ɾ³ý»ò¸üÐÂÐÅÏ¢£¬ÇëÓʼþÖÁfreekaoyan#163.com(#»»³É@)

¼¼Êõ½ø²½¶Ô¹Ø¼ü½ðÊô¿ó²úÐèÇóÓ°ÏìµÄÑо¿×ÛÊö

±¾Õ¾Ð¡±à Free¿¼Ñп¼ÊÔ/2021-12-29

¶­Ñ©ËÉ,1,2, »Æ½¡°Ø,1,2, ÖÓÃÀÈð1,2, ÚȽðÓî1,2, Áõ¸Õ3, ËÎÒæ41.ÖÐÄÏ´óѧÉÌѧԺ,³¤É³ 410083
2.ÖÐÄÏ´óѧ½ðÊô×ÊÔ´Õ½ÂÔÑо¿Ôº,³¤É³ 410083
3.Äϵ¤Âó´óѧ¹¤Ñ§ÔºÉúÃüÖÜÆÚ¹¤³ÌÑо¿ÖÐÐÄ,Å·µÇÈû5230,µ¤Âó
4.ÖйúµØÖÊ´óѧ£¨Î人£©¾­¼Ã¹ÜÀíѧԺ,Î人430074

A review on the impact of technological progress on critical metal mineral demand

DONG Xuesong,1,2, HUANG Jianbai,1,2, ZHONG Meirui1,2, CHEN Jinyu1,2, LIU Gang3, SONG Yi41. School of Business, Central South University, Changsha 410083, China
2. Institute of Metal Resources Strategy, Central South University, Changsha 410083, China
3. SDU Life Cycle Engineering, Department of Chemical Engineering, Biotechnology, and Environmental Engineering, University of Southern Denmark (SDU), 5230 Odense, Denmark
4. School of Economics and Management, China University of Geosciences (Wuhan), Wuhan 430074, China

ͨѶ×÷Õß: »Æ½¡°Ø,ÄÐ,ºþÄÏÁÙÎäÈË,½ÌÊÚ,Ñо¿·½ÏòΪ×ÊÔ´¾­¼ÃÓë¹ÜÀí¡£E-mail: jbhuang@csu.edu.cn

ÊÕ¸åÈÕÆÚ:2020-02-17ÐÞ»ØÈÕÆÚ:2020-08-2ÍøÂç³ö°æÈÕÆÚ:2020-08-25
»ù½ð×ÊÖú:ºþÄÏÊ¡Éç»á¿Æѧ»ù½ðÖÇ¿âרÏîÏîÄ¿.19ZWB45
¹ú¼Ò×ÔÈ»¿Æѧ»ù½ðÖصãÏîÄ¿.71633006
¹ú¼Ò×ÔÈ»¿Æѧ»ù½ðÏîÄ¿.71874207
¹ú¼Ò×ÔÈ»¿Æѧ»ù½ðÖØ´óÏîÄ¿.71991484


Received:2020-02-17Revised:2020-08-2Online:2020-08-25
×÷Õß¼ò½é About authors
¶­Ñ©ËÉ,Å®,ÁÉÄþÓª¿ÚÈË,²©Ê¿Éú,Ñо¿·½ÏòΪ×ÊÔ´¾­¼ÃÓë¹ÜÀí¡£E-mail: codenamedxs@csu.edu.cn








ÕªÒª
м¼Êõ¡¢Ð²ÄÁÏ¡¢Ð²úÒµµÄÅ·¢Õ¹½«¶Ô¹Ø¼ü½ðÊô¿ó²úÐèÇó²úÉúÉîÔ¶Ó°Ïì,̽ÌÖ¼¼Êõ½ø²½ÈçºÎÓ°Ïì¹Ø¼ü½ðÊô¿ó²úÐèÇó,´Ó¶øÈ·±£¹Ø¼ü½ðÊô¿ó²ú°²È«,¶ÔÖйú¾­¼ÃÂõÉϸßÖÊÁ¿·¢Õ¹½×¶ÎºÍʵÏÖµÍ̼תÐ;ßÓÐÒ»¶¨ÏÖʵÒâÒå¡£±¾ÎĶԼ¼Êõ½ø²½Óë¹Ø¼ü½ðÊôÐèÇó¹ØϵµÄÎÄÏ×Õ¹¿ªÁËϵͳÊáÀí,·¢ÏÖ£ºËæ×Å×ÊÔ´°²È«³ÉΪ¹ú¼ÒÖØÒªÐèÇóÎÊÌâ,¼¼Êõ½ø²½Óë¹Ø¼ü½ðÊôÐèÇóÔ¤²âÑо¿Öð½¥³ÉΪÈȵã,µ«ÏÖÓÐÎÄÏ×Á¿»¯Ñо¿½ÏÉÙÇÒȱ·¦ÏµÍ³ÐÔ,¼øÓÚ¼¼Êõ½ø²½²â¶ÈºÍÊý¾Ý»ñÈ¡µÈÄѵã,ÐèÇóÔ¤²â½á¹ûµÄ¾«×¼ÐÔÓдý½øÒ»²½Ìá¸ß¡£±¾ÎÄÌáÁ¶Á˼¼Êõ½ø²½×÷ÓÃÓڹؼü½ðÊôÐèÇóµÄ3Ìõ΢¹ÛÓ°Ïì»úÖÆ,¼´¼¼Êõ½ø²½¡ª¾­¼ÃÔö³¤¡ª¹Ø¼ü½ðÊô¡¢¼¼Êõ½ø²½¡ª²úÒµ½á¹¹¡ª¹Ø¼ü½ðÊô¡¢¼¼Êõ½ø²½¡ªÌæ´úÑ­»·¡ª¹Ø¼ü½ðÊô,ΪºóÐøÑо¿ÌṩÕûÌå·ÖÎö¿ò¼Ü;Ìá³ö¸ÃÁìÓòºóÐøÑо¿Öصã,¼´Öصã¹Ø×¢µÍ̼¼¼Êõ-¹Ø¼ü½ðÊô¡¢Õ½ÂÔÐÂÐ˲úÒµ-¹Ø¼ü½ðÊôñîºÏÎÊÌâ,ͬʱ½â¾ö¼¼Êõ½ø²½ÔÚÀíÂÛÄ£ÐͺͼÆÁ¿Ä£ÐÍÖеIJâ¶ÈÎÊÌâ,Íƽøм¼Êõ¸ïÃü±³¾°Ï¹ؼü½ðÊôÐèÇóÔ¤²â·ÖÎö¿ò¼ÜµÄ¹¹½¨¡£
¹Ø¼ü´Ê£º ¼¼Êõ½ø²½;¹Ø¼ü½ðÊô;Ó°Ïì»úÖÆ;ÐèÇóÔ¤²â

Abstract
The emerging technologies, materials, and industries have a profound and increasing impact on the amount and structure of demand of critical metals. Understanding how technological progress affects the demand for critical metals and minerals is of certain practical significance for the high-quality economic transformation, the low-carbon energy transformation, and the critical minerals security in China. This paper conducted a systematic review of the literature on the relationship between technological progress and critical metal demand, and finds that: As resource security has become an important national demand issue, technological progress and critical metal demand prediction have gradually become a hot spot. However, there are few quantitative studies and lack of systematization in existing literature. And the accuracy of demand forecasting results needs to be further improved due to difficulties in measuring technological progress and data acquisition. In this paper, three micro-influencing mechanisms of technological progress on the demand for critical metals were applied: technological progress¡ªeconomic growth, industrial structure and substitution and recycle¡ªmetal minerals, providing an overall analytical framework for subsequent studies. The focus of follow-up research in this field was proposed, that is, focusing on the coupling problem of low-carbon technology¡ªcritical metals and strategic emerging industries¡ªcritical metals, solving the measurement problem of technological progress in theoretical and econometric model, and promoting the construction of analytical frameworks for critical metal demand forecasting as technological revolution continues in the new era.
Keywords£ºtechnological progress;critical metal;mechanism of effect;demand forecasting


PDF (3260KB)ÔªÊý¾Ý¶àά¶ÈÆÀ¼ÛÏà¹ØÎÄÕµ¼³öEndNote|Ris|BibtexÊղر¾ÎÄ
±¾ÎÄÒýÓøñʽ
¶­Ñ©ËÉ, »Æ½¡°Ø, ÖÓÃÀÈð, ÚȽðÓî, Áõ¸Õ, ËÎÒæ. ¼¼Êõ½ø²½¶Ô¹Ø¼ü½ðÊô¿ó²úÐèÇóÓ°ÏìµÄÑо¿×ÛÊö. ×ÊÔ´¿Æѧ[J], 2020, 42(8): 1592-1603 doi:10.18402/resci.2020.08.13
DONG Xuesong, HUANG Jianbai, ZHONG Meirui, CHEN Jinyu, LIU Gang, SONG Yi. A review on the impact of technological progress on critical metal mineral demand. RESOURCES SCIENCE[J], 2020, 42(8): 1592-1603 doi:10.18402/resci.2020.08.13


1 ÒýÑÔ

¹Ø¼ü¿ó²úÊǽüÄêÃÀ¹úºÍÅ·Ã˵ÈÎ÷·½·¢´ï¹ú¼ÒÌá³öµÄ¸ÅÄî[1],Ä¿Ç°¹ú¼ÊÉÏÉÐÎÞͳһ¡¢ÑϸñµÄ¶¨Òå,ÔÚ²»Í¬¹ú¼Ò¡¢²»Í¬Ê±¶Î¡¢²»Í¬³¡ºÏ»á¸ø³ö²»Í¬µÄ¶¯Ì¬½ç¶¨¸ÅÄî¡£Ò»°ãÀ´Ëµ,Ëùν¹Ø¼ü¿ó²úÊÇÖ¸¶Ô¹ú¼Ò¾­¼ÃºÍ°²È«ÖÁ¹ØÖØÒª¡¢ÔÚÈËÀàÉç»á·¢Õ¹µ½¹Ø¼ü½×¶Î·¢»Ó¹Ø¼üÐÔ×÷ÓõĽôȱ¿óÖÖ»òÕßÓÅÊÆ¿óÖÖ[2,3,4]¡£ÈçÍ­ºÍÎý¿ªÆôÁËÇàͭʱ´ú,Ìú¿ªÆôÁËÅ©¸ûÎÄÃ÷ʱ´ú,ÕàºÍ¹è¿ªÆôÁË΢µç×Óʱ´úºÍÐÅϢʱ´ú¡£¶øÔÚÖйúÌØÉ«Éç»áÖ÷ÒåÐÂʱ´ú,¹Ø¼ü½ðÊô¿ó²úÔòÊÇÖ¸¶ÔÐÂÄÜÔ´²úÒµ¡¢ÐÅÏ¢¼¼Êõ²úÒµ¡¢¸ß¶Ë×°±¸ÖÆÔìÒµµÈÕ½ÂÔÐÔÐÂÐ˲úÒµ·¢Õ¹¾ßÓв»¿ÉÌæ´úÖØ´óÓÃ;µÄÒ»Àà½ðÊôÔªËؼ°Æä¿ó´²µÄ×ܳÆ[5,6],´óÖ°üÀ¨Ï¡ÓС¢Ï¡ÍÁ¡¢Ï¡É¢½ðÊô£¨¼ò³Æ¡°ÈýÏ¡¡±½ðÊô£©¡¢Ï¡¹ó½ðÊô£¨²¬×å½ðÊô£©ºÍ²¿·ÖÔÚÖйú±»³ÆΪÓÐÉ«½ðÊô¶ø¹ú¼ÊÉϹ«ÈÏÊôÓÚÏ¡ÓнðÊôµÄÌà¡¢Îý¡¢îÜ¡¢îÑ¡¢·°µÈ[3]¡£¸÷¹ú»ò»ú¹¹ËùÈ϶¨µÄ¹Ø¼ü½ðÊô¿ó²ú¸ß¶ÈÖغÏ,·´Ó³³ö¸÷¹ú¶ÔµÚËÄÂÖ¹¤Òµ¸ïÃüÖе®ÉúµÄÕ½ÂÔÐÔÐÂÐ˲úÒµºÍ¸ßм¼Êõ²úÒµµÄ¹Ø×¢,ÒÔ¼°¶ÔÖ§³ÅÕâЩ²úÒµ·¢Õ¹µÄ¹Ø¼ü½ðÊô¿ó²úµÄ¸ß¶ÈÈÏͬ[7]¡£

¸Ä¸ï¿ª·Å40ÄêÀ´·¢Õ¹Ææ¼£µÄ´´ÔìÀë²»¿ª¿ó²ú×ÊÔ´µÄÓÐÁ¦Ö§³ÅºÍ±£ÕÏ[8]¡£¶ø¹Ø¼ü½ðÊô×÷Ϊ֧³ÅÖйú¾­¼Ã¸ßÖÊÁ¿·¢Õ¹¡¢µÍ̼ÄÜԴתÐͺ͸ßм¼Êõ·¢Õ¹µÄÖØÒª¿óÖÖ,ÊÇάϵ¹úÃñ¾­¼ÃÕý³£ÔËÐС¢¾­¼Ãµ÷Õû¼°²úÒµÉý¼¶µÄ¹Ø¼ü,Ò²ÊÇδÀ´ÔöÇ¿¹ú¼Ò¾ºÕùÁ¦µÄ¹Ø¼ü[3]¡£µ±½ñÊÀ½çóÒ׳åÍ»¼Ó¾ç,¹ú¼ÊÐÎÊÆÃæÁÙ¸ü´ó²»È·¶¨ÐÔ,·¢´ï¹ú¼Ò»ù´¡½ðÊôÏû·Ñ×ÜÁ¿ÆÕ±é´ïµ½»ò½Ó½ü·åÖµ,¹Ø¼ü½ðÊô¿ó²úµÄÕ½ÂÔÐÔ²»¶Ï͹ÏÔ,Ä¿Ç°ÒÑÓжà¹ú¸ù¾Ý×ÔÉíÐÂÐ˲úÒµ·¢Õ¹ºÍÖÆÔìҵתÐÍÐèÒª,Ïà¼Ì·¢²¼¹Ø¼üÔ­²ÄÁÏÇåµ¥,·×·×ÍƳö¡°ÔÙ¹¤Òµ»¯¡±Õ½ÂÔ,¼Ó¾çÁ˶Թؼü½ðÊô¿ó²úµÄÕù¶á[9]¡£Í¬Ê±,ÖйúÒѽøÈëÉú̬ÎÄÃ÷·¢Õ¹Ð½׶Î,´óÁ¿ÏûºÄ×ÊÔ´¡¢²»¼Æ»·¾³³É±¾µÄ¸Ï³¬Ê½Õ½ÂÔÊܵ½ÒÖÖÆ,ÖйúÄ¿Ç°»¹´¦ÓÚ¹¤Òµ»¯ÖкóÆÚ,δÀ´¾­¼Ã¸ßÖÊÁ¿·¢Õ¹ºÍÕ½ÂÔÐÔÐÂÐ˲úÒµ·¢Õ¹,ÈÔÐèÒª´óÁ¿¹Ø¼ü½ðÊôÖ§³Å¡£¾­¼ÃÓÐЧÐÔÇý¶¯ÏµÄ×ÊԴʹÓý«´øÀ´×ÔÖ÷´´ÐÂ,ÓÉ´Ë´ßÉúµÄ·¢Õ¹·½Ê½ºÍ²úÒµ½á¹¹±ä»¯,ʹµÃ¹Ø¼ü½ðÊô¿ó²úÐèÇó³ÊÏÖ³öеÄÌص㡣ÔÚÒÔÉÏÈýÖØ×÷Óõþ¼ÓϵĹؼü½ðÊôÐèÇóÑݱä¹æÂɼ°ÆäÔ¤²â³ÉΪ֧³ÅÖйúµÚ¶þ¸ö°ÙÄêÄ¿±êºÍ¾­¼Ã¸ßÖÊÁ¿·¢Õ¹µÄÖØ´óÀíÂÛ¿ÎÌâ¡£

