar warming amplification. Therefore, understanding the individual process contributions to the polar warming is critical to understanding global climate sensitivity. The Coupled Feedback Response Analysis Method (CFRAM) is applied to decompose the annual- and zonal-mean vertical temperature response within a transient 1% yr(-1) CO2 increase simulation of the NCAR Community Climate System Model, version 4 (CCSM4), into individual radiative and nonradiative climate feedback process contributions. The total transient annual-mean polar warming amplification (amplification factor) at the time of CO2 doubling is +2.12 (2.3) and +0.94 K (1.6) in the Northern and Southern Hemisphere, respectively. Surface albedo feedback is the largest contributor to the annual-mean polar warming amplification accounting for +1.82 and +1.04 K in the Northern and Southern Hemisphere, respectively. Net cloud feedback is found to be the second largest contributor to polar warming amplification (about +0.38 K in both hemispheres) and is driven by the enhanced downward longwave radiation to the surface resulting from increases in low polar water cloud. The external forcing and atmospheric dynamic transport also contribute positively to polar warming amplification: +0.29 and +0.32 K, respectively. Water vapor feedback contributes negatively to polar warming amplification because its induced surface warming is stronger in low latitudes. Ocean heat transport storage and surface turbulent flux feedbacks also contribute negatively to polar warming amplification. Ocean heat transport and storage terms play an important role in reducing the warming over the Southern Ocean and Northern Atlantic Ocean.

Hernández-Henríquez M A, Déry S J, Derksen C. Polar amplification and elevation-dependence in trends of Northern Hemisphere snow cover extent, 1971-2014
[J]. Environmental Research Letters, 2015,10(4):044010.

[本文引用: 2]

Goosse H, Kay J E, Armour K C, et al. Quantifying climate feedbacks in polar regions
[J]. Nature Communications, 2018,9(1):1-13.

URLPMID:29317637 [本文引用: 1]

Screen J A, Simmonds I. Declining summer snowfall in the Arctic: Causes, impacts and feedbacks
[J]. Climate Dynamics, 2012,38(11-12):2243-2256.

[本文引用: 2]

Berghuijs W R, Woods R A, Hrachowitz M. A precipitation shift from snow towards rain leads to a decrease in streamflow
[J]. Nature Climate Change, 2014,4(7):583-586.

[本文引用: 1]

Bintanja R, van Der Linden E . The changing seasonal climate in the Arctic
[J]. Science Reports, 2013,3(1):1-8.

[本文引用: 2]

Benetti M, Reverdin G, Lique C, et al. Composition of freshwater in the spring of 2014 on the southern Labrador shelf and slope
[J]. Journal of Geophysical Research-Oceans, 2017,122(2):1102-1121.

[本文引用: 1]

Alexander L V, Allen S K, Bindoff N L, et al. IPCC, 2013: Technical Summary
[A]. Stocker T F, Qin D, Plattner G K, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013.

[本文引用: 1]

Boeke R C, Taylor P C. Seasonal energy exchange in sea ice retreat regions contributes to differences in projected Arctic warming
[J]. Nature Communications, 2018,9(1):1-14.

DOI:10.1038/s41467-017-02088-wURLPMID:29317637 [本文引用: 1]
Many studies have shown how pigments and internal nanostructures generate color in nature. External surface structures can also influence appearance, such as by causing multiple scattering of light (structural absorption) to produce a velvety, super black appearance. Here we show that feathers from five species of birds of paradise (Aves: Paradisaeidae) structurally absorb incident light to produce extremely low-reflectance, super black plumages. Directional reflectance of these feathers (0.05-0.31%) approaches that of man-made ultra-absorbent materials. SEM, nano-CT, and ray-tracing simulations show that super black feathers have titled arrays of highly modified barbules, which cause more multiple scattering, resulting in more structural absorption, than normal black feathers. Super black feathers have an extreme directional reflectance bias and appear darkest when viewed from the distal direction. We hypothesize that structurally absorbing, super black plumage evolved through sensory bias to enhance the perceived brilliance of adjacent color patches during courtship display.