¹ýÈ¥µÄ¼¸Ê®ÄêÖÐ,Ô½À´Ô½¶àµÄ¹Ø¼ü½ðÊô±»ÓÃÓÚÖ§³Å¼¼Êõ½ø²½´øÀ´µÄÌØÊ⹦ÄÜ[10],ÓÈÆäÊÇ21ÊÀ¼ÍÒÔÀ´,Ëæ×Åм¼Êõ¸ïÃüµÄÐËÆð,ÐÂÄÜÔ´¼¼ÊõÓëÏÖ´úÐÅÏ¢¡¢²ÄÁϺÍÏȽøÖÆÔì¼¼ÊõµÄÉî¶ÈÈÚºÏÒÀÀµ¶àÖֹؼü½ðÊô²ÄÁÏ,½ø¶øÓ°Ïì¹Ø¼ü½ðÊô¿ó²úµÄÐèÇó,²¢Íƶ¯ÆäÐèÇó½á¹¹×ªÐÍ¡£¼¼ÊõËùÐèµÄ½ðÊô,ÒÔ¼°¼¼ÊõÔÚ½ðÊôÊг¡ÖеÄÔ¤ÆÚ×÷ÓÃÖð½¥³ÉΪѡÔñ¼¼ÊõµÄÒ»¸öÖØÒª±ê×¼[11],¶øÆÀ¹À¹Ø¼ü½ðÊô¿ó²úδÀ´µÄÐèÇó¸üÈ¡¾öÓÚм¼ÊõµÄÍ»Æƺͷ¢Õ¹[12]¡£ÔÚÕâÒ»±³¾°ÏÂ,¹Ø¼ü½ðÊôµÄÐèÇóÎÊÌâ±»¸³ÓèÁËеÄÄÚº­,ÃæÁÙ¸üΪ¸´ÔӵķçÏÕÓ벻ȷ¶¨ÐÔ,Êܵ½¼«´ó¹Ø×¢[13],¼¼Êõ½ø²½¶Ô¹Ø¼ü½ðÊô¿ó²úÐèÇóÓ°ÏìµÈÎÊÌâؽ´ýÉîÈë̽ÌÖ¡£µ±Ç°,ÐÂÒ»ÂÖ¼¼Êõ¸ïÃüѸÃÍ·¢Õ¹,Çå½àÄÜÔ´ÓëвÄÁϵȼ¼ÊõµÄÍƹãÓëÓ¦Óý«Í¨¹ýÓ¦ÓÃÍØÕ¹»òÌæ´úЧӦ,¶ÔÓ¦Óö˵Ĺؼü½ðÊôÐèÇó²úÉúÉîÔ¶Ó°Ïì[14]¡£Èç·çÁ¦·¢µç¡¢È¼Áϵç³ØµÈ¼¼ÊõµÄÍ»ÆƺÍÓ¦Óý«Ó°Ï첬×塢ϡÍÁµÈ¹Ø¼ü½ðÊôµÄÐèÇó[15]¡£Ì«ÑôÄܹâ·ü¼¼ÊõÖÐÏ¡ÍÁÓÀ´Å·çÁ¦·¢µç»úµÄ¹ã·ºÍƹã¶ÔÏà¹Ø11Öֹؼü½ðÊôµÄÐèÇóÓÐÖØÒªÓ°Ïì[16]¡£´ËÍâ,ÖØÐͳµÁìÓòÈ«Ãæµç¶¯»¯µÄÂÌÉ«µÍ̼¼¼Êõ½«Ã÷ÏÔÌáÉýÒÔï®Îª´ú±íµÄ¹Ø¼ü½ðÊôÐèÇó,¶ø²¬×å½ðÊô¿ÉÒÔÓÐЧ֧³ÅδÀ´È¼Áϵç³ØÆû³µµÄ·¢Õ¹[17,18]¡£»ùÓÚ´Ë,Ðí¶à****¶Ô»ùÓÚ¼¼Êõ½ø²½µÄ¹Ø¼ü½ðÊô¿ó²ú×ÊÔ´ÐèÇóÔ¤²âÕ¹¿ªÑо¿¡£¿¼Âǵ½¹Ø¼ü½ðÊô¼¼Êõ·Ïß±ä¸ü¿ìµÄÌصã,ÉîÈëÆÊÎö¼¼Êõ½ø²½¶ÔÆäÐèÇóµÄÓ°Ïì»úÖƲ¢¾«×¼Ô¤²âÆäÐèÇó³ÉΪÁ½´ó¹Ø¼üµãÓëÄѵ㡣

½üÄêÀ´,м¼Êõ¡¢Ð²ÄÁÏ¡¢Ð²úÒµµÄ²»¶ÏÍ»ÆƺͿìËÙ·¢Õ¹¶Ô¹Ø¼ü½ðÊô¿ó²úÐèÇó²úÉúÄÄЩӰÏì?ÈçºÎÀåÇå¼¼Êõ½ø²½¶Ô¹Ø¼ü½ðÊôÐèÇóµÄÓ°Ïì»úÖÆ?ÔõÑù»ùÓÚ¼¼Êõ½ø²½Ìá³öÇÐʵ¿ÉÐеÄÑо¿¿ò¼Ü,¶Ô¹Ø¼ü½ðÊô¿ó²úÐèÇó×ÜÁ¿ºÍ½á¹¹½øÐо«×¼Ô¤²â?ÑÐÅÐÕâЩÎÊÌâ²»½ö¶ÔÍØÕ¹×ÊÔ´ÐèÇóÀíÂÛÓë·½·¨¡¢·á¸»×ÊÔ´°²È«ÀíÂÛ¾ßÓÐÖØÒªÀíÂÛ¼ÛÖµ,¶øÇÒ¶ÔÌáÇ°¶´²ì¹Ø¼ü½ðÊô¿ó²úÐèÇóÇ÷ÊÆÓëÑݱä¹æÂÉ¡¢»¯½â¹©¸øÔ¼ÊøÆ¿¾±,½ø¶ø±£ÕϹú¼Ò½ðÊô×ÊÔ´°²È«¡¢Ö§³ÅÖйúµÚ¶þ¸ö°ÙÄêÄ¿±êºÍ¾­¼Ã¸ßÖÊÁ¿·¢Õ¹¾ßÓÐÖØ´óÏÖʵÒâÒå¡£¾Ý´Ë,ÂÛÎÄϵͳÊáÀí¹úÄÚÍâÏà¹ØÑо¿½øÕ¹,³¢ÊÔÀåÇå¼¼Êõ½ø²½¶Ô¹Ø¼ü½ðÊô¿ó²úÐèÇóµÄÓ°Ïì»úÖÆ,½øÒ»²½Ìá³öδÀ´»ùÓÚ¼¼Êõ½ø²½µÄ¹Ø¼ü½ðÊôÐèÇóÔ¤²âÑо¿µÄÖص㷽ÏòºÍ·ÖÎö¿ò¼Ü,Ϊ¹¹½¨ÖйúÐÂʱ´úµÄ¹Ø¼ü½ðÊô×ÊÔ´Õ½ÂÔÌṩÀíÂÛºÍʵ֤֧³Å¡£

2 ¼¼Êõ½ø²½¶Ô¹Ø¼ü½ðÊô¿ó²úÐèÇóµÄÓ°Ïì»úÖÆ

¹Ø¼ü½ðÊô×÷Ϊ֧³ÅÖйú¾­¼ÃºÍ¸ßм¼Êõ²úÒµ·¢Õ¹µÄÖØÒª¿ó²ú×ÊÔ´,¼¼ÊõµÄ²»¶Ï½ø²½½«´Ó¹©Ó¦¶ËºÍÐèÇó¶Ë¶ÔÆä²úÉúÓ°Ïì,µ«Á½ÕßµÄ×÷ÓûúÀí´æÔÚÏÔÖø²î±ð¡£´Ó¹©¸ø¶ËÀ´¿´,ÒÔ¹²Éú¿ó·ÖÀë¡¢ÉúÎïÑ¡¿óµÈΪ´ú±íµÄ²ÉÑ¡Ò±¼¼Êõ½ø²½,Ö±½ÓÌá¸ßÁ˹ؼü½ðÊôµÄ¿ª·¢ÀûÓÃЧÂÊ,ÔÙÑ­»·¼¼ÊõµÄÍ»ÆÆÔòͨ¹ýÑ­»·Ð§Ó¦Ôö¼Ó¹Ø¼ü½ðÊô¿É»ØÊÕÆ·ÖÖ¡¢Ìá¸ß»ØÊÕЧÂÊ,Ó°Ïì¹Ø¼ü½ðÊô¿ó²ú×ÊÔ´µÄ¹©¸ø¡£ÈçÓÉÓÚ﮵ç³Ø»ØÊÕ¼¼ÊõµÄÍ»ÆÆ,¶þ´Î×ÊÔ´µÄï®ÔÚ2030Ä꽫¶Ô×ܹ©Ó¦Á¿²úÉú¿Éʶ±ðµÄÓ°Ïì[19]¡£¶ø´ÓÐèÇó¶ËÀ´¿´,м¼Êõ¡¢Ð²ÄÁÏ¡¢ÐÂҵ̬µÄ·¢Õ¹Í¨¹ý´Ù½ø¾­¼ÃÔö³¤ºÍ²úÒµ½á¹¹×ªÐÍÉý¼¶¼ä½ÓÀ­¶¯»ò¼õÉÙÏàÓ¦¹Ø¼ü½ðÊôµÄÏû·ÑÐèÇó,¶øÑ­»·Ìæ´ú¼¼Êõ½«Ö±½Ó»ò¼ä½ÓÓ°ÏìÒ»´Î¹Ø¼ü½ðÊô×ÊÔ´ÐèÇó¡£Á½¶ËÓ°Ïì»úÖƵÄÇø±ðÔÚÓÚ,¹©¸ø¶ËµÄ¼¼Êõ½ø²½¶Ô¹Ø¼ü½ðÊô¹©¸ø´æÔÚÖ±½ÓÓ°Ïì,¶øÐèÇó¶ËµÄ¼¼Êõ½ø²½¶Ô¹Ø¼ü½ðÊôÐèÇó¼ÈÓÐÖ±½ÓÓ°ÏìÓÖÓмä½ÓÓ°Ïì,ÆäÓ°Ïì»úÖƸüΪ¸´ÔӺͶà²ã´Î¡£ÏÂÎÄÖ÷ÒªÕë¶ÔÕâÒ»·½Ãæ½øÐÐÏêϸ²ûÊö¡£

¶Ô¿ó²ú×ÊÔ´Ïû·ÑµÄÑо¿Ê¼ÓÚ¿ó²ú×ÊÔ´¿É³ÖÐøÓÅ»¯ÀûÓÃÀíÂÛ[18]¡£HartwickµÈ[20]ÔÚ´Ë»ù´¡ÉϽøÐÐÍØÕ¹,ÖصãÑо¿ÁË¿ó²ú×ÊÔ´µÄÓÐЧÅäÖúÍʹÓÃЧÂÊ¡£´Ëºó,¿ó²ú×ÊÔ´ÐèÇóµÄÓ°ÏìÒòËØÑо¿ÒýÆð¹úÄÚÍâ****µÄÆÕ±é¹Ø×¢[21]¡£ÏÖÓÐÑо¿¶à²ÉÓõ¯ÐÔϵÊý·¨[22]¡¢½á¹¹·Ö½â·¨£¨SDA£©[23,24]¡¢Ö¸Êý·Ö½â·¨£¨IDA£©[25]¡¢Éú²úÀíÂ۷ֽⷽ·¨£¨PDA£©[26,27]¡¢½á¹¹Â·¾¶·Ö½â·¨£¨SPD£©[28]ºÍ¼ÆÁ¿Ä£ÐÍ·¨[29,30,31]µÈ,µÃ³öÁ˼¼Êõ½ø²½ÊÇÓ°Ïì¿ó²ú×ÊÔ´ÐèÇóµÄÖØÒªÒòËØÕâÒ»½áÂÛ¡£¶ø¹Ø¼ü½ðÊôµÄÐèÇóÎÊÌâ°üÀ¨ÐèÇó×ÜÁ¿Óë½á¹¹Á½´óÄÚÈÝ,Æä±¾ÖÊÓÖÊǾ­¼ÃÔö³¤Ä£Ê½ºÍ·¢Õ¹½×¶ÎÎÊÌâ,ÌÖÂÛ¼¼Êõ½ø²½¶Ô¹Ø¼ü½ðÊôÐèÇóµÄÓ°Ïì,¾Í²»Äܲ»ÌÖÂÛÖйúµÄ¾­¼ÃÔö³¤ºÍ²úÒµ½á¹¹±ä»¯,ÌرðÊÇÄÇЩ²»Í¬ÓÚ¹ú¼Ê·¢Õ¹¾­Ñé¡¢¾ßÓÐÖйúÌØÉ«µÄÎÊÌâ¡£¼¼Êõ½ø²½Ö÷Ҫͨ¹ýÍØÕ¹ÆäÓ¦ÓÃÁìÓòºÍÌæ´úÑ­»·µÈÇþµÀ¶Ô²»Í¬¹Ø¼ü½ðÊôÐèÇó²úÉú²»Í¬µÄÓ°Ïì,Ò»·½Ãæ,¼¼ÊõµÄѸÃÍ·¢Õ¹ÍØ¿íÁ˹ؼü½ðÊôµÄÓÃ;,´Ù½øÆä½øÈëеÄÏû·ÑÁìÓò,²¢´ó·ùÌá¸ß¹Ø¼ü½ðÊôʹÓÃЧÂÊ,½µµÍÏû·ÑÇ¿¶È,ÒýÆð¸ß¿Æ¼¼²úÆ·Ïû·Ñ¼¤Ôö[32],´ó´óÔö¼ÓÏà¹Ø¹Ø¼ü½ðÊôÐèÇó¡£ÁíÒ»·½Ãæ,¼¼Êõ½ø²½¿ÉÒÔͨ¹ý¸ÄÉƹؼü½ðÊô×ÊÔ´Ñ­»·ÀûÓÃЧÂÊ,»òΪͻÆÆÏÖÓÐÓ¦ÓÃÖйؼü²ÄÁÏËùʹÓùؼü½ðÊôµÄÌæ´ú¼¼ÊõÀ´´Ù½ø»òתÒÆÐèÇó,¸Ä±äÆäÐèÇó×ÜÁ¿ºÍ½á¹¹¡£

¸ÅÀ¨¶øÑÔ,¼¼Êõ½ø²½Ó°Ïì¹Ø¼ü½ðÊôÐèÇóµÄ´«µ¼»úÖÆÖ÷ÒªÓÐ3ÖÖ,·Ö±ðÊǾ­¼ÃÔö³¤Ð§Ó¦¡¢²úÒµ½á¹¹Ð§Ó¦ºÍÌæ´úÑ­»·Ð§Ó¦£¨Í¼1£©¡£

ͼ1

д°¿Ú´ò¿ª|ÏÂÔØԭͼZIP|Éú³ÉPPT
ͼ1¼¼Êõ½ø²½¶Ô¹Ø¼ü½ðÊô¿ó²úÐèÇóµÄÓ°Ïì·¾¶

Figure 1Pathway of technological progress affecting critical metal mineral demand



2.1 ¾­¼ÃÔö³¤Ð§Ó¦

Ãæ¶ÔÒßÇéÈ«Çò´óÁ÷ÐС¢¹ú¼Ê½ðÈÚΣ»ú¡¢Å·ÃÀ¾­¼ÃÉî¶ÈË¥ÍË¡¢ÖÐÃÀóÒ×Ħ²Á¡¢×ªÐÍÉý¼¶µÈÖØ´óÌôÕ½,Öйú¾­¼ÃÕýÂõÏò¸ßÖÊÁ¿·¢Õ¹[33],ؽÐèеÄÔö³¤µã¡£Ò»¸ö¹ú¼Ò»òµØÇø¾­¼ÃÔö³¤µÄ¶¯Á¦´Ó¶ÌÆÚ¿´ÊÇÀ´×ÔÓÚ×ʱ¾¡¢ÀͶ¯Á¦µÈÉú²úÒªËصÄͶÈë,µ«³¤ÆÚµÄÔö³¤»¹ÒªÒÀÀµÓÚ¼¼Êõ½ø²½Ëù´øÀ´µÄÈ«ÒªËØÉú²úÂʵÄÌá¸ß,¼´¼¼Êõ½ø²½ÊǾ­¼ÃÔö³¤µÄÔ´¶¯Á¦[34,35]¡£Èçͨ¹ý´óÁ¦·¢Õ¹5G¡¢Ìظßѹ¡¢Ì«ÑôÄܺͷçÁ¦·¢µç¼¼Êõ¡¢È˹¤ÖÇÄÜ¡¢¹¤Òµ»¥ÁªÍø¡¢³Ç¼Ê¸ßËÙÌú·ºÍ³Ç¼Ê¹ìµÀ½»Í¨¡¢ÐÂÄÜÔ´Æû³µ³äµç×®µÈ´´ÐÂÐͼ¼Êõ,ÒÔ¼¼Êõ½ø²½ÎÈÔö³¤[33]¡£

¾­¼ÃÔö³¤»á½øÒ»²½Ó°Ïì¹Ø¼ü½ðÊôÐèÇó¡£Ê×ÏÈ,¾­¼ÃÔö³¤½«×÷ÓÃÓÚÕ½ÂÔÐÂÐ˲úÒµÁ´Öи÷½Úµã,ͨ¹ý²úÒµ¼äµÄºá×ÝÏò¹Øϵ,Íƶ¯¹Ø¼ü¿ó²úÉÏÓκÍÏÂÓβúÒµÁ´¸ß¶Ë¼¼ÊõµÄ·¢Õ¹,À­¶¯Ì«ÑôÄܺͷçÁ¦·¢µç¼¼Êõ¡¢ÐÂÄÜÔ´³µ¼°³äµç×®°å¿éµÈ½¨Éè¹æÄ£,½ø¶ø¶ÔËùÐèµÄïÓ¡¢íÚ¡¢Ç¦¡¢Ð¿¡¢îÜ¡¢ï®µÈ¹Ø¼ü½ðÊôÐèÇó²úÉúÓ° Ïì[36,37,38,39],¼´¾­¼ÃÔö³¤Äܹ»·´¹ýÀ´Íƶ¯¼¼Êõ½ø²½,¼¼Êõ½ø²½Óë¾­¼ÃÔö³¤×÷ΪÏ໥´Ù½øµÄÁ½¸öÒòËØ,Á¼ÐÔ»¥¶¯ÏÂ,м¼ÊõµÄ²»¶ÏÍ»Æƽ«³ÖÐøÓ°Ïì¹Ø¼ü½ðÊôµÄÐèÇó¡£Æä´Î,¾­¼ÃÔö³¤µ½Ò»¶¨³Ì¶È´øÀ´µÄ¾­¼Ã½á¹¹µ÷Õû,Äܹ»¸Ä±ä¹Ø¼ü½ðÊôÐèÇó¡£ÔÚ¾­¼ÃÔö³¤³õÆÚ,ͶÈëÔö¼ÓºÍ²úÄÜÀ©ÕÅÒâζ×ŶԹؼü½ðÊô×ÊÔ´µÄ¹ý¶ÈʹÓÃ,µ¼ÖÂ×ÊÔ´ºÍ»·¾³µÄѹÁ¦¡£Ëæמ­¼ÃÔö³¤³¬¹ýÒ»¶¨¹æÄ£,¶ÔÔö³¤ÖÊÁ¿µÄ×·ÇóÊƱشøÀ´¾­¼Ã½á¹¹µ÷Õû,¶ø¾­¼Ã½á¹¹µ÷ÕûÓ빤ҵ»¯ÃÜÇÐÏà¹Ø,ÇÒÒÔÏ¡ÓÐÏ¡É¢½ðÊôΪÖ÷µÄС¿ó²ú,Èçîã¡¢îꡢﮡ¢Ï¡ÍÁ¡¢îÖ¡¢Õà¡¢ïØ¡¢î÷¡¢ïª¡¢íÚ¡¢ÉéµÈ²»½öÊÇÃÀ¹ú¡¢Å·ÃË¡¢Ó¢¹úµÈ·¢´ï¾­¼ÃÌå¹Ø×¢µÄÖصã,ͬʱҲÊÇÓëÖйúδÀ´½¨Éè5GͨÐÅÕ¾¡¢ÎïÁ÷Íø¡¢ÐÂÄÜÔ´Æû³µ³äµçÕ¾µÈлù½¨ÃÜÇÐÏà¹ØµÄ¹Ø¼ü¿ó²ú[14],ÊǾ­¼Ã¸ßÖÊÁ¿Ôö³¤ºÍ¾­¼Ã½á¹¹µ÷ÕûµÄ¹Ø¼ü,ÆäÐèÇó±ØÈ»»áÊܵ½ÉîÔ¶Ó°Ïì¡£

2.2 ²úÒµ½á¹¹Ð§Ó¦

¼¼Êõ½ø²½»¹Í¨¹ý²úÒµ½á¹¹Ð§Ó¦¶Ô¹Ø¼ü½ðÊôÐèÇó²úÉúÓ°Ïì¡£²úÒµ½á¹¹Éý¼¶ÊǼ¼Êõ½ø²½µÄ¶¯Á¦,¼¼Êõ½ø²½¸üÊDzúÒµ½á¹¹×ªÐÍÉý¼¶µÄ¸ù±¾Í¾¾¶[40]¡£×ܵÄÀ´Ëµ,¼¼Êõ½ø²½´ÓͶÈë½á¹¹ºÍ×îÖÕÐèÇó½á¹¹Á½¸ö·½ÃæÓ°Ïì²úÒµ½á¹¹¡£Ò»·½Ãæ,Ëæ׿¼ÊõµÄ·¢Õ¹,¶Ô³õ¼¶ÉÌÆ·µÄͶÈëÒÀÀµÖð½¥×ªÒƵ½ÖмäÉÌÆ·ºÍ×îÖÕÉÌÆ·,³õ¼¶²úÆ·µÄͶÈë¼õÉÙ,¶øÖƳÉƷͶÈëÔö¼Ó,ÖмäÉÌƷʹÓÃÁ¿±ÈÖØÉÏÉý,´Ù½øÁ˲úÒµ½á¹¹µÄתÐÍÉý¼¶¡£ÁíÒ»·½Ãæ,¼¼Êõ½ø²½Í¨¹ý½ÚÊ¡ÀͶ¯Á¦¡¢ÄÜÔ´¡¢½ðÊôµÈͶÈëÒªËصijɱ¾,Ôö¼Ó¶ÔÓ¦²úÆ·ÐèÇó,½ø¶ø¸Ä±äÁË×îÖÕÐèÇó½á¹¹,¶Ô²úÒµ½á¹¹²úÉúÓ°Ïì[41]¡£

ͬʱ,²úÒµ½á¹¹Ð§Ó¦»áÑÏÖØÓ°Ïì¹Ø¼ü½ðÊôÐèÇó¡£´ÓÕûÌ幤ҵ»¯½ø³ÌÀ´¿´,¸ù¾Ý¹¤Òµ»¯·¢Õ¹Óë×ÊÔ´¿ª·¢½×¶ÎÐÔÀíÂÛ,²»Í¬·¢Õ¹½×¶Îϸ÷Àà×ÊÔ´µÄ×÷ÓôæÔÚ²îÒì¡£Ëæ׏¤Òµ»¯µÄ·¢Õ¹,×ÊÔ´µÄÐèÇó½á¹¹Ôò»á·¢ÉúÏÔÖø±ä»¯[42]¡£¶ø¹Ø¼ü½ðÊôÏû·Ñ¹á´©¹ú¼Ò¹¤Òµ»¯Ê¼ÖÕ,ÆäÏû·ÑÇ÷ÊÆËæ×ŲúÒµ½á¹¹±ä»¯³ÊÏÖ³öÏÊÃ÷µÄ½×¶ÎÐÔÌØÕ÷[43],ÓÈÆäÔÚ½øÈ빤ҵ»¯ÖкóÆÚÖ®ºó,²úÒµ½á¹¹¸ß¼¶»¯,Õ½ÂÔÐÔÐÂÐ˲úÒµµÄѸÃÍ·¢Õ¹Ê¹Ïà¹Ø¹Ø¼ü½ðÊôÐèÇóÖð²½À©´ó[44,45]¡£Èç½ÚÄÜ»·±£²úÒµÖеĸßЧ½ÚÄܲúÒµºÍÏȽø»·±£²úÒµ¶ÔïØ¡¢Ï¡ÍÁ½ðÊôºÍÏ¡¹ó½ðÊôÓнÏÇ¿µÄÒÀÀµÐÔ,ÐÂÒ»´úÐÅÏ¢¼¼Êõ²úÒµµÄ·¢Õ¹½«ÏûºÄ½Ï¶àﮡ¢Õà¡¢ïØ¡¢î÷¡¢îèµÈ¹Ø¼ü½ðÊô,ÉúÎï²úÒµ½«Ôö¼ÓîѺÍÏ¡¹ó½ðÊôµÄÐèÇó,î롢﨡¢ï¤¡¢îÑ¡¢îê¡¢îã¡¢ÎÙ¡¢îâºÍ蝹ȶԸ߶Ë×°±¸ÖÆÔì²úÒµµÄ·¢Õ¹¾ßÓÐÖØÒª×÷ÓÃ,вÄÁϲúÒµÒÀÀµîѺÍÎÙ,ÐÂÄÜÔ´²úÒµµÄ·¢Õ¹ºÍÆÕ¼°½«À­¶¯îÑ¡¢ï¯¡¢îþºÍîêµÈ¹Ø¼ü½ðÊôµÄÐèÇó,´ËÍâ,ÒÔﮡ¢îÜ¡¢Äø¡¢²¬×å½ðÊôµÈΪ´ú±íµÄ¹Ø¼ü½ðÊô¿ó²ú,ÔÚÒÔ´¿µç¶¯Æû³µ¡¢È¼Áϵç³ØÆû³µÎª´ú±íµÄÏÂÒ»´ú½»Í¨ÂÌÉ«µÍ̼¼¼ÊõÖз¢»ÓÖ§³Å×÷ÓÃ[14]¡£

2.3 Ìæ´úÑ­»·Ð§Ó¦

Ëæ×ÅÌæ´ú¡¢Ñ­»·¼¼ÊõµÄÒýÈë,¶ÔһЩ¹Ø¼ü½ðÊôÐèÇóÔö¼Ó,¶ø¶ÔÁíһЩ¹Ø¼ü½ðÊôµÄÐèÇ󽫼õÉÙ[46]¡£Ò»·½Ãæ,¼¼ÊõµÄÍ»ÆÆ¿ÉÒÔͨ¹ý¶ÔÏÖÓÐÓ¦ÓÃÖеĹؼü½ðÊô½øÐÐÌæ´úÀ´½µµÍÆäÁÙ½çÐÔ¡£Èç2009ÄêUNEP·¢²¼µÄ¡¶Î´À´¿É³ÖÐø¼¼ÊõËùʹÓõĹؼü½ðÊô¼°Æä»ØÊÕDZÁ¦¡·±¨¸æÖ¸³ö,µç×Ó¼¼ÊõµÄµü´ú¸üн«ÒýÖ¹ؼü½ðÊôÖ®¼äµÄÌæ´ú[47]¡£¾ßÌåÀ´Ëµ,ÄøÇâµç³ØÕýÖð½¥±»ï®Àë×Óµç³ØÈ¡´ú,ÂÁ²ôÔÓÑõ»¯Ð¿¶ÔÒº¾§ÏÔʾÆ÷ÖеÄî÷ÎýÑõ»¯Îï¡¢µçÈÝÆ÷Öеĸ÷ÖÖÏ¡ÍÁ»¯ºÏÎï´æÔÚÌæ´úDZÁ¦[48,49]¡£ÁíÒ»·½Ãæ,Ñ­»·¼¼ÊõµÄ·¢Õ¹½«Ê¹ÎÒÃÇÔÚδÀ´ÓøüÉٵĹؼü½ðÊôÉú³ÉÏàͬµÄ·þÎñ,´Ó¶ø´Ù½øÏà¹Ø²úÆ·µÄÉú²ú,»òÔÚ²úÁ¿²»±äµÄÇ°ÌáϼõÉÙ¶ÔÒ»´Î¹Ø¼ü½ðÊô×ÊÔ´µÄÐèÇó[50],½ø¶ø½µµÍ¶ÔÍâÒÀ´æ¶È¡£Í¬Ê±,ijÖֹؼü½ðÊôµÄÑ­»·¼¼Êõ·¢Õ¹¿ÉÄÜ»á¹ÄÀø¶ÔÆäËû¿ÉÌæ´úÆ·ÖÖµÄÌæ´úÐÐΪ,¼ä½ÓÓ°ÏìÁ½Öֹؼü½ðÊôµÄÐèÇó,Èç¹ýÑõ»¯ÄƵç³Ø¾ßÓиüºÃµÄÑ­»·ÐÔÄܺÍÄÜԴЧÂÊ[51,52],ÔÚ´ó¹æÄ£´¢ÄÜ·½Ã漫¾ßÓÅÊÆ,Ò»µ©Í»ÆÆÏÖ´æµÄ¼¼ÊõÆ¿¾±,¾Í½«Òý·¢¶Ô﮵ÄÌæ´úÇãÏò¡£

3 »ùÓÚ¼¼Êõ½ø²½µÄ¹Ø¼ü½ðÊô¿ó²úÐèÇóÔ¤²âÑо¿½øÕ¹

̽¾¿¼¼Êõ±ä¸ï±³¾°Ï¹ؼü½ðÊôÐèÇó±ä»¯Ç÷ÊÆ,¶Ô¹¹½¨ÖйúÖг¤ÆÚËæ¼¼Êõ½ø²½µ÷ÕûµÄ¹Ø¼ü½ðÊôÏû·ÑͼÆ×,ÌáÇ°¶´²ìÆäÐèÇóÑݱä¹æÂÉ¡¢»¯½â×ÊÔ´Ô¼ÊøÆ¿¾±,±£ÕϹú¼Ò½ðÊô×ÊÔ´°²È«¾ßÓÐÖØÒªÒâÒå¡£20ÊÀ¼Í³õ¶ÔʯÓͺĽßʱ¼äµÄÔ¤²â,¿ª±ÙÁË¿ó²ú×ÊÔ´Ïû·ÑÔ¤²âÑо¿ÁìÓò¡£ÔçÆÚ·ÖÎö½ðÊôÐèÇó¶à²ÉÓÃÉú²úº¯Êý»òÐèÇóº¯Êý[53]¡£Ä¿Ç°Ô¤²â´ó×Ú½ðÊôÐèÇóÖ÷Òª²ÉÓÃÇ÷ÊÆÍâÍÆ·¨[54]¡¢BPÈ˹¤Éñ¾­ÍøÂçÔ¤²â[55]¡¢Ïû·ÑÇ¿¶È´æÁ¿Çý¶¯Ä£ÐÍ[56]¡¢»ÒÉ«Ô¤²âÄ£ÐÍ[57]¡¢²¿ÃÅ»ò²úÆ·Ô¤²â·ÖÎö·¨[58]¡¢IPATÄ£ÐÍ[59]¡¢»Ø¹éºÍ¿â´æ¶¯Ì¬Ä£ÐÍ[60]µÈ·½·¨¡£

¿¼Âǵ½¹Ø¼ü½ðÊôÔڶ෽ÃæÓбðÓÚ´ó×Ú½ðÊô¿ó²ú,¾ßÓÐÓ¦ÓÃÉæ¼°Ãæ¹ã¡¢¼¼Êõ·Ïß±ä¸ü¿ìµÈÌصã,ÒÑÓÐÑо¿Öдó×Ú½ðÊôÐèÇóÔ¤²âÁìÓò¹ã·ºÊ¹Óõġ°S¡±Ð͹æÂɺ͡°µ¹U¡±Ð͹æÂÉ[61,62,63,64,65]µÈ´«Í³·½·¨¶Ô¹Ø¼ü½ðÊô²»¾ßÓÐÊÊÓÃÐÔ,ΪÄܸü¾«×¼¡¢ºÏÀíµØÔ¤²â¹Ø¼ü½ðÊôÐèÇó,¾ÍÒª²ÉÓÃÇø±ðÓÚ´ó×Ú½ðÊôÁìÓòµÄÑо¿·½·¨ºÍ¿ò¼Ü¡£Õë¶Ô¹Ø¼ü½ðÊôÌصã,****ÃÇ»ùÓÚ¼¼Êõ½ø²½¶Ôﮡ¢î÷¡¢ÎÙ¡¢îÜ¡¢íÚµÈÐèÇóÔ¤²â½øÐÐÁË·ÖÀàÑо¿[66]¡£ÆäÖÐһЩÑо¿½öÆÀ¹ÀÁËÒ»ÖÖ¼¼Êõ,ÀýÈçÌ«ÑôÄܹâ·ü¼¼Êõ,·çÁ¦·¢µç¼¼Êõ,ÐÂÄÜÔ´Æû³µ¼¼ÊõµÈ[36,67,68]¡£ÆäËû****Ôò´¦ÀíÁËÒ»×é¿ÉÔÙÉú¼¼Êõ×éºÏ[11,69,70],ÌṩÓйØÐÂÐ˼¼ÊõδÀ´·¢Õ¹ËùÐè¹Ø¼ü½ðÊôµÄÓÐÓÃÐÅÏ¢¡£¸ù¾Ý3ÖÖ¼ä½ÓЧӦ,Ïà¹ØÑо¿Ö÷Òª²ÉÓÃÒÔÏ·¾¶£º¼¼Êõ½ø²½¡ª¾­¼ÃÔö³¤¡ª¹Ø¼ü½ðÊô¿ó²ú,¼¼Êõ½ø²½¡ª²úÒµ½á¹¹¡ª¹Ø¼ü½ðÊô¿ó²ú,¼¼Êõ½ø²½¡ªÌæ´úÑ­»·¡ª¹Ø¼ü½ðÊô¿ó²ú¡£

3.1 ¼¼Êõ½ø²½¡ª¾­¼ÃÔö³¤¡ª¹Ø¼ü½ðÊô¿ó²úñîºÏ

Ä¿Ç°Ñо¿´ó¶àÖ»¶Ô¡°¼¼Êõ½ø²½¡ª¾­¼ÃÔö³¤¡±»ò¡°¾­¼ÃÔö³¤¡ª½ðÊô¿ó²ú¡±·Ö±ð½øÐÐÌÖÂÛ¡£º«Ó¨[34]¡¢ÀîÏþÄþ[35]·Ö±ðͨ¹ý¾²Ì¬·ÖÎöºÍ¶¯Ì¬Ä£Äâʵ֤±íÃ÷¼¼Êõ½ø²½¶Ô¾­¼ÃÔö³¤ÓÐÍ»³ö¹±Ïס£ÆäËûÎÄÏ×ÒÔÈ˾ùGDPºâÁ¿¾­¼ÃÔö³¤Ë®Æ½,Ñо¿·¢ÏÖ¾­¼ÃÔö³¤ÊǽðÊôÏû·ÑµÄÖ÷ÒªÇý¶¯ÒòËØ¡£ÈçÍõ°²½¨µÈ[62,63,64]Ö¸³ö,Öйú¹¤Òµ»¯½ø³ÌÖÐ,µ¥ÖÖ½ðÊôÏû·ÑÓëÈ˾ùGDPµÄ¹Øϵ·ûºÏ¡°S¡±Ð͹æÂÉ¡£WiedmannµÈ[71]¶Ô1990¡ª2008Äê186¸ö¹ú¼ÒµÄ½ðÊôÏû·Ñ½øÐÐÁËʱ¼äÐòÁзÖÎö,ÈÏΪ¾­¼ÃºÏ×÷¼°·¢Õ¹×éÖ¯ºÍÅ·ÃË27¹úµÄ½ðÊôÏû·Ñ×ã¼£ÓëGDPͬ²½Ôö³¤¡£¿ÉÒÔ¿´³ö,ÏÖÓп¼ÂǾ­¼ÃÔö³¤Ð§Ó¦µÄÑо¿½ö¹Ø×¢ÁË´ó×Ú½ðÊôÁìÓò,ÇÒͨ³£½«¡°¼¼Êõ½ø²½¡ª¾­¼ÃÔö³¤¡ª½ðÊô¿ó²ú¡±¸îÁÑ¿ª,¶Ô¼¼Êõ½ø²½¡ª¾­¼ÃÔö³¤¡ª¹Ø¼ü½ðÊô¿ó²ú¿ò¼ÜµÄÀíÂÛºÍʵ֤Ñо¿²»×ã;ÓÃÀ´Ô¤²âµÄ·½·¨ÈÔÍ£ÁôÔÚÊÊÓÃÓÚ´ó×Ú½ðÊôµÄ¡°S¡±Ð͹æÂɺ͡°µ¹U¡±Ð͹æÂÉ,¶ÔÓ¦ÓÃÁìÓò¼¯ÖС¢¼¼Êõ·Ïß±ä¸ü¿ìµÄ¹Ø¼ü½ðÊô¡£