Doyle S H, Hubbard A, van de Wal R S W, et al. Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall
[J]. Nature Geoscience, 2015,8(8):647-653.

[本文引用: 1]

Dai A, Luo D, Song M, et al. Arctic amplification is caused by sea-ice loss under increasing CO2
[J]. Nature Communications, 2019,10(1):1-13.

URLPMID:30602773 [本文引用: 1]

Berner J, Callaghan T V, Huntington H, et al. ACIA Arctic Climate Impact Assessment[M]. Cambridge: Cambridge University Press, 2005.
[本文引用: 1]

Wu W J, Sun X H, Epstein H E, et al. Spatial heterogeneity of climate variation and vegetation response for Arctic and high-elevation regions from 2001-2018
[J]. Environmental Research Communications, 2020,2(1):011007.

[本文引用: 1]

Tamarin-Brodsky T, Hodges K, Hoskins B J, et al. Changes in Northern Hemisphere temperature variability shaped by regional warming patterns
[J]. Nature Geoscience, 2020,13(6):414-421.

[本文引用: 1]

Xu M, Kang S C, Wang X M, et al. Climate and hydrological changes in the Ob River Basin during 1936-2017
[J]. Hydrological Processes, 2020,34(8):1821-1836.

[本文引用: 2]

王冠, 陈涵如, 王平, . 俄罗斯环北极地区地表径流变化及其原因
[J]. 资源科学, 2020,42(2):346-357.

[本文引用: 3]

[ Wang G, Chen H R, Wang P, et al. Surface runoff changes and their causes in the Russian pan-Arctic Region
[J]. Resources Science, 2020,42(2):346-357.]

[本文引用: 3]

Grabs W E, Portmann F, Couet T D. Discharge observation networks in Arctic regions: Computation of the river runoff into the Arctic Ocean, its seasonality and variability
[A]. E. L. Lewis, E. P. Jones, P. Lemke, et al. The Freshwater Budget of the Arctic Ocean[M]. Dordrecht: Springer Netherlands, 2000.

[本文引用: 1]

Amon R M W, Rinehart A J, Duan S, et al. Dissolved organic matter sources in large Arctic rivers
[J]. Geochimica Et Cosmochimica Acta, 2012,94(1):217-237.

[本文引用: 1]

Magritsky D V, Frolova N L, Evstigneev V M, et al. Long-term changes of river water inflow into the seas of the Russian Arctic sector
[J]. Polarforschung, 2018,87(2):177-194.

[本文引用: 1]

Troeva E I, Isaev A P, Cherosov M, et al. The Far North: Plant Biodiversity and Ecology of Yakutia
[M]. Berlin: Springer Science & Business Media, 2010.

[本文引用: 1]

Zhang T, Barry R G, Knowles K, et al. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere1
[J]. Polar Geography, 1999,23(2):132-154.

[本文引用: 1]

Brown J, Ferrians Jr O J, Heginbottom J A, et al. Circum-Arctic Map of Permafrost and Ground-Ice Conditions
[R]. Reston: Circum- Pacific Map Series, 1997.

[本文引用: 1]

Berkowitz B, Klafter J, Metzler R, et al. Physical pictures of transport in heterogeneous media: Advection-dispersion, random-walk, and fractional derivative formulations
[J]. Water Resources Research, 2002, DOI: http://www.resci.cn/article/2020/1007-7588/10.1029/2001WR001030.

URLPMID:31007298 [本文引用: 1]
This study develops a coherent framework to detect those catchment types associated with a high risk of maladaptation to future flood risk. Using the

Alexandrov G A, Brovkin V A, Kleinen T. The influence of climate on peatland extent in Western Siberia since the Last Glacial Maximum
[J]. Scientific Reports, 2016,6(1):24784.

[本文引用: 1]

Wild B, Andersson A, Broder L, et al. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost
[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019,116(21):10280-10285.