3.2 ¼¼Êõ½ø²½¡ª²úÒµ½á¹¹¡ª¹Ø¼ü½ðÊô¿ó²úñîºÏ

´ÓÒÑÓÐÑо¿À´¿´,»ùÓÚ¼¼Êõ½ø²½¡ª²úÒµ½á¹¹¡ª¹Ø¼ü½ðÊô¿ó²úñîºÏµÄÎÄÏ×½ÏΪ·á¸»,Ñо¿¿ò¼ÜÒ»°ã×ñÑ­¡°Çé¾°ÉèÖ᪶¨Á¿Ô¤²â¡±Ä£Ê½¡£¶ÔÓÚÇé¾°ÉèÖÃ,Ä¿Ç°ÒѾ­¿ª·¢Á˼¸ÖÖÈ«ÇòºÍÇøÓòÄÜÔ´Çé¾°·½°¸ÓÃÀ´·ÖÎöÄÜÔ´¡¢Ë®ºÍ×ÊÔ´²ÄÁÏϵͳµÄδÀ´Çé¿ö[66,72-74]¡£ÕâЩÇ龰ͨ³£¿¼ÂÇÈ«ÇòÒ»Ì廯·¢Õ¹Ç÷ÊÆ¡¢Éú̬¡¢¾­¼Ã¡¢¼¼ÊõµÈºê¹ÛÒòËØ¡£µ«ÔÚʵ¼ÊÓ¦ÓÃÖÐ,´«Í³µÄÇé¾°·½°¸²»ÄܺܺõØÂú×ãÐèÇó,ÐèÒª¸ù¾Ý²»Í¬Ñо¿Ä¿µÄºÍÑо¿¶ÔÏóÀ´ÉèÖá£Îª´Ë,****ÃÇÉèÖÃÁ˾ßÓÐÒìÖÊÐÔºÍÕë¶ÔÐÔµÄÇé¾°[37,38,39],²¢¹ã·ºÓÃ×÷¼¼Êõ½ø²½ÊÓ½ÇϹؼü½ðÊôÐèÇóÔ¤²âµÄ»ù´¡¡£

¶ÔÓÚÈçºÎÔÚÇé¾°ÉèÖõĻù´¡ÉÏʵÏֹؼü½ðÊôÐèÇóÔ¤²â,ÏÖÓÐÎÄÏ×ÌṩÁËһЩ¿É²Î¿¼µÄ˼·¡£Ö÷Òª·½·¨ÓлùÓÚ²ÄÁÏÇ¿¶ÈµÄÔ¤²â·½·¨[75,76,77,78],ϵͳ¶¯Á¦Ñ§Ä£ÐÍ£¨SD£©[79,80],ÎïÖÊÁ÷·ÖÎö£¨MFA£©Ä£ÐÍ[81,82,83],BassÄ£ÐÍ[39],»ùÓÚÉúÃüÖÜÆÚÆÀ¹À£¨LCA£©µÄͶÈë²ú³ö·½·¨[84],¾­¼ÃÄ£ÐÍ[85],»òϵͳ¶¯Á¦Ñ§ÓëÎïÖÊÁ÷Ïà½á ºÏ[86,87]¡£ÆäÖÐ,»ùÓÚ²ÄÁÏÇ¿¶ÈµÄÔ¤²â·½·¨¡¢ÏµÍ³¶¯Á¦Ñ§ºÍÎïÖÊÁ÷Ä£Ð͵ÄÓ¦ÓÃ×îΪ¹ã·º¡£

YanoµÈ[19]»ùÓÚ²ÄÁÏÇ¿¶ÈÔ¤²âÁ˵½2030ÄêÈÕ±¾»ìºÏ¶¯Á¦Æû³µ¶ÔÏ¡ÓнðÊôµÄÐèÇó¡£HouariµÈ[80]ʹÓÃϵͳ¶¯Á¦Ñ§£¨SD£©Ä£ÐÍÔ¤²â½«À´µÄÌ«ÑôÄܹâ·ü¼¼Êõ²¿Êð,Ê״γ¢ÊÔÓö¯Ì¬¹©Ðè²ÎÊý½â¾ö´ËÀàÔ¤²âÎÊÌâ¡£Sverdrup[88]¹¹½¨ÁËÒ»¸ö°üÀ¨È«Çò﮿ª²ÉºÍÐèÇó¡¢×ÊÔ´µÈ¼¶¡¢Êг¡ºÍ¼Û¸ñµÈÒòËصÄϵͳ¶¯Á¦Ñ§Ä£ÐÍ¡£LiuµÈ[79]¸ù¾Ýï®Êг¡¼Û¸ñ¡¢¹©Ðè²î¾à¡¢½ø¿ÚÁ¿ºÍï®Ïû·Ñ¹¹³ÉÇ÷ÊƵÈÒòËØÉèÖÃÇé¾°,ÔÚ´Ë»ù´¡ÉÏʹÓÃϵͳ¶¯Á¦Ñ§Ä£ÐÍÔ¤²âµçÄÜ´æ´¢£¨EES£©ºÍÐÂÄÜÔ´Æû³µ£¨NEV£©ÖнðÊô﮵ÄÐèÇó¡£ÕâЩ·½·¨Äܹ»¶¨Á¿Ô¤²â¹Ø¼ü½ðÊôÐèÇó,µ«ÆäÔ¤²âÖ÷Òª»ùÓÚÁ÷Á¿Ö¸±ê,ºöÂÔÁËÉç»á¾­¼ÃϵͳÖÐÎïÖÊ×ʱ¾´æÁ¿ÀÛ»ýµÄÄÚÔÚ¹æÂÉ,¶Ô¶ÌÆÚÇ÷ÊÆÔ¤²âÓÐÒ»¶¨ÊÊÓÃÐÔ,µ«ÎÞ·¨·´Ó³Éç»á¾­¼Ã´úл¹ý³ÌÖйؼü½ðÊôÐèÇó³¤ÆÚÑݱäµÄ·ÇÏßÐÔÌØÕ÷,ȱ·¦ÎȽ¡ÐÔ,Ô¤²â¾«¶È¾ßÓнϸߵIJ»È·¶¨ÐÔ[89,90]¡£

»ùÓÚ´Ë,M¨¹ller[91]Ìá³öÁ˶¯Ì¬ÎïÖÊÁ÷·ÖÎö·½·¨,ͨ¹ý¹ÀËãÈË¿Ú¼°ÆäÉú»î·½Ê½À´Í¬Ê±È·¶¨¹ú¼Ò»òµØÇø×ÊÔ´ÐèÇóºÍ·ÏÎï²úÉú¡£ÓëÆäËû·½·¨Ïà±È,¶¯Ì¬ÎïÖÊÁ÷Ä£ÐͲ»ÊÇͨ¹ý·´À¡»Ø·ÔÚÄÚ²¿²úÉú¶¯Ì¬±ä»¯,¶øÊǸù¾ÝÇé¾°·½°¸¶¯Ì¬µØ½øÐÐÄ£ÄâÔ¤²â[92],ϵͳ¼ÆËãÔÚ¹¤ÒµÏµÍ³ÖеÄÎïÖÊÁ÷[93],½üÄêÀ´Ô½À´Ô½¶àµØ±»ÓÃÓÚ·ÖÎöÐÂÐ˼¼ÊõÖеĹؼü½ðÊôÐèÇóÎÊÌâ[94,95]¡£ÆäÖÐһЩÑо¿·ÖÎöÒ»ÖÖ»òÒ»×é¹Ø¼ü½ðÊôÔÚÆäËùÓÐ×îÖÕÓÃ;²¿ÃÅÖеÄÁ÷¶¯[76],ÈçHabibµÈ[96]¸ù¾ÝÕþ²ßºÍ¼¼Êõ¡¢²úÆ·µÄÊг¡Éø͸ÂʵÈÒòËØÉèÖÃÇé¾°·½°¸,Ô¤²âÁË·çÁ¦ÎÐÂÖ»ú¡¢µç¶¯Æû³µ¡¢¼ÆËã»úµÈÖÕ¶ËʹÓÃÖÐîϺÍïáµÄÐèÇóÁ¿¡£MartinµÈ[97]ʹÓÃÀàËÆ·½·¨,ͨ¹ýÍƲâï®ËùÓÐÓ¦ÓÃÁìÓò¼¼ÊõµÄ·¢Õ¹Ç÷ÊÆ,Ô¤²âÆäʹÓÃÁ¿¡£¶øÆäËûÑо¿Ôò·ÖÎöÌض¨¼¼Êõ»òһϵÁм¼ÊõµÄ¹Ø¼ü½ðÊôÐèÇó[69,98-100]¡£ÈçElshkakiµÈ[70]É趨7ÖÖÄÜÔ´³¡¾°,²ÉÓö¯Ì¬ÎïÖÊÁ÷Ä£ÐÍ,ͨ¹ýÑо¿·¢µç¼¼Êõ,·ÖÎö³öÄÜԴϵͳµÍ̼»¯ËùÐèµÄ¹Ø¼ü½ðÊô¼°Ôڴ˹ý³ÌÖÐÓÉÓÚ¼¼Êõ½ø²½Ê¹µÃ¹©Ðè·çÏÕ½µµÍµÄ¹Ø¼ü½ðÊô¡£CaoµÈ[68]½øÒ»²½ÊÕ¼¯´óÁ¿µ¥Ìå·ç»ú΢¹Û¼¼ÊõÊý¾Ý,¶Ôµ¤ÂóδÀ´·çµç¼¼Êõ·¢Õ¹¹ý³ÌÖÐÏ¡ÓнðÊôîÏ¡¢ïáµÄÐèÇóÓëÑ­»·ÔÙÉúDZÁ¦½øÐÐÁËÈ«ÃæÔ¤²â¡£

3.3 ¼¼Êõ½ø²½¡ªÌæ´úÑ­»·¡ª¹Ø¼ü½ðÊô¿ó²úñîºÏ

Ä¿Ç°Ôڹؼü½ðÊôÐèÇóÑо¿ÁìÓòÖÐ,¿¼ÂÇÌæ´úÑ­»·ÒòËصÄÎÄÏ×½ÏÉÙ,ÇÒÑо¿¶ÔÏóµ¥Ò»,µ«Ëæ×ÅÏà¹Ø¼¼Êõ²»¶ÏÍ»ÆÆÓë¸Ä½ø,Ìæ´úÑ­»·Ð§Ó¦Ô½À´Ô½ÒýÆð¹Ø×¢¡£ÈçYanoµÈ[19]¹À¼ÆÁË2010¡ª2030ÄêÈÕ±¾»ìºÏ¶¯Á¦´«¶¯×°ÖÃÖеÄÏ¡ÍÁ½ðÊô»ØÊÕDZÁ¦¡£MartinµÈ[97]¿¼ÂǸ߶ËÁìÓòºÍÈÕ³£Ó¦ÓÃÖеÄï®Ìæ´úÆ·,´´½¨ÁË2020Äê﮵ÄÐèÇóÔ¤²âÄ£ÐÍ¡£ÊµÖ¤½á¹ûÔ¤¼Æ,ÔÚ2030Äê,¶þ´Î×ÊÔ´µÄ﮽«²úÉú¿Éʶ±ðµÄÓ°Ïì,µ½2050Äê,½«´úÌæ25%µÄÒ»´Îï®×ÊÔ´ÐèÇóÁ¿,ÆäÖÐ×î´óµÄ»ØÊÕDZÁ¦ÔÚÓÚ﮵ç³Ø¡£

4 ½áÂÛ

±¾ÎÄ»ùÓÚ¹úÄÚÍâÏà¹ØÑо¿½øÕ¹,Ö÷Òª´Ó¼¼Êõ½ø²½¶Ô¹Ø¼ü½ðÊô¿ó²ú×ÊÔ´ÐèÇóÓ°Ïì»úÖƺͻùÓÚ¼¼Êõ½ø²½µÄ¹Ø¼ü½ðÊôÐèÇóÔ¤²âÁ½¸ö·½Ãæ,ϵͳȫÃæµØÊáÀíÁËÒÑÓÐÑо¿³É¹û,Ϊ½øÒ»²½½«¼¼Êõ½ø²½Ç¶Èë¹Ø¼ü½ðÊôÐèÇóÔ¤²â¿ò¼Üµì¶¨»ù´¡¡£¶ÔÒÑÓÐÑо¿ÏÖ×´ÆÀ¼ÛÈçÏ£º

£¨1£©¼¼Êõ½ø²½¶Ô¹Ø¼ü½ðÊôÐèÇóÓ°ÏìÑо¿³É¹û²»¶ÏÓ¿ÏÖ¡£Í¨¹ý·ÖÎöÕûÀíÒÑÓгɹû·¢ÏÖ,Ïà¹ØÎÄÏ׶à´Ó¼¼Êõ½ø²½²â¶È¡¢¼¼Êõ½ø²½¶Ô¹Ø¼ü½ðÊôÐèÇóÓ°ÏìºÍ»ùÓÚ¼¼Êõ½ø²½µÄ¹Ø¼ü½ðÊôÐèÇóÔ¤²âµÈ·½Ãæ¶Ô¸ÃÎÊÌâ½øÐÐÑо¿¡£Ñо¿³ß¶È¶àΪȫÇò¡¢¹ú¼Ò»òijһÌض¨ÐÐÒµ¡£×ÜÌå¿´À´,¹úÄÚÍâ****ÔÚÕâÒ»ÎÊÌâÉϵĹØ×¢Ô½À´Ô½¶à,Ïà¹ØÑо¿³É¹û·á¸»Á˸ÃÁìÓòµÄÑо¿ÄÚÈÝ¡¢´´ÐÂÁËÑо¿¿ò¼ÜÓë·½·¨,¶ÔÒÔºóµÄÑо¿¾ßÓкܺõÄÖ¸µ¼ºÍ½è¼øÒâÒå¡£µ«Ä¿Ç°¶Ô΢¹Û²úÆ·³ß¶È·ÖÎö²»×ã,·Ö±æÂʲ»¸ß,Ñо¿¿ò¼ÜûÓÐÐγÉͳһµÄÌåϵ,ÓÃÓÚÔ¤²âÐèÇóÇé¿öµÄÊý¾ÝºÍ·½·¨´æÔڸ߶Ȳ»È·¶¨ÐÔ,»¹Ðè½øÒ»²½Ì½ÌÖ[101]¡£

£¨2£©¼¼Êõ½ø²½¶Ô¹Ø¼ü½ðÊôÐèÇóÓ°Ïì»úÖÆÉÐδͳһ¡£Ä¿Ç°´ó¶àÊýÎÄÏ×ÔÚÕâÒ»ÎÊÌâÉÏÖØÏÖ×´Ñо¿¶øÇáÑݱäÆÊÎö¡£Ëæ×ÅÐÂÒ»ÂÖ¼¼Êõ¸ïÃüÐËÆð,¼¼Êõ½ø²½¶Ô²»Í¬¹Ø¼ü½ðÊôÐèÇó²úÉú²»Í¬Ó°Ïì,ÒªÏëÍ»ÆÆÏÖÓÐÎÄÏ׶Լ¼Êõ½ø²½ÍâÉúµÄ¼Ù¶¨,Ó¦¾ßÌåµ½¼¼Êõ½ø²½ÄÚÉúÓڹؼü½ðÊôÐèÇó±ä»¯µÄ΢¹Û×÷ÓûúÖÆÉÏ,¿¼ÂǾ­¼ÃÔö³¤¡¢²úÒµ½á¹¹ºÍÌæ´úÑ­»·µÈЧӦ¡£ÔÚÕâÒ»·½Ãæ,ÏÖÓÐÑо¿´ó¶àÖ»¶Ô¡°¼¼Êõ½ø²½¡ª¾­¼ÃÔö³¤¡±»ò¡°¾­¼ÃÔö³¤¡ª´ó×Ú½ðÊô¿ó²ú¡±µÄ¹Øϵ·Ö±ð½øÐÐÌÖÂÛ,¶ø¶Ô¼¼Êõ½ø²½¡ª¾­¼ÃÔö³¤¡ª¹Ø¼ü½ðÊôÕûÌå¿ò¼ÜµÄÀíÂÛºÍʵ֤Ñо¿²»×ã¡£ËäÈ»»ùÓÚ¼¼Êõ½ø²½¡ª²úÒµ½á¹¹¡ª¹Ø¼ü½ðÊô¿ó²úñîºÏµÄÑо¿Ô½À´Ô½¶à,µ«´ó¶àרעÓÚÔ¤²â½á¹û,ûÓжÔÆäÖеĴ«µ¼Â·¾¶½øÐÐÉîÈëÆÊÎö¡£×ܵÄÀ´¿´,¼¼Êõ½ø²½¡ª¹Ø¼ü½ðÊôµÄ΢¹Û×÷ÓûúÖƲ¢Ã»Óж¨Á¿»¯Õ¹¿ª,»¹´¦ÓÚºÚÏ仯¡£

£¨3£©»ùÓÚ¼¼Êõ½ø²½µÄ¹Ø¼ü½ðÊôÐèÇóÔ¤²âÑо¿¿ò¼ÜÓдý¹æ·¶¡£Ä¿Ç°¿ó²ú×ÊÔ´ÐèÇóÔ¤²âÌåϵ½ÏΪ³ÉÊì,Òѽ«´ó²¿·Ö¿ó²ú×ÊÔ´º­¸ÇÔÚÄÚ,ÇÒÑо¿ÊÖ¶ÎÓë·½·¨Ò²Ç÷ÓÚ¶àÑù»¯,Ñо¿ÁìÓòÖ÷Òª¼¯ÖÐÓÚ´ó×Ú¿ó²úÏû·Ñ¹æÂɼ°·åÖµÔ¤²â¡£¶Ô»ùÓÚ¼¼Êõ½ø²½µÄ¹Ø¼ü½ðÊôÐèÇóÑо¿Ö÷Òª¿¼ÂǾ­¼ÃÔö³¤¡¢²úÒµ½á¹¹ºÍÌæ´úÑ­»·3ÖÖЧӦ¡£Ç°ÕßµÄÑо¿·½·¨ÈÔÍ£ÁôÔÚ´«Í³µÄ¡°S¡±Ð͹æÂɺ͡°µ¹U¡±Ð͹æÂÉ,ûÓгä·Ö¿¼ÂǼ¼Êõ½ø²½µÄÓ°Ïì,¶Ô¹Ø¼ü½ðÊôÐèÇóµÄÔ¤²âȱ·¦Õë¶ÔÐÔ¡£Í¬Ê±,¿¼ÂÇÌæ´úÑ­»·Ð§Ó¦µÄÎÄÏ×½ÏÉÙ,Ñо¿¶ÔÏóµ¥Ò»,ÕâÓëÌæ´úÑ­»·¼¼ÊõÈÔ´¦ÔÚ·¢Õ¹³õÆÚÓйء£¶øÄ¿Ç°ÔÚ¼¼Êõ½ø²½¡ª²úÒµ½á¹¹¡ª¹Ø¼ü½ðÊô¿ó²úñîºÏ·½ÃæÒѾ­ÓÐÁ˺ܶàÑо¿³É¹û,¹ã·º²ÉÓõġ°Çé¾°ÉèÖ᪶¨Á¿Ô¤²â¡±Ñо¿¿ò¼ÜËäÈ»ÄÜÔÚÒ»¶¨³Ì¶ÈÉϱíÕ÷¼¼Êõ½ø²½¶ÔδÀ´¹Ø¼ü½ðÊôÐèÇóµÄÓ°Ïì,µ«´«µ¼Â·¾¶Öи÷ÒòËصÄÏ໥×÷ÓÃÔںܴó³Ì¶ÈÉÏûÓеõ½ÌåÏÖ¡£ÓÉÓÚ²úÒµÌص㡢ͶÈëÇé¿öµÈÒòËصÄÐÐÒµ²îÒìÐԽϴó,Çé¾°ÉèÖÃÑ¡È¡µÄÉè¼ÆÒòËØÒ²´æÔÚ¾ö²ßµ¥Ôª²îÒì½Ï´óµÄȱÏÝ,¾ßÓÐÒ»¶¨Ö÷¹ÛÐÔºÍËæÒâÐÔ¡£ÇÒÑо¿ÖÐÑ¡ÔñµÄ²»Í¬Ô¤²â·½·¨ËäÈ»ÄÜ´Ó²»Í¬½Ç¶ÈʵÏÖÔ¤²â,µ«½áºÏÑо¿¶ÔÏó¶ÔËùÑ¡·½·¨µÄÊÊÓÃÐÔ½øÐÐÂÛÊöµÄÎÄÏײ»¶à,µ¼Ö½á¹û´æÔÚÆ«²î¡£´ËÍâ,Ô¤²â·½·¨±¾Éí´æÔÚµÄȱÏÝÒ²»áµ¼Ö½á¹ûµÄÎó²î¡£

5 Ñо¿Õ¹Íû

»ùÓÚÎÄÏ×ϵͳÊáÀí,δÀ´Ñо¿¿ÉÒÔ´ÓÒÔÏÂ4¸ö·½ÃæÉîÈëÍØÕ¹£º

£¨1£©¹¹½¨¼¼Êõ½ø²½×÷Óùؼü½ðÊôÐèÇóÔ¤²âµÄÕûÌå·ÖÎö¿ò¼Ü¡£¿¼Âǵ½¹Ø¼ü½ðÊôÓ¦ÓÃÉæ¼°Ãæ¹ã¡¢¼¼Êõ·Ïß±ä¸ü¿ìµÈÌصã,ÆäÐèÇóÔ¤²â²ÉÈ¡Çø±ðÓÚ´ó×Ú½ðÊô¿ó²úÐèÇóÔ¤²âµÄÀíÂÛÄ£Ðͺͷ½·¨¡£Î´À´¿ÉÒÔÑر¾ÎÄÌáÁ·µÄ¼¼Êõ½ø²½¡ª¾­¼ÃÔö³¤¡ª¹Ø¼ü½ðÊô¿ó²ú¡¢¼¼Êõ½ø²½¡ª²úÒµ½á¹¹¡ª¹Ø¼ü½ðÊô¿ó²ú¡¢¼¼Êõ½ø²½¡ªÌæ´úÑ­»·¡ª¹Ø¼ü½ðÊô¿ó²ú3Ìõ×÷Ó÷¾¶¼ÌÐøÉÑо¿,¼´¼¼Êõ½ø²½¡ª¾­¼ÃÔö³¤¡ªÖ÷½ðÊô¡ª°éÉú¹Ø¼ü½ðÊô¡¢¼¼Êõ½ø²½¡ªÐ²ÄÁÏ¡ª¹Ø¼ü½ðÊô¡¢µÍ̼ÄÜÔ´¼¼Êõ¡ªÇå½àÄÜÔ´²úÆ·¡ª¹Ø¼ü½ðÊôµÈ¸ü¼Óϸ»¯µÄ΢¹Û·¾¶À´·ÖÀàÔ¤²â¹Ø¼ü½ðÊôÐèÇóÑݱäÇ÷ÊÆ¡£Ô¤²âÀíÂÛÄ£Ðͺͷ½·¨¹¹½¨·½Ãæ,Ó¦½áºÏÑо¿¶ÔÏóÌصãºÍÑо¿Ä¿µÄ,»ùÓÚ¿ÆѧÐÔ¡¢¿Í¹ÛÐÔµÈÔ­Ôò,Ñ¡È¡Äܹ»ÌåÏÖÓ°Ïì´«µ¼Â·¾¶µÄÉ趨ÒòËغÍÔ¤²âÄ£ÐÍ,½áºÏ´óÊý¾ÝÀíÄîÕ¹¿ªÔ¤²â·ÖÎö,ÔöÇ¿Ô¤²â½á¹ûµÄÕþ²ßÖ¸µ¼×÷ÓᣴóÁ¿Ñо¿±È½Ï¹Ø×¢¼¼Êõ½ø²½²úÉúµÄÖ±½ÓÓ°Ïì,µ«´ÓÖг¤ÆÚÀ´¿´,Ô¤²âÀíÂÛÄ£Ðͺͷ½·¨¹¹½¨¹ý³ÌÖиüÓ¦¿¼ÂǸ÷ÖÖÖнé±äÁ¿»òÕßµ÷½Ú±äÁ¿µÄÓ°Ïì,ÉõÖÁÏà¹ØÕþ²ßÒòËصĸÉÔ¤×÷Óá£

£¨2£©ÔÚ²úÒµ½á¹¹Óë¹Ø¼ü½ðÊô¹Øϵ·ÖÎöÖÐ,Öصã¹Ø×¢µÍ̼ÄÜÔ´¼¼Êõ¡¢Õ½ÂÔÐÂÐ˲úÒµ·¢Õ¹¶Ô¹Ø¼ü½ðÊôÐèÇóµÄÍƶ¯»úÀí¡£Ïà±È´«Í³ÄÜÔ´ÒÀÀµ»¯Ê¯¡¢Ë®µÈ×ÊÔ´,Çå½àÄÜÔ´²»¹ÜÊÇÔÚÖÖÀ໹ÊÇÊýÁ¿·½Ã涼ÒÀÀµ¸ü¶àµÄ¹Ø¼ü½ðÊô¡£Èç½ÚÄÜ»·±£²úÒµ½«À­´ó¶ÔïØ¡¢Ï¡ÍÁ½ðÊôºÍÏ¡¹ó½ðÊôµÄÐèÇó,¶øîÑ¡¢ï¯¡¢îþºÍîêµÈµÄ¹©ÐèƽºâÎÊÌâÒ²½«ÖÆÔ¼ÐÂÄÜÔ´²úÒµµÄ·¢Õ¹¡£ÔÚÇå½àÄÜÔ´ÐÐÒµÕþ²ßºìÀûµÄÍƶ¯ÏÂ,Çå½àÄÜÔ´¼¼ÊõµÄÍƹãÓëÓ¦ÓöԹؼü½ðÊôÐèÇó²úÉúÁ˾޴ó³å»÷¡£ÈçºÎ»ùÓÚÇå½àÄÜÔ´¼¼Êõ¡ª¹Ø¼ü½ðÊô¿ó²úñîºÏµÄ½Ç¶È,ºÏÀíÔ¤²â¹Ø¼ü½ðÊôÐèÇó±ä»¯,²¢¾Ý´ËÍƳöÏà¹ØÕþ²ß,ÈÃÇå½àÄÜÔ´¼¼ÊõÄÜ´òÆÆ×ÊÔ´Ô¼Êø³¤ÆÚ³ÖÐøµØÔËÓªÏÂÈ¥,»¹ÐèÒª´óÁ¿µÄ¿ÆѧÑо¿ºÍʵ¼ù̽Ë÷¡£Î´À´Ó¦¸ÃÔÚ¸ü¼Ó¹Ø×¢Çå½àÄÜÔ´¼¼ÊõµÄÇ°ÌáÏÂ,¼ÌÐøÉîÈëÑо¿¼¼Êõ½ø²½¶Ô¹Ø¼ü½ðÊôÐèÇóµÄÓ°Ïì¡£

£¨3£©ÔÚ¼¼Êõ½ø²½Óë¹Ø¼ü½ðÊô¹ØϵÑо¿ÖÐ,Íƽø¼¼Êõ½ø²½²â¶ÈÑо¿,½â¾öʵ֤·ÖÎöÖеÄÄѵãÎÊÌâ¡£²â¶È¼¼Êõ½ø²½ÊÇÐèÇóÔ¤²âÑо¿ÖеÄÄѵ㡣ÓÉÓÚ¼¼Êõ½ø²½µÄÌصã,Ö±½ÓºâÁ¿ÆäÖÊÁ¿ºÍÊýÁ¿²»¹»¾«×¼,µ«¿ÉÒÔ²ÉÓÃÏà¹ØÌæ´úÐÔÖ¸±êÀ´·´Ó³,ÈçרÀû»î¶¯Ö¸±êºÍµ¥Î»¼ÛÖµÖ¸±ê¿ÉÒÔÕë¶Ô²»Í¬ÁìÓò,Ñо¿¼¼Êõ½ø²½¶Ô²»Í¬ÖÖÀà¹Ø¼ü½ðÊôÐèÇóµÄÓ°Ïì[102,103,104,105,106,107]¡£×ܵÄÀ´Ëµ,¼¼Êõ½ø²½²â¶ÈÒÑ´ÓͬÖÊ×ßÏò²îÒ컯,µ«ÈÔ´æÔÚÖ¸±êÑ¡Ôñ²»È«Ã桢ûÓÐͳһѡȡÒÀ¾ÝµÄȱµã¡£Î´À´¼¼Êõ½ø²½²â¶ÈÓ¦Öð½¥Ç÷Ïò΢¹ÛºÍ²îÒ컯,²¢½è¼øAcemoglu[108]Ìá³öµÄ¼¼Êõ½ø²½Æ«ÏòÄÚÉú»¯µÄÀíÄîºÍ·½·¨,½«¼¼Êõ½ø²½ÄÚÉúµ½¹Ø¼ü½ðÊôÐèÇó¿ò¼ÜÖС£³ý´ËÖ®Íâ,»¹¿ÉÒÔͨ¹ý±È½Ï·ÖÎö²»Í¬À´Ô´ÓÐÆ«¼¼Êõ½ø²½¶Ô¹Ø¼ü½ðÊôÐèÇóÓ°ÏìµÄ²îÒì,¹À¼ÆÓÐÆ«¼¼Êõ½ø²½¶Ô¹Ø¼ü½ðÊôÐèÇóÓ°ÏìµÄÆ«µ¯ÐÔ,²¢ÀûÓù¤ÒµÐÐÒµÊý¾Ý¿Ì»­×ʱ¾¡¢ÀͶ¯¡¢ÄÜÔ´µÈÒªËضԹؼü½ðÊôÐèÇóµÄ¶¯Ì¬Ó°Ïì»úÖÆ,´Ó¶øÔ¤Åйؼü½ðÊôÐèÇó±ä»¯Ç÷ÊÆ¡£

£¨4£©ÔÚÐèÇóÔ¤²â»ù´¡ÉÏ,ΪÁË·ÖÎö¹Ø¼ü½ðÊô°²È«ÎÊÌâ,»¹Ðè´Ó¹©¸ø¶Ë½øÒ»²½Ñо¿¼¼Êõ½ø²½¶Ô¹Ø¼ü½ðÊô¿ó²úµÄ¹©ÐèÓ°Ïì¡£ÐÂÒ»ÂÖ¼¼Êõ¸ïÃüÒ²½«¶Ô¹Ø¼ü½ðÊôµÄ¹©¸ø¶Ë²úÉúÖØ´óÓ°Ïì¡£ÈçÒÔ¹²Éú¿ó·ÖÀë¡¢ÉúÎïÑ¡¿óµÈΪ´ú±íµÄ²ÉÑ¡Ò±¼¼Êõ½ø²½,Ìá¸ßÁ˸´ÔÓ¶àÔªËع²Éú¿ó¡¢µÍƷλ¿ó¡¢ÄÑÑ¡ÄÑÒ±¿óµÄ¿ª·¢ÀûÓÃ,ÒÔÔÙÉúÍ­¡¢ÔÙÉúÂÁµÈΪ´ú±íµÄ½ðÊô×ÊÔ´ÔÙÑ­»·¼¼ÊõÔö¼ÓÁ˽ðÊô¿É»ØÊÕÆ·ÖÖ,Ìá¸ßÁË»ØÊÕЧÂÊ¡£Î´À´¿ÉÒÔÔÚ¼¼Êõ½ø²½¶Ô¹Ø¼ü½ðÊô¹©¸ø¶Ë³å»÷ÕâÒ»·½Ãæ½øÐÐÏÂÒ»²½Ñо¿¡£ÒÔרÀûµØͼΪ»ù´¡,´Ó¼¼Êõ»îÔ¾¶È¡¢¼¼ÊõÉúÃüÖÜÆÚ¡¢¼¼Êõ½ø»¯·½Ïò3¸ö·½Ãæ¶Ô²ÉÑ¡Ò±¼¼Êõ¡¢Ìæ´úÑ­»·¼¼Êõ½øÐÐÔ¤²â,½áºÏ¼¼ÊõÀ©É¢ÀíÂÛÉîÈë·ÖÎöÕâЩ¼¼Êõ¶Ô¹Ø¼ü½ðÊô×ÊÔ´¹©¸øÇ÷ÊƼ°·åÖµµÄÓ°Ïì,²ûÃ÷×÷ÓûúÀí,²¢Í»ÆÆÔ­ÓÐ×ÊÔ´¹©Ðè·ÖÎö¿ò¼ÜÖм¼Êõ²»±äµÄ¼Ù¶¨Ìõ¼þ,·ÖÎöм¼Êõ¸ïÃü¶Ô¹Ø¼ü½ðÊô¹©¸ø²àµÄ³å»÷×÷Óá£

²Î¿¼ÎÄÏ× Ô­ÎÄ˳Ðò
ÎÄÏ×Äê¶Èµ¹Ðò
ÎÄÖÐÒýÓôÎÊýµ¹Ðò
±»ÒýÆÚ¿¯Ó°ÏìÒò×Ó

ÍôÁé. Õ½ÂÔÐԷǽðÊô¿ó²úµÄ˼¿¼
[J]. ¿ó²ú±£»¤ÓëÀûÓÃ, 2019,39(6):1-7.

[±¾ÎÄÒýÓÃ: 1]

[ Wang L. Considerations on strategic non-metallic mineral resources
[J]. Conservation and Utilization of Mineral Resources, 2019,39(6):1-7.]

[±¾ÎÄÒýÓÃ: 1]

ÌƽðÈÙ, Ñî×Úϲ, ÖÜƽ, µÈ. ¹úÍâ¹Ø¼ü¿ó²úÕ½ÂÔÑо¿½øÕ¹¼°ÆäÆôʾ
[J]. µØÖÊͨ±¨, 2014,33(9):1445-1453.

[±¾ÎÄÒýÓÃ: 1]

[ Tang J R, Yang Z X, Zhou P, et al. The progress in the strategic study of critical minerals and its implications
[J]. Geological Bulletin of China, 2014,33(9):1445-1453.]

[±¾ÎÄÒýÓÃ: 1]

ÍõµÇºì. ¹Ø¼ü¿ó²úµÄÑо¿ÒâÒå¡¢¿óÖÖÀ嶨¡¢×ÊÔ´ÊôÐÔ¡¢ÕÒ¿ó½øÕ¹¡¢´æÔÚÎÊÌâ¼°Ö÷¹¥·½Ïò
[J]. µØÖÊѧ±¨, 2019,93(6):1189-1209.

[±¾ÎÄÒýÓÃ: 3]

[ Wang D H. Study on critical mineral resources: Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation
[J]. Acta Geologica Sinica, 2019,93(6):1189-1209.]

[±¾ÎÄÒýÓÃ: 3]

ÕÅËùÐø, Áõ²®¶÷, ÂíÅóÁÖ. ÃÀ¹ú¹Ø¼ü¿ó²úÕ½ÂÔµ÷Õû¶ÔÎÒ¹úµÄÏà¹ØÆôʾ
[J]. Öйú¹úÍÁ×ÊÔ´¾­¼Ã, 2019,32(7):38-45.

[±¾ÎÄÒýÓÃ: 1]

[ Zhang S X, Liu B E, Ma P L. The enlightenment of the strategic adjustment of key minerals in the United States to Our country
[J]. Natural Resource Economics of China, 2019, (7):38-45.]

[±¾ÎÄÒýÓÃ: 1]

Gulley A L, Nassar N T, Xun S. China, the United States, and competition for resources that enable emerging technologies
[J]. Proceedings of the National Academy of Sciences, 2018,115(16):4111-4115.

DOI:10.1073/pnas.1717152115URL [±¾ÎÄÒýÓÃ: 1]

¹ù¼Ñ, Ò×¼ÌÄþ, Íõ»Û. È«ÇòÖ÷ÒªÕ½ÂÔÐÔ¿ó²úÃû¼ÆÀ¼ÛÒòËضԱÈÑо¿
[J]. ÏÖ´ú¿óÒµ, 2018,34(12):1-5.

[±¾ÎÄÒýÓÃ: 1]

[ Guo J, Yi J N, Wang H. Comparative study on evaluation factors of global major strategic mineral resources lists
[J]. Modern Mining, 2018,34(12):1-5.]

[±¾ÎÄÒýÓÃ: 1]

ë¾°ÎÄ, Ñî×Úϲ, л¹ðÇà, µÈ. ¹Ø¼ü¿ó²ú: ¹ú¼Ê¶¯ÏòÓë˼¿¼
[J]. ¿ó´²µØÖÊ, 2019,38(4):689-698.

[±¾ÎÄÒýÓÃ: 1]

[ Mao J W, Yang Z X, Xie G Q, et al. Critical minerals: International trend and thinking
[J]. Mineral Deposits, 2019,38(4):689-698.]