DOI:10.1073/pnas.1811797116URLPMID:31061130 [本文引用: 1]
Climate warming is expected to mobilize northern permafrost and peat organic carbon (PP-C), yet magnitudes and system specifics of even current releases are poorly constrained. While part of the PP-C will degrade at point of thaw to CO2 and CH4 to directly amplify global warming, another part will enter the fluvial network, potentially providing a window to observe large-scale PP-C remobilization patterns. Here, we employ a decade-long, high-temporal resolution record of (14)C in dissolved and particulate organic carbon (DOC and POC, respectively) to deconvolute PP-C release in the large drainage basins of rivers across Siberia: Ob, Yenisey, Lena, and Kolyma. The (14)C-constrained estimate of export specifically from PP-C corresponds to only 17 +/- 8% of total fluvial organic carbon and serves as a benchmark for monitoring changes to fluvial PP-C remobilization in a warming Arctic. Whereas DOC was dominated by recent organic carbon and poorly traced PP-C (12 +/- 8%), POC carried a much stronger signature of PP-C (63 +/- 10%) and represents the best window to detect spatial and temporal dynamics of PP-C release. Distinct seasonal patterns suggest that while DOC primarily stems from gradual leaching of surface soils, POC reflects abrupt collapse of deeper deposits. Higher dissolved PP-C export by Ob and Yenisey aligns with discontinuous permafrost that facilitates leaching, whereas higher particulate PP-C export by Lena and Kolyma likely echoes the thermokarst-induced collapse of Pleistocene deposits. Quantitative (14)C-based fingerprinting of fluvial organic carbon thus provides an opportunity to elucidate large-scale dynamics of PP-C remobilization in response to Arctic warming.

Carmack E C, Yamamoto-Kawai M, Haine T W N, et al. Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans
[J]. Journal of Geophysical Research: Biogeosciences, 2016,121(3):675-717.

[本文引用: 1]

Wrona F J, Johansson M, Culp J M, et al. Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime
[J]. Journal of Geophysical Research-Biogeosciences, 2016,121(3):650-674.

[本文引用: 1]

Bulygina O N, Razuvaev V N. Daily Temperature and Precipitation Data for 518 Russian Meteorological Stations
[R]. Oak Ridge: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, 2012.

[本文引用: 1]

Labe Z, Peings Y, Magnusdottir G. Warm arctic, cold Siberia pattern: Role of full arctic amplification versus sea ice loss alone
[J]. Geophysical Research Letters, 2020, DOI: http://www.resci.cn/article/2020/1007-7588/10.1029/2020GL088583.

URLPMID:32999517 [本文引用: 1]

Ye H C, Fetzer E J, Wong S, et al. Increasing atmospheric water vapor and higher daily precipitation intensity over northern Eurasia
[J]. Geophysical Research Letters, 2015,42(21):9404-9410.

[本文引用: 1]

Frey K E, Smith L C. Recent temperature and precipitation increases in West Siberia and their association with the Arctic Oscillation
[J]. Polar Research, 2003,22(2):287-300.

[本文引用: 1]

Sugiura K, Takahashi S, Kameda T, et al. Spatial characteristics of rainfall at sparsely distributed station network over the high-latitude mountainous regions in Eastern Siberia
[J]. International Journal of Earth & Environmental Sciences, 2016, DOI: http://www.resci.cn/article/2020/1007-7588/10.15344/2456-351X/2016/104.

[本文引用: 1]

Gong T T, Feldstein S, Lee S. The role of downward infrared radiation in the recent arctic winter warming trend
[J]. Journal of Climate, 2017,30(13):4937-4949.

DOI:10.1175/JCLI-D-16-0180.1URL [本文引用: 1]

Kaufmann R K, Zhou L, Myneni R B, et al. The effect of vegetation on surface temperature: A statistical analysis of NDVI and climate data
[J]. Geophysical Research Letters, 2003, DOI: http://www.resci.cn/article/2020/1007-7588/10.1029/2003GL018251.

URLPMID:32999517 [本文引用: 1]

Xu L, Myneni R B, Chapin F S, et al. Temperature and vegetation seasonality diminishment over northern lands
[J]. Nature Climate Change, 2013,3(6):581-586.

[本文引用: 1]

Screen J A, Simmonds I. Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification
[J]. Geophysical Research Letters, 2010, DOI: http://www.resci.cn/article/2020/1007-7588/10.1029/2010GL044136.