[±¾ÎÄÒýÓÃ: 1]

Íõ°²½¨, Íõ¸ßÉÐ, µËÏéÕ÷, µÈ. ÐÂʱ´úÖйúÕ½ÂÔÐԹؼü¿ó²ú×ÊÔ´°²È«Óë¹ÜÀí
[J]. Öйú¿Æѧ»ù½ð, 2019,33(2):31-38.

[±¾ÎÄÒýÓÃ: 1]

[ Wang A J, Wang G S, Deng X Z, et al. Security and management of China¡¯s critical mineral resources in the new era
[J]. Bulletin of National Natural Science Foundation of China, 2019,33(2):31-38.]

[±¾ÎÄÒýÓÃ: 1]

µÔÃ÷¹ú, Î⸣Ԫ, ºúÈðÖÒ, µÈ. Õ½ÂÔÐԹؼü½ðÊô¿ó²ú×ÊÔ´: ÏÖ×´ÓëÎÊÌâ
[J]. Öйú¿Æѧ»ù½ð, 2019,33(2):106-111.

[±¾ÎÄÒýÓÃ: 1]

[ Zhai M G, Wu F Y, Hu R Z, et al. Critical metal mineral resources: Current research status and scientific issues
[J]. Bulletin of National Natural Science Foundation of China, 2019,33(2):106-111.]

[±¾ÎÄÒýÓÃ: 1]

Nassar N T, Graedel T E, Harper E M. By-product metals are technologically essential but have problematic supply
[J]. Science Advances, 2015, DOI: 10.1126/sciadv.1400180.

DOI:10.1126/sciadv.abb1219URLPMID:33028519 [±¾ÎÄÒýÓÃ: 1]
Electrified solid/liquid interfaces are the key to many physicochemical processes in a myriad of areas including electrochemistry and colloid science. With tremendous efforts devoted to this topic, it is unexpected that molecular-level understanding of electric double layers is still lacking. Particularly, it is perplexing why compact Helmholtz layers often show bell-shaped differential capacitances on metal electrodes, as this would suggest a negative capacitance in some layer of interface water. Here, we report state-of-the-art ab initio molecular dynamics simulations of electrified Pt(111)/water interfaces, aiming at unraveling the structure and capacitive behavior of interface water. Our calculation reproduces the bell-shaped differential Helmholtz capacitance and shows that the interface water follows the Frumkin adsorption isotherm when varying the electrode potential, leading to a peculiar negative capacitive response. Our work provides valuable insight into the structure and capacitance of interface water, which can help understand important processes in electrocatalysis and energy storage in supercapacitors.

Grandell L, Lehtil A, Kivinen M, et al. Role of critical metals in the future markets of clean energy technologies
[J]. Renewable Energy, 2016,95:53-62.

DOI:10.1016/j.renene.2016.03.102URL [±¾ÎÄÒýÓÃ: 2]

Vidal O, Rostom F, Fran?ois C, et al. Global trends in metal consumption and supply: The raw material-energy nexus
[J]. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 2017,13(5):319-324.

[±¾ÎÄÒýÓÃ: 1]

Choi C H, Eun J, Cao J J, et al. Global strategic level supply planning of materials critical to clean energy technologies: A case study on indium
[J]. Energy, 2018,147:950-964.

DOI:10.1016/j.energy.2018.01.063URL [±¾ÎÄÒýÓÃ: 1]

ÀîÅô·É, Ñ»Ô, ÇþÉ÷Äþ, µÈ. Ï¡Óпó²ú×ÊÔ´µÄÕ½ÂÔÆÀ¹À: »ùÓÚÕ½ÂÔÐÔÐÂÐ˲úÒµ·¢Õ¹µÄÊÓ½Ç
[J]. Öйú¹¤Òµ¾­¼Ã, 2014, (7):44-57.

[±¾ÎÄÒýÓÃ: 3]

[ Li P F, Yang D H, Qu S N, et al. A strategic assessment of rare minerals: Based on the perspective of strategic emerging industries development
[J]. China Industrial Economics, 2014, (7):44-57.]

[±¾ÎÄÒýÓÃ: 3]

Han H, Geng Y, Tate J E, et al. Securing platinum-group metals for transport low-carbon transition
[J]. One Earth, 2019,1(1):117-125.

DOI:10.1016/j.oneear.2019.08.012URL [±¾ÎÄÒýÓÃ: 1]

Pieronni M P, Mcaloone T, Pigosso D A C. Business model innovation for circular economy and sustainability: A review of approaches
[J]. Journal of Cleaner Production, 2019,215:198-216.

DOI:10.1016/j.jclepro.2019.01.036URL [±¾ÎÄÒýÓÃ: 1]

Hao H, Geng Y, Tate J E, et al. Impact of transport electrification on critical metal sustainability with a focus on the heavy-duty segment
[J]. Nature Communications, 2019,10(1):1-7.

DOI:10.1038/s41467-018-07882-8URLPMID:30602773 [±¾ÎÄÒýÓÃ: 1]
Wave-particle duality is an inherent peculiarity of the quantum world. The double-slit experiment has been frequently used for understanding different aspects of this fundamental concept. The occurrence of interference rests on the lack of which-way information and on the absence of decoherence mechanisms, which could scramble the wave fronts. Here, we report on the observation of two-center interference in the molecular-frame photoelectron momentum distribution upon ionization of the neon dimer by a strong laser field. Postselection of ions, which are measured in coincidence with electrons, allows choosing the symmetry of the residual ion, leading to observation of both, gerade and ungerade, types of interference.

Hotelling H. The economics of exhaustible resources
[J]. Bulletin of Mathematical Biology, 1931,39(1-2):137-175.

[±¾ÎÄÒýÓÃ: 2]

Yano J, Muroi T, Sakai S I. Rare earth element recovery potentials from end-of-life hybrid electric vehicle components in 2010-2030
[J]. Journal of Material Cycles and Waste Management, 2016,18(4):655-664.

DOI:10.1007/s10163-015-0360-4URL [±¾ÎÄÒýÓÃ: 3]

Hartwick J M, Dasgupta P S, Heal G M. Economic theory and exhaustible resources
[J]. The Canadian Journal of Economics/Revue Canadienne d¡¯Economique, 1981,14(2):355-358.

[±¾ÎÄÒýÓÃ: 1]

Áºæ©æ©, Ñ»Ô. ¿ó²ú×ÊÔ´Ïû·ÑÓë²úÒµ½á¹¹ÑݽøµÄÑо¿×ÛÊö
[J]. ×ÊÔ´¿Æѧ, 2018,40(3):535-546.

DOI:10.18402/resci.2018.03.08URL [±¾ÎÄÒýÓÃ: 1]
ÊÀ½ç·¶Î§À´¿´,ÐÂÒ»ÂֿƼ¼¸ïÃüºÍ¹¤Òµ¸ïÃüÅÐËÆð,ʵÌå¾­¼ÃÏòÂÌÉ«»¯¡¢ÖÇÄÜ»¯¡¢·þÎñ»¯×ªÐÍ·¢Õ¹½«¶ÔÈ«Çò¿ó²ú×ÊÔ´Ïû·Ñ×ÜÁ¿ºÍ½á¹¹²úÉúÉîÔ¶µÄÓ°Ïì,¿ªÕ¹ÊÀ½ç¼°Öйú¿ó²ú×ÊÔ´Ïû·Ñ×ÜÁ¿¡¢½á¹¹µÄ±ä¶¯Ç÷ÊƼ°ÆäÓ°ÏìÒòËصÈÏà¹ØÑо¿¾ßÓÐÖØ´óµÄÀíÂÛºÍÏÖʵÒâÒå¡£±¾ÎÄ´Ó¿ó²ú×ÊÔ´Ïû·Ñ¶Ô²úÒµ½á¹¹ÑݽøµÄÓ°Ïì¡¢¹¤Òµ»¯¶Ô¿ó²ú×ÊÔ´Ïû·Ñ×ÜÁ¿ºÍ½á¹¹±ä¶¯µÄ×÷ÓÃÒÔ¼°Ñо¿·½·¨Èý¸ö·½Ãæ¶ÔÒÑÓÐÑо¿³É¹û½øÐÐÁËÊáÀí¡£×ÛÊö·¢ÏÖÒÑÓÐÑо¿³É¹û¶ÔÓÚÖ§³ÅÕ½ÂÔÐÔÐÂÐ˲úÒµ·¢Õ¹µÄ¹Ø¼üÏ¡ÓнðÊôÏû·ÑµÄÑо¿²»×ã,ͬʱºöÊÓÁ˼¼Êõ´´Ðºͻ·¾³±£»¤¶Ô¿ó²ú×ÊÔ´Ïû·ÑµÄÓ°Ïì¡£¼øÓÚÖйúÓë·¢´ï¹ú¼ÒµÄ¹¤Òµ»¯Â·¾¶²»Í¬,½ñºóӦǿ»¯¶ÔºóÆð¹¤Òµ»¯´ó¹ú¿ó²ú×ÊÔ´Ïû·Ñ¹æÂɵÄ̽Ë÷,¾«×¼¿Ì»­Ô­²ÄÁÏ¿â×ÈÄù×ÈÇúÏß,¿ÆѧÑÐÅкͽÒʾ¼¼Êõ´´ÐºÍÂÌÉ«·¢Õ¹¶Ô¿ó²ú×ÊÔ´Ïû·ÑµÄÓ°Ïì,´Ó¶ø¸üºÃµØΪÐÂʱ´ú¿ó²ú×ÊÔ´¿ª·¢ÀûÓÃÕ½ÂÔµ÷ÕûÌṩÀíÂÛºÍʵ֤֧³Å¡£
[ Liang S S, Yang D H. A review of mineral resource consumption and industrial structure evolution
[J]. Resources Science, 2018,40(3):535-546.]

[±¾ÎÄÒýÓÃ: 1]

Áõ¶«ÁØ, ÕÅ¿¡Èð. ÎÒ¹úÄÜÔ´Ïû·ÑÐèÇóµÄʱ±äµ¯ÐÔ·ÖÎö
[J]. ÖйúÈË¿Ú¡¤×ÊÔ´Óë»·¾³, 2010,20(2):92-97.

[±¾ÎÄÒýÓÃ: 1]

[ Liu D L, Zhang J R. Time varying elasticity of energy consumption demand
[J]. China Population, Resources and Environment, 2010,20(2):92-97.]

[±¾ÎÄÒýÓÃ: 1]

Weinzettel J, Kovanda J. Structural decomposition analysis of raw material consumption
[J]. Journal of Industrial Ecology, 2011,15(6):893-907.

DOI:10.1111/j.1530-9290.2011.00378.xURL [±¾ÎÄÒýÓÃ: 1]
The aim of this article is to quantify the drivers for the changes in raw material consumption (domestic material consumption expressed in the form of all materials extracted and used in the production phase) in terms of technology, which refers to the concept of sustainable production; the product structure of final demand, which refers to the concept of sustainable consumption; and the volume of final demand, which is related to economic growth. We also aim to determine to what extent the technological development and a shift in product structure of the final demand compensate for the growth in final consumption volume. Therefore, we apply structural decomposition analysis (SDA) to the change in raw material consumption (RMC) of the Czech Republic between 2000 and 2007. To present the study in a broader context, we also show other material flow indicators for the Czech Republic for 2000 and 2007.

Song Y, Huang J B, Zhang Y J, et al. Drivers of metal consumption in China: An input- output structural decomposition analysis
[J]. Resources Policy, 2019,63:101421.

DOI:10.1016/j.resourpol.2019.101421URL [±¾ÎÄÒýÓÃ: 1]

ÍõË«Ó¢, À, ÍõȺΰ. »ùÓÚLMDIÖ¸Êý·Ö½âµÄÖйúʯÓÍÏû·ÑÓ°ÏìÒòËØ·ÖÎö
[J]. ×ÊÔ´¿Æѧ, 2011,33(4):759-765.

URL [±¾ÎÄÒýÓÃ: 1]
ʯÓÍÏû·ÑÊÇÄÜÔ´Ïû·ÑµÄÖØÒª×é³É²¿·Ö¡£ÎªÈ«Ãæ·ÖÎöÎÒ¹úʯÓÍÏû·ÑÁ¿±ä»¯Çé¿ö¼°ÆäÓ°ÏìÒòËØ£¬±¾ÎÄÀûÓÃLMDIÖ¸Êý·Ö½â·¨½«Ó°ÏìʯÓÍÏû·ÑÔö³¤µÄÒòËØ·Ö½âΪ»¯Ê¯ÄܺĽṹЧӦ¡¢·ÇÇå½àÄܺÄЧӦ¡¢ÄÜÔ´Ç¿¶ÈЧӦºÍ¾­¼Ã¹æģЧӦËĸö²¿·Ö¡£·Ö½â½á¹û±íÃ÷£¬¾­¼Ã¹æģЧӦÊÇÔì³ÉÎÒ¹úʯÓÍÏû·ÑÔö³¤µÄÖ÷ÒªÔ­Òò£»³ý¸ö±ðÄê·Ý»òÊ¡ÇøÍ⣬ÎÒ¹úÄÜÔ´Ç¿¶ÈÖðÄê½µµÍ£¬Çå½àÄÜÔ´Ïû·Ñ±ÈÀýÎȲ½Ôö³¤£¬ÄÜÔ´½á¹¹Ö𲽸ÄÉÆ£¬ÎÒ¹úʯÓ͹©Ðèì¶ÜÇ÷ÓÚ»ººÍ¡£
[ Wang S Y, Li D, Wang Q W. Analysis of factors affecting China¡¯s oil consumption based on LMDI
[J]. Resources Science, 2011,33(4):759-765.]

[±¾ÎÄÒýÓÃ: 1]

Du K, Lin B. Understanding the rapid growth of China¡¯s energy consumption: A comprehensive decomposition framework
[J]. Energy, 2015,90:570-577.

DOI:10.1016/j.energy.2015.07.079URL [±¾ÎÄÒýÓÃ: 1]

Wang C. Decomposing energy productivity change: A distance function approach
[J]. Energy, 2007,32(8):1326-1333.

DOI:10.1016/j.energy.2006.10.001URL [±¾ÎÄÒýÓÃ: 1]
AbstractBy using output distance functions, this paper decomposes energy productivity change into several components: effects of the changes in the ratios of non-energy inputs to energy, energy supply composition, and output composition; technical efficiency change; technological change. We apply this method to decompose energy productivity change in 23 OECD countries between 1980 and 1990. Results show that technological change is the most important source; increase in capital–energy ratio and the growing importance within total energy supply of electricity also contribute to it.]]>

Wood R, Lenzen M. Structural path decomposition
[J]. Energy Economics, 2009,31(3):335-341.

DOI:10.1016/j.eneco.2008.11.003URL [±¾ÎÄÒýÓÃ: 1]
AbstractWe combine Structural Decomposition Analysis (SDA) and Structural Path Analysis (SPA) in order to examine the temporal changes within a full production chain perspective. To our knowledge this work constitutes the first formulation of what we call Structural Path Decomposition (SPD). SPD provides noteworthy insight in two instances: first it extracts and ranks those interactions within an economy that are most important in driving change; second it provides a temporal perspective to standard input–output-based Life-Cycle Assessment. In this paper, we develop the mathematical model of SPD and provide two case studies of the most important changes in structural paths in Australia from 1995 to 2005.]]>

Cheng F F, Yang S L, Zhou K L. Quantile partial adjustment model with application to predicting energy demand in China
[J]. Energy, 2019, DOI: 10.1016/j.energy.2019.116519.

DOI:10.1016/j.energy.2012.01.072URLPMID:23761949 [±¾ÎÄÒýÓÃ: 1]
JTHERGAS is a versatile calculator (implemented in JAVA) to estimate thermodynamic information from two dimensional graphical representations of molecules and radicals involving covalent bonds based on the Benson additivity method. The versatility of JTHERGAS stems from its inherent philosophy that all the fundamental data used in the calculation should be visible, to see exactly where the final values came from, and modifiable, to account for new data that can appear in the literature. The main use of this method is within automatic combustion mechanism generation systems where fast estimation of a large number and variety of chemical species is needed. The implementation strategy is based on meta-atom definitions and substructure analysis allowing a highly extensible database without modification of the core algorithms. Several interfaces for the database and the calculations are provided from terminal line commands, to graphical interfaces to web-services. The first order estimation of thermodynamics is based summing up the contributions of each heavy atom bonding description. Second order corrections due to steric hindrance and ring strain are made. Automatic estimate of contributions due to internal, external and optical symmetries are also made. The thermodynamical data for radicals is calculated by taking the difference due to the lost of a hydrogen radical taking into account changes in symmetry, spin, rotations, vibrations and steric hindrances. The software is public domain and is based on standard libraries such as CDK and CML.

Benjamin N I, Lin B Q. Influencing factors on electricity demand in Chinese nonmetallic mineral products industry: A quantile perspective
[J]. Journal of Cleaner Production, 2020, DOI: 10.1016/j.jclepro.2019.118584.

DOI:10.1016/j.jclepro.2020.123647URLPMID:32834572 [±¾ÎÄÒýÓÃ: 1]
The political upheaval and the civil war in Libya had a painful toll on the operational reliability of the electric energy supply system. With frequent power cuts and crumbling infrastructure, mainly due to the damage inflicted upon several power plants and grid assets as well as the lack of maintenance, many Libyans are left without electricity for several hours a day. As the country has a staggeringly immense potential of solar energy, it is inevitable to exploit such potential, to avert system-wide blackouts. This paper investigates the use of small-scale PV systems in local communities as non-wires alternative (NWA), offering excess energy exchange within local/neighboring microgrids (MGs) for reliable electric power supply. Different combinations of PV/storage/diesel distributed generations (DGs), with grid-interface options, were applied on a case study of a typical dwelling in the Eastern Libyan city of Benghazi. Technical and financial feasibility assessments were carried out to contrast between various supply combinations. Sensitivity analysis of the PV-grid system was also conducted using Net Present Value (NPV) and the payback time indicators to determine the impacts of Feed-in Tariff (FiT) rates, financial incentives, electricity tariff, and inflation rate on the economic viability of the PV grid system. Results show that the PV-grid system has a promising potential under reasonable set of varying system parameters. On top of its social and environmental-friendly advantages, the PV-battery system is found to be more economical when adopted as a standalone NWA solution as compared to the diesel generator option, even at the lowest diesel price. The PV-grid system does not only provide a short-term remedy to the rolling blackouts in Libya but also enhances system operational reliability by providing a NWA to rundown or shattered grid infrastructure, thus bolstering energy provision in residential neighborhoods.

Alam M M, Murad M W. The impacts of economic growth, trade openness and technological progress on renewable energy use in organization for economic cooperation and development countries
[J]. Renewable Energy, 2020,145:382-390.

DOI:10.1016/j.renene.2019.06.054URL [±¾ÎÄÒýÓÃ: 1]

Izatt R M, Izatt S R, Bruening R L, et al. Challenges to achievement of metal sustainability in our high-tech society
[J]. Chemical Society Reviews, 2014,43(8):2451-2475.

DOI:10.1039/c3cs60440cURL [±¾ÎÄÒýÓÃ: 1]
Achievement of sustainability in metal life cycles from mining of virgin ore to consumer and industrial devices to end-of-life products requires greatly increased recycling rates and improved processing of metals using conventional and green chemistry technologies. Electronic and other high-tech products containing precious, toxic, and specialty metals usually have short lifetimes and low recycling rates. Products containing these metals generally are incinerated, discarded as waste in landfills, or dismantled in informal recycling using crude and environmentally irresponsible procedures. Low recycling rates of metals coupled with increasing demand for high-tech products containing them necessitate increased mining with attendant environmental, health, energy, water, and carbon-footprint consequences. In this tutorial review, challenges to achieving metal sustainability, including projected use of urban mining, in present high-tech society are presented; health, environmental, and economic incentives for various government, industry, and public stakeholders to improve metal sustainability are discussed; a case for technical improvements, including use of molecular recognition, in selective metal separation technology, especially for metal recovery from dilute feed stocks is given; and global consequences of continuing on the present path are examined.

ÈÎÔóƽ, Ðܲñ, ËïÍñÓ¨, µÈ. Öйúлù½¨Ñо¿±¨¸æ
[J]. ·¢Õ¹Ñо¿, 2020, (4):4-19.

[±¾ÎÄÒýÓÃ: 2]

[ Ren Z P, Xiong C, Sun W Y, et al. Research report of China¡¯s new infrastructure
[J]. Development Research, 2020, (4):4-19.]

[±¾ÎÄÒýÓÃ: 2]

º«Ó¨. ¼¼Êõ½ø²½¶ÔÎÒ¹ú¾­¼ÃÔö³¤¹±Ï×ÂʵIJⶨ¼°ÊµÖ¤·ÖÎö
[J]. ¾­¼ÃÎÊÌâ̽Ë÷, 2008, (4):11-16.

URL [±¾ÎÄÒýÓÃ: 2]
±¾ÎÄÔÚ¾­¼ÃÔö³¤ÒòËØÑо¿ÀíÂ۵Ļù´¡ÉÏ,ÔËÓÃË÷ÂåÓàÖµ·¨¶ÔÎÒ¹ú¸Ä¸ï¿ª·ÅÒÔÀ´¼¼Êõ½ø²½¶Ô¾­¼ÃÔö³¤µÄ¹±Ï×ÂʽøÐвâËã,Ñ¡È¡1978-2006Äêºê¹Û¾­¼Ã»ù´¡Êý¾Ý×÷Ϊʵ֤Ñù±¾,¶Ô¼ÆËã¹ý³ÌÉæ¼°µÄ¾­¼ÃÖ¸±êºÍ²ÎÊýÓÈÆäÊÇ×ʱ¾´æÁ¿½øÐÐÁËÏ꾡µÄÌÖÂÛ,ͨ¹ý¶Ô¾­¼ÃÔö³¤Èý´óÖØÒªÒòËصķֽâ·ÖÎö,֤ʵ¼¼Êõ½ø²½¶ÔÎÒ¹ú¾­¼ÃÔö³¤µÄÍ»³ö¹±Ï×,´Ó¶øΪ¾­¼Ã³¤ÆÚÔö³¤µÄÒªËØͶÈë½á¹¹µ÷ÕûºÍ·¾¶Ñ¡ÔñÌá³ö¿É¹©½è¼øµÄ·½Ïò.
[ Han Y. The measurement and its substantial evidence analysis for the growth contribution rate of technique progress to Chinese economy
[J]. Inquiry into Economic Issues, 2008, (4):11-16.]

[±¾ÎÄÒýÓÃ: 2]

ÀîÏþÄþ. ¾­¼ÃÔö³¤µÄ¼¼Êõ½ø²½Ð§ÂÊÑо¿: 1978-2010
[J]. ¿Æ¼¼½ø²½Óë¶Ô²ß, 2012,29(7):5-10.

[±¾ÎÄÒýÓÃ: 2]

[ Li X N. Study on technology advancement efficiency of economic growth: 1978-2010
[J]. Science & Technology Progress and Policy, 2012,29(7):5-10.]

[±¾ÎÄÒýÓÃ: 2]

Sun X, Hao H, Liu Z W, et al. The dynamic equilibrium mechanism of regional lithium flow for transportation electrification
[J]. Environmental Science & Technology, 2018,53(2):743-751.

DOI:10.1021/acs.est.8b04288URLPMID:30576596 [±¾ÎÄÒýÓÃ: 2]
To assess changes in the lithium supply chain resulting from the development of the electric vehicle industry and corresponding impacts, this study established a regional dynamic flow model of the entire anthropogenic life cycle of lithium in China from 2000 to 2050. Based on historical data, this model provides output data including production, consumption and international trade of lithium embodied in five types of commodities. Results indicate that the amount of lithium flow in 2050 will be 13-20 times greater than that in 2015. The lithium applied in electric vehicles will account for the largest proportion of in-use stocks of lithium starting in 2022. Lithium recovery will not play a big role in reducing supply pressure until 2030. Comparing all types of lithium-containing commodities, import dependence on minerals will remain the greatest within the temporal boundary. This factor reflects a nonnegligible risk to the supply demand balance considering the high concentration of mineral import structure in China currently. Several policy recommendations are offered for the optimization of China's flow structure. On the demand side, limited capacity expansion and cutting overcapacity of downstream commodities should be under consideration to distribute lithium import more reasonably. On the supply side, the potential oversupply issues caused by low-grade scrap require further development of recycling technology.

Nassar N T, Wilburn D R, Goonan T G. Byproduct metal requirements for U. S. wind and solar photo voltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios
[J]. Applied Energy, 2016,183:1209-1226.

DOI:10.1016/j.apenergy.2016.08.062URL [±¾ÎÄÒýÓÃ: 2]

Arowosola A, Gaustad G. Estimating increasing diversity and dissipative loss of critical metals in the aluminum automotive sector
[J]. Resources, Conservation and Recycling, 2019,150:104382.

DOI:10.1016/j.resconrec.2019.06.016URL [±¾ÎÄÒýÓÃ: 2]

Li X Y, Ge J P, Chen W Q, et al. Scenarios of rare earth elements demand driven by automotive electrification in China: 2018-2030
[J]. Resources, Conservation and Recycling, 2019,145:322-331.

DOI:10.1016/j.resconrec.2019.02.003URL [±¾ÎÄÒýÓÃ: 3]

À, Ð캣³É. ¼¼Êõ½ø²½ÓëÎÒ¹ú²úÒµ½á¹¹µ÷Õû¹ØϵµÄʵ֤Ñо¿
[J]. Èí¿Æѧ, 2011,25(4):8-13.

[±¾ÎÄÒýÓÃ: 1]

[ Li J, Xu H C. Research on the relationship between technical progress and adjustment of industry structure in China
[J]. Soft Science, 2011,25(4):8-13.]

[±¾ÎÄÒýÓÃ: 1]

Langkau S, Luis A T E, Technological change and metal demand over time: What can we learn from the past?
[J]. Sustainable Materials and Technologies, 2018,16:54-59.

DOI:10.1016/j.susmat.2018.02.001URL [±¾ÎÄÒýÓÃ: 1]

Burns L S, Friedmann J. Natural Resources Endowment and Regional Economic Growth
[R]. Springfield: Environment, Development and Public Policy (Cities and Development), 1961.

[±¾ÎÄÒýÓÃ: 1]

³ÂÆäÉ÷, ÓÚãë¼Ó, ÕÅÑÞ·É, µÈ. ×ÊÔ´-²úÒµÑãÐÐʽÑݽø¹æÂÉ
[J]. ×ÊÔ´¿Æѧ, 2015,37(5):871-882.

URL [±¾ÎÄÒýÓÃ: 1]
̽Ѱ¾­¼Ã-²úÒµ-×ÊÔ´Ö®¼äÄÚÔÚ¹æÂÉ,¶Ô°ÑÎÕ×ÊÔ´²úÒµ·¢Õ¹ÂöÂç¡¢Ã÷È·²»Í¬½×¶Î¿ó²ú×ÊÔ´Õ½ÂÔÖصãÒâÒåÖØ´ó¡£±¾ÎÄÊ×ÏÈ×ܽáÁËÒ»¹ú¾­¼ÃÔöËÙ¼°µÚ¶þ²úÒµÕ¼±ÈËæÈ˾ùGDP³ÊÏÈÔö³¤¡¢ºó´ïµ½·åÖµÇøµÄ“ÖÓ”Ðα仯¹æÂÉ,ÇÒ¶þÕß·åÖµÇø¾ùÔÚÈ˾ùGDP 7 500GKÃÀÔª×óÓÒ,Æä´Î,ͨ¹ý·ÖÎöÃÀ¹úºÍÈÕ±¾²úÒµÑݽøÀúÊ·,×ܽáÁ˵ڶþ²úÒµÄÚ²¿“ÑãÐÐʽ”ÑݽøÐòÁС£½øÒ»²½Ìá³öÁË×ÊÔ´-²úÒµ“ÑãÐÐʽ”Ñݽø¹æÂÉ£º¼´ÔÚÀíÏë״̬ÏÂ,¶ÔÓÚµäÐ͵Ä×ß¹¤Òµ»¯·¢Õ¹µÀ·µÄ¹ú¼Ò,Æä²úÒµ²¿ÃÅ»ù±¾×ñÑ­½¨Öþ→Ò±½ð→¼Òµç→»úеÖÆÔì→»¯¹¤ÓëÆû³µ→µçÁ¦→¼ÆËã»ú¡¢µç×Ó→º½Ìì¾ü¹¤→ÆäËûÐÂÐ˲úÒµµÈµÄ“ÑãÐÐʽ”ÑݽøÐòÁÐ,¶øÖ§³ÅÉÏÊö²úÒµ·¢Õ¹µÄ¿ó²ú×ÊÔ´Ïû·Ñ·åÆÚÒ²¾ßÓÐÏàÓ¦µÄ“ÑãÐÐʽ”ÑݽøÐòÁÐ,ÃÀ¹úºÍÈÕ±¾²úÒµ·¢Õ¹Óë×ÊÔ´Ïû·ÑÀúÊ·µÄÏà¹Ø¹Øϵ½ÏºÃµØÑéÖ¤Á˸ùæÂÉ¡£Öйú¹¤Òµ²¿ÃÅÏà¶ÔÍêÉÆ,¿ó²ú×ÊÔ´Ïû·ÑÁìÓòÏà¶Ô¼¯ÖÐ,·ûºÏ×ÊÔ´-²úÒµ“ÑãÐÐʽ”Ñݽø¹æÂÉ,±¾ÎÄ»ùÓڸùæÂɽ¨Á¢ÁËÖйú¿ó²ú×ÊÔ´Ïû·ÑͼÆ×,È·¶¨ÁËÖ÷Òª¿ó²ú×ÊÔ´ÐèÇó·åÖµµ½À´Ê±¼ä¼°·åֵˮƽ¡£
[ Chen Q S, Yu W J, Zhang Y F, et al. Resources-industry ¡®flying geese¡¯ evolving pattern
[J]. Resources Science, 2015,37(5):871-882.]

[±¾ÎÄÒýÓÃ: 1]

ÍõêÆ, »Æ½¡°Ø. Öйú½ðÊô×ÊÔ´Õ½ÂÔÐÎÊƱ仯¼°Æä²úÒµÕþ²ßµ÷ÕûÑо¿
[J]. ÖйúÈË¿Ú¡¤×ÊÔ´Óë»·¾³, 2014,24(171):391-394.

[±¾ÎÄÒýÓÃ: 1]

[ Wang C, Huang J B. The changes in strategic situation of China¡¯s metal resources and the adjustment of the industrial policy
[J]. China Population, Resources and Environment, 2014,24(171):391-394.]

[±¾ÎÄÒýÓÃ: 1]

ÍõêÆ, ËλÛÁá, ¹¢ºì¾ü, µÈ. ¹Ø¼üвÄÁÏ´´ÐÂÍ»ÆƵÄÑо¿»Ø¹ËÓëÕ¹Íû
[J]. ×ÊÔ´¿Æѧ, 2019,41(2):207-218.

DOI:10.18402/resci.2019.02.01URL [±¾ÎÄÒýÓÃ: 1]
“ÖÆÔìÇ¿¹úÃΡ¢²ÄÁϵ±ÏÈÐД¡£¹Ø¼üвÄÁÏÊÇδÀ´¸ßм¼Êõ²úÒµ·¢Õ¹µÄ»ùʯºÍÏȵ¼¡£±¾ÎĴӹؼüвÄÁÏ´´ÐÂÍ»ÆƵÄÑݽø¹æÂÉ¡¢¼¼Êõ´´Ð¡¢ÉÌÒµ»¯Ó¦Óá¢Õ½ÂÔÓëÕþ²ßµÈËĸö·½ÃæÊáÀíÁ˽üÄêÀ´¹Ø¼üвÄÁÏ´´ÐÂÍ»ÆƵÄÑо¿½øÕ¹¡£Ñо¿±íÃ÷,²úÒµÉý¼¶²»¶Ï¶Ô¹Ø¼üвÄÁÏ´´ÐÂÍ»ÆÆÌá³öеÄÒªÇóºÍÌôÕ½,¶ø¹Ø¼üвÄÁϵĴ´ÐÂÍ»ÆÆÒ²»á½øÒ»²½Íƶ¯²úÒµÉý¼¶¡£Îª´Ë,ÊÀ½ç¸÷¹ú¶¼¸ù¾Ý±¾¹úвÄÁÏ·¢Õ¹Çé¿ö·×·×Öƶ¨¹Ø¼üвÄÁÏ´´ÐÂÍ»ÆÆÕ½ÂÔºÍÕþ²ß,Õù¶á¿Æ¼¼ÖƸߵ㡣Ȼ¶ø,¹Ø¼üвÄÁϾßÓГ¸ß¼¼Êõ²»È·¶¨ÐÔ”ºÍ“¸ßÊг¡²»È·¶¨ÐÔ”,Õâ¾ö¶¨Á˹ؼüвÄÁÏ´´ÐÂÍ»ÆÆÃæÁÙ“¼¼Êõ´´Ð”ºÍ“ÉÌÒµ»¯Ó¦ÓÔÁ½´óÄÑÌ⡣δÀ´ÐèÒª¼ÓÇ¿ÖÇÄÜÖÆÔì¼¼Êõ¾­¼Ã·¶Ê½±ä¸ïºÍÖصãÁìÓòÖÇÄÜתÐͶԹؼüвÄÁÏ´´ÐÂÍ»ÆƵÄÓ°Ïì¡¢¹Ø¼üвÄÁϼ¼Êõ´´ÐÂÍ»ÆƵÄʵÏÖ·¾¶¡¢²»Í¬Àà±ð¹Ø¼üвÄÁÏÉÌÒµ»¯Ó¦ÓÃģʽµÄ´´ÐÂÒÔ¼°Õ½ÂÔÓëÕþ²ßµÄ¾«×¼Éè¼ÆµÈ·½ÃæµÄÑо¿¡£
[ Wang C, Song H L, Geng H J, et al. Review and prospect of advanced material innovative development
[J]. Resources Science, 2019,41(2):207-218.]

[±¾ÎÄÒýÓÃ: 1]

Sprecher B, Reemeyer L, Alonso E, et al. How black swan disruptions impact minor metals
[J]. Resources Policy, 2017,54:88-96.

DOI:10.1016/j.resourpol.2017.08.008URL [±¾ÎÄÒýÓÃ: 1]

UNEP. Critical Metals for Future Sustainable Technologies and Their Recycling Potential
[R]. Darmstadt: ?ko-Institut, United Nations Environment Programme, 2009.

[±¾ÎÄÒýÓÃ: 1]

Kim J Y, Shin D O, Chang T, et al. Effect of the dielectric constant of a liquid electrolyte on lithium metal anodes
[J]. Electrochimica Acta, 2019,300:299-305.

DOI:10.1016/j.electacta.2019.01.113URL [±¾ÎÄÒýÓÃ: 1]

Nevin K P, Woodard T L, Franks A E, et al. Microbial electrosynjournal: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
[J]. mBio, 2010, DOI: 10.1128/mBio.00103-10.