URLPMID:32999517 [本文引用: 1]

Douglas T A, Turetsky M R, Koven C D. Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems
[J]. Npj Climate and Atmospheric Science, 2020,3(1):1-7.

[本文引用: 1]

Kolk H J V D, Heijmans M M P D, Huissteden J V, et al. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw
[J]. Biogeosciences, 2016,13(22):6229-6245.

[本文引用: 1]

Keuper F Parmentier F-J W, Blok D, et al. Tundra in the rain: Differential vegetation responses to three years of experimentally doubled summer precipitation in Siberian shrub and Swedish bog tundra
[J]. Ambio, 2012,41(3):269-280.

[本文引用: 1]

Kopec B G, Feng X H, Michel F A, et al. Influence of sea ice on Arctic precipitation
[J]. Proceedings of the National Academy of Sciences, 2016,113(1):46-51.

[本文引用: 1]

Farquharson L M, Romanovsky V E, Cable W L, et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian high arctic
[J]. Geophysical Research Letters, 2019,46(12):6681-6689.

[本文引用: 1]

Heslop J K, Anthony K M W, Grosse G, et al. Century-scale time since permafrost thaw affects temperature sensitivity of net methane production in thermokarst-lake and talik sediments
[J]. Science of The Total Environment, 2019,691(15):124-134.

[本文引用: 1]

Walter K M, Zimov S A, Chanton J P, et al. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming
[J]. Nature, 2006,443(7107):71-75.

DOI:10.1038/nature05040URLPMID:16957728 [本文引用: 1]

Schuur E A G, Vogel J G, Crummer K G, et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra
[J]. Nature, 2009,459(7246):556-559.

DOI:10.1038/nature08031URLPMID:19478781 [本文引用: 1]
Permafrost soils in boreal and Arctic ecosystems store almost twice as much carbon as is currently present in the atmosphere. Permafrost thaw and the microbial decomposition of previously frozen organic carbon is considered one of the most likely positive climate feedbacks from terrestrial ecosystems to the atmosphere in a warmer world. The rate of carbon release from permafrost soils is highly uncertain, but it is crucial for predicting the strength and timing of this carbon-cycle feedback effect, and thus how important permafrost thaw will be for climate change this century and beyond. Sustained transfers of carbon to the atmosphere that could cause a significant positive feedback to climate change must come from old carbon, which forms the bulk of the permafrost carbon pool that accumulated over thousands of years. Here we measure net ecosystem carbon exchange and the radiocarbon age of ecosystem respiration in a tundra landscape undergoing permafrost thaw to determine the influence of old carbon loss on ecosystem carbon balance. We find that areas that thawed over the past 15 years had 40 per cent more annual losses of old carbon than minimally thawed areas, but had overall net ecosystem carbon uptake as increased plant growth offset these losses. In contrast, areas that thawed decades earlier lost even more old carbon, a 78 per cent increase over minimally thawed areas; this old carbon loss contributed to overall net ecosystem carbon release despite increased plant growth. Our data document significant losses of soil carbon with permafrost thaw that, over decadal timescales, overwhelms increased plant carbon uptake at rates that could make permafrost a large biospheric carbon source in a warmer world.

Peterson B J, Holmes R M, Mcclelland J W, et al. Increasing river discharge to the Arctic Ocean
[J]. Science, 2002,298(5601):2171-2173.

DOI:10.1126/science.1077445URLPMID:12481132 [本文引用: 1]
Synthesis of river-monitoring data reveals that the average annual discharge of fresh water from the six largest Eurasian rivers to the Arctic Ocean increased by 7% from 1936 to 1999. The average annual rate of increase was 2.0 +/- 0.7 cubic kilometers per year. Consequently, average annual discharge from the six rivers is now about 128 cubic kilometers per year greater than it was when routine measurements of discharge began. Discharge was correlated with changes in both the North Atlantic Oscillation and global mean surface air temperature. The observed large-scale change in freshwater flux has potentially important implications for ocean circulation and climate.
相关话题/空间 数据 观测 气象 资源