DOI:10.1128/mBio.02426-20URLPMID:32994333 [±¾ÎÄÒýÓÃ: 1]
Characterizing the asymptomatic spread of SARS-CoV-2 is important for understanding the COVID-19 pandemic. This study was aimed at determining asymptomatic spread of SARS-CoV-2 in a suburban, Southern U.S. population during a period of state restrictions and physical distancing mandates. This is one of the first published seroprevalence studies from North Carolina and included multicenter, primary care, and emergency care facilities serving a low-density, suburban and rural population since description of the North Carolina state index case introducing the SARS-CoV-2 respiratory pathogen to this population. To estimate point seroprevalence of SARS-CoV-2 among asymptomatic individuals over time, two cohort studies were examined. The first cohort study, named ScreenNC, was comprised of outpatient clinics, and the second cohort study, named ScreenNC2, was comprised of inpatients unrelated to COVID-19. Asymptomatic infection by SARS-CoV-2 (with no clinical symptoms) was examined using an Emergency Use Authorization (EUA)-approved antibody test (Abbott) for the presence of SARS-CoV-2 IgG. This assay as performed under CLIA had a reported specificity/sensitivity of 100%/99.6%. ScreenNC identified 24 out of 2,973 (0.8%) positive individuals among asymptomatic participants accessing health care during 28 April to 19 June 2020, which was increasing over time. A separate cohort, ScreenNC2, sampled from 3 March to 4 June 2020, identified 10 out of 1,449 (0.7%) positive participants.IMPORTANCE This study suggests limited but accelerating asymptomatic spread of SARS-CoV-2. Asymptomatic infections, like symptomatic infections, disproportionately affected vulnerable communities in this population, and seroprevalence was higher in African American participants than in White participants. The low, overall prevalence may reflect the success of shelter-in-place mandates at the time this study was performed and of maintaining effective physical distancing practices among suburban populations. Under these public health measures and aggressive case finding, outbreak clusters did not spread into the general population.

L?vik A N, Hagel¨¹ken C, W?ger P. Improving supply security of critical metals: Current developments and research in the EU
[J]. Sustainable Materials and Technologies, 2018,15:9-18.

DOI:10.1016/j.susmat.2018.01.003URL [±¾ÎÄÒýÓÃ: 1]

Nevin K P, Hensley S A, Franks A E, et al. Electrosynjournal of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
[J]. Applied and Environmental Microbiology. 2011,77(9):2882-2886.

DOI:10.1128/AEM.02642-10URL [±¾ÎÄÒýÓÃ: 1]
Microbial electrosynthesis, a process in which microorganisms use electrons derived from electrodes to reduce carbon dioxide to multicarbon, extracellular organic compounds, is a potential strategy for capturing electrical energy in carbon-carbon bonds of readily stored and easily distributed products, such as transportation fuels. To date, only one organism, the acetogen Sporomusa ovata, has been shown to be capable of electrosynthesis. The purpose of this study was to determine if a wider range of microorganisms is capable of this process. Several other acetogenic bacteria, including two other Sporomusa species, Clostridium ljungdahlii, Clostridium aceticum, and Moorella thermoacetica, consumed current with the production of organic acids. In general acetate was the primary product, but 2-oxobutyrate and formate also were formed, with 2-oxobutyrate being the predominant identified product of electrosynthesis by C. aceticum. S. sphaeroides, C. ljungdahlii, and M. thermoacetica had high (> 80%) efficiencies of electrons consumed and recovered in identified products. The acetogen Acetobacterium woodii was unable to consume current. These results expand the known range of microorganisms capable of electrosynthesis, providing multiple options for the further optimization of this process.

Hartmann P, Bender C L, Vracar M, et al. A rechargeable room-temperature sodium superoxide (NaO2) battery
[J]. Nature Materials, 2013,12(3):228-232.

DOI:10.1038/NMAT3486URL [±¾ÎÄÒýÓÃ: 1]

Slade M E. Recent advances in econometric estimation of materials substitution
[J]. Resources Policy, 1981,7(2):103-109.

DOI:10.1016/0301-4207(81)90033-7URL [±¾ÎÄÒýÓÃ: 1]

Íõ°²½¨, Íõ¸ßÉÐ, ÕŽ¨»ª, µÈ. ¿ó²ú×ÊÔ´Óë¹ú¼Ò¾­¼Ã·¢Õ¹[M]. ±±¾©: µØÖʳö°æÉç, 2002.
[±¾ÎÄÒýÓÃ: 1]

[ Wang A J, Wang G S, Zhang J H, et al. Mineral Resources and National Economic Development[M]. Beijing: Geological Publishing House, 2002.]
[±¾ÎÄÒýÓÃ: 1]

ÈÎÖÒ±¦, ÍõÊÀ»¢, ÌÆÓî, µÈ. ¿ó²ú×ÊÔ´ÐèÇó¹ÕµãÀíÂÛÓë·åÖµÔ¤²â
[J]. ×ÔÈ»×ÊԴѧ±¨, 2012,27(9):1480-1489.

DOI:10.11849/zrzyxb.2012.09.005URL [±¾ÎÄÒýÓÃ: 1]
8~50¡Á108 t±ê׼ú;¸ÖÌúÐèÇó¹Õµã½«ÔÚ"Ê®ÈýÎå"ʱÆÚ³öÏÖ,·åֵΪ8¡Á108 t×óÓÒ;Í­ÐèÇó¹Õµã½«ÔÚ"Ê®ÈýÎå"ʱÆÚ³öÏÖ,·åֵΪ900¡Á104 t×óÓÒ;ÂÁÐèÇó¹Õµã½«ÔÚ"Ê®¶þÎå"ʱÆÚ³öÏÖ,·åֵΪ1 600¡Á104~1 700¡Á104 t×óÓÒ¡£]]>
[ Ren Z B, Wang S H, Tang Y, et al. The inflection point theory of mineral resources demand and peak forecast
[J]. Journal of Natural Resources, 2012,27(9):1480-1489.]

[±¾ÎÄÒýÓÃ: 1]

Pauliuk S, Wang T, Muller D B, et al. Moving toward the circular economy: The role of stocks in the Chinese steel cycle
[J]. Environmental Science & Technology, 2012,46(1):148-154.

DOI:10.1021/es201904cURLPMID:22091699 [±¾ÎÄÒýÓÃ: 1]
As the world's largest CO(2) emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic development with environmental protection and sustainable resource use. This work applies dynamic material flow analysis to forecast production, recycling, and iron ore consumption in the Chinese steel cycle until 2100 by using steel services in terms of in-use stock per capita as driver of future development. The whole cycle is modeled to determine possible responses of the steel industry in light of the circular economy concept. If per-capita stock saturates at 8-12 tons as evidence from industrialized countries suggests, consumption may peak between 2015 and 2020, whereupon it is likely to drop by up to 40% until 2050. A slower growing in-use stock could mitigate this peak and hence reduce overcapacity in primary production. Old scrap supply will increase substantially and it could replace up to 80% of iron ore as resource for steel making by 2050. This would require advanced recycling technologies as manufacturers of machinery and transportation equipment would have to shift to secondary steel as well as new capacities in secondary production which could, however, make redundant already existing integrated steel plants.

Ma W, Zhu X, Wang M. Forecasting iron ore import and consumption of China using grey model optimized by particle swarm optimization algorithm
[J]. Resources Policy, 2013,38(4):613-620.

DOI:10.1016/j.resourpol.2013.09.007URL [±¾ÎÄÒýÓÃ: 1]
The iron and steel industry plays a fundamental role in a country's national economy, especially in developing countries. China is the largest iron ore consumption market in the world. However, because of limited domestic iron ore resources, a large proportion of iron ore is imported from other countries. Faced with the conflict between the iron ore supply shortage and the growing demand, it is necessary for the government to predict imports and total consumption. This paper develops a high-precision hybrid model based on grey prediction and rolling mechanism optimized by particle swarm optimization algorithm. We use the China Statistical Yearbook (1996-2011) as our database to test the efficiency and accuracy of the proposed method. According to the experimental results, the proposed new method clearly can improve the prediction accuracy of the original grey model. Future projections have also been done for iron ore imports and total consumption in China in the next five years. (C) 2013 Elsevier Ltd.

ÁõÑÞ·É, ÕÅÑÞ, ÓÚãë¼Ó, µÈ. È«ÇòԭþÐèÇóÔ¤²â¼°ÖйúºÏÀí²úÄÜ·ÖÎö
[J]. ×ÊÔ´¿Æѧ, 2015,37(5):1047-1058.

URL [±¾ÎÄÒýÓÃ: 1]
þ±»ÓþΪ“21ÊÀ¼Í×î¾ß¿ª·¢ºÍÓ¦ÓÃDZÁ¦µÄÂÌÉ«¹¤³Ì²ÄÁÏ”,ÊÇÖØÒªµÄÕ½ÂÔÐÔ½ðÊô²ÄÁÏ¡£±¾ÎÄÔËÓò¿ÃÅ·ÖÎöÔ¤²â·¨,¶ÔÖйú¡¢±±ÃÀ¡¢Å·ÖÞ¡¢ÈÕ±¾µÈÈ«ÇòÖ÷Òª¹ú¼ÒºÍµØÇøԭþÏû·ÑÀúÊ·ºÍδÀ´Ô­Ã¾ÐèÇó½øÐÐÁËϵͳ·ÖÎöºÍÔ¤²â,½á¹û±íÃ÷£ºÎ´À´15ÄêÈ«ÇòԭþÏû·Ñ½«³ÖÐøÔö³¤,2020Äê¡¢2030ÄêÐèÇóÁ¿½«·Ö±ð´ïµ½234ÍòtºÍ303Íòt ;½ÏÄ¿Ç°Ôö¼Ó1.87±¶ºÍ2.72±¶;ÑÇÌ«µØÇø½«³ÉΪȫÇòԭþÐèÇóµÄÖ÷ÒªµØÇø,2020ÄêºÍ2030ÄêÆäÐèÇóÈ«ÇòÕ¼±È½«·Ö±ð´ïµ½58.38%ºÍ68.97%;Öйú½«³ÉΪδÀ´È«ÇòԭþÐèÇóµÄÀ­¶¯Õß,2013-2030ÄêÈ«ÇòԭþÐèÇóÔöÁ¿µÄ78.50%½«À´×ÔÖйú¡£ÒÔÈ«ÇòÐèÇóΪ»ù´¡,½áºÏÈ«ÇòÒ»´ÎºÍ¶þ´Î×ÊÔ´¹©Ó¦ÏÖ×´¼°Î´À´Ç÷ÊÆ,Õë¶Ô¹úÄÚ²úÄÜÑÏÖعýÊ£µÄÎÊÌâ,Ìá³ö2020ÄêºÍ2030Äê,ÖйúԭþºÏÀí²úÄÜ·Ö±ðΪ107~130ÍòtºÍ203~247Íòt¡£½¨Òé¹ú¼ÒÓ¦Ìá¸ßÐÐÒµ×¼Èë±ê×¼,ÌÔÌ­Âäºó²úÄÜ,Ìá¸ßÐÐÒµ¼¯ÖжÈ;ͬʱ¼Ó´óÑз¢Á¦¶È,Ìá¸ßÖйúԭþÉú²úºÍÀûÓÃÁìÓòµÄÈ«Çò¾ºÕùÁ¦¡£
[ Liu Y F, Zhang Y, Yu W J, et al. Analysis and forecast of world primary magnesium demand and reasonable productivity for China
[J]. Resources Science, 2015,37(5):1047-1058.]

[±¾ÎÄÒýÓÃ: 1]

Xuan Y, Yue Q. Forecast of steel demand and the availability of depreciated steel scrap in China
[J]. Resources Conservation & Recycling, 2016,109:1-12.

[±¾ÎÄÒýÓÃ: 1]

Schipper B W, Lin H C, Meloni M A, et al. Estimating global copper demand until 2100 with regression and stock dynamics
[J]. Resources, Conservation and Recycling, 2018,132:28-36.

DOI:10.1016/j.resconrec.2018.01.004URL [±¾ÎÄÒýÓÃ: 1]

ÍõêÆ, ËλÛÁá, ×óÂÌË®, µÈ. ¹ú¼Ò½ðÊô×ÊÔ´°²È«Ñо¿»Ø¹ËÓëÕ¹Íû
[J]. ×ÊÔ´¿Æѧ, 2017,39(5):805-817.

DOI:10.18402/resci.2017.05.01URL [±¾ÎÄÒýÓÃ: 1]
½ðÊô×ÊÔ´ÊǹúÃñ¾­¼Ã½¨ÉèµÄÖØÒªÎïÖÊ»ù´¡,½ðÊô×ÊÔ´°²È«Ê¹عú¼Ò°²È«¡£±¾ÎÄ´ÓÄÚº­»úÀí¡¢Çý¶¯ÒòËØ¡¢ÆÀ¹À·½·¨¡¢Õ½ÂÔÓëÕþ²ßËĸö·½ÃæÊáÀíÁ˽üÄêÀ´¹ú¼Ò½ðÊô×ÊÔ´°²È«Ñо¿½øÕ¹¡£Ñо¿±íÃ÷,¹ú¼Ò½ðÊô×ÊÔ´°²È«º­¸Ç¹©¸ø°²È«¡¢¾­¼Ã°²È«ºÍÉú̬°²È«,Ö÷ÒªÊÜ×ÊÔ´Ù÷¸³¡¢¾­¼Ã·¢Õ¹¡¢¼¼Êõ½ø²½µÈÒòËصÄÓ°Ïì¡£¹ú¼ÒÕ½ÂÔÐÔ½ðÊôµÄ¹Ø¼üÐÔÆÀ¹À·½·¨°üÀ¨¹Ø¼üÐÔ¾ØÕ󡢹ؼüÐÔÖ¸ÊýºÍδÀ´¹©Ð趨Á¿·ÖÎöµÈ;½ðÊô×ÊÔ´ÐèÇóÔ¤²â·½·¨Ö÷ÒªÓÐÇ÷ÊÆÍâÍÆ·¨¡¢×Ô϶øÉÏ·¨ºÍÊýÀíͳ¼Æ·¨µÈ;¹ú¼Ò½ðÊô×ÊÔ´Êг¡ÊÆÁ¦ºÍ¶¨¼ÛȨÆÀ¹À·½·¨Ö÷ÒªÓÐÀÕÄÉÖ¸Êý¡¢HHIÖ¸ÊýÒÔ¼°¾ùºâ²©ÞÄÄ£Ð͵ȡ£ÊÀ½ç¸÷¹ú¶¼¸ù¾Ý±¾¹ú¹úÇé²ÉÈ¡Á˲»Í¬µÄ½ðÊô×ÊÔ´°²È«±£ÕÏÕ½ÂÔºÍÕþ²ß¹¤¾ß¡£Î´À´Ó¦¼ÓÇ¿ÔÚ¹ú¼Ò½ðÊô×ÊÔ´·Ç³£¹æ°²È«»úÀí¡¢Ð¼¼Êõ¸ïÃü¶Ô½ðÊô×ÊÔ´¹©ÐèµÄ³å»÷¡¢¹ú¼ÊóÒ×¹æÔòÒÔ¼°ÖØ´óÕ½ÂÔʵʩ¶Ô¹ú¼Ò½ðÊô×ÊÔ´°²È«µÄÓ°ÏìµÈ·½ÃæµÄÑо¿¡£
[ Wang C, Song H L, Zuo L S, et al. Review and prospects of national metal resource security
[J]. Resources Science, 2017,39(5):805-817.]

[±¾ÎÄÒýÓÃ: 1]

Íõ°²½¨, Íõ¸ßÉÐ, ³ÂÆäÉ÷, µÈ. ÄÜÔ´Óë¹ú¼Ò¾­¼Ã·¢Õ¹[M]. ±±¾©: µØÖʳö°æÉç, 2008.
[±¾ÎÄÒýÓÃ: 2]

[ Wang A J, Wang G S, Chen Q S, et al. Energy and National Economic Development[M]. Beijing: Geology Press, 2008.]
[±¾ÎÄÒýÓÃ: 2]

Íõ°²½¨, Íõ¸ßÉÐ, ³ÂÆäÉ÷, µÈ. ¿ó²ú×ÊÔ´ÐèÇóÀíÂÛÓëÄ£ÐÍÔ¤²â
[J]. µØÇòѧ±¨, 2010,31(2):137-147.

[±¾ÎÄÒýÓÃ: 2]

[ Wang A J, Wang G S, Chen Q S, et al. The mineral resources demand theory and the prediction model
[J]. Acta Geoscientica Sinica, 2010,31(2):137-147.]

[±¾ÎÄÒýÓÃ: 2]

Íõ°²½¨, Íõ¸ßÉÐ, ÖÜ·ïÓ¢. ÄÜÔ´ºÍ¿ó²ú×ÊÔ´Ïû·ÑÔö³¤µÄ¼«ÏÞÓëÖÜÆÚ
[J]. µØÇòѧ±¨, 2017,38(1):3-10.

[±¾ÎÄÒýÓÃ: 2]

[ Wang A J, Wang G S, Zhou F Y. The limits and cycles of the growth of energy and mineral resources consumption
[J]. Acta Geoscientica Sinica, 2017,38(1):3-10.]

[±¾ÎÄÒýÓÃ: 2]

³ÂÆäÉ÷, ÓÚãë¼Ó, ÕÅÑÞ·É, µÈ. µãʯ: δÀ´20ÄêÈ«Çò¿ó²ú×ÊÔ´²úÒµ·¢Õ¹Ñо¿[M]. ±±¾©: ¿Æѧ³ö°æÉç, 2016.
[±¾ÎÄÒýÓÃ: 1]

[ Chen Q S, Yu W J, Zhang Y F, et al. Point Stone: Research on the Development of Global Mineral Resources Industry in the Next 20 Years[M]. Beijing: Science Press, 2016.]
[±¾ÎÄÒýÓÃ: 1]

Elshkaki A, Graedel T E. Dynamic analysis of the global metals flows and stocks in electricity generation technologies
[J]. Journal of Cleaner Production, 2013,59:260-273.

DOI:10.1016/j.jclepro.2013.07.003URL [±¾ÎÄÒýÓÃ: 2]
The demand for energy and consequently the emissions from energy generation have been increasing in recent years at rapid rates, leading to an urgent need for cleaner technologies. Cleaner technologies, however, require scarce resources. This paper analyzes the future development of electricity generation technologies and the metals required for their components, using a multi level dynamic material flow model. The model includes ten electricity generation technologies and the most important factors determining the dynamics of their metals requirement. The analysis is carried out from 1980 through 2050, using two scenarios, termed Market First and Policy First, combined with specific scenarios for the technologies. The results show that no resource problems occur in production capacity or in the availability of resources for wind power technologies in either scenario. In contrast, each photovoltaic solar technology has a constraining metal supply in the Policy First scenario: silver for silicon based technologies, tellurium for cadmium telluride technology, indium for copper indium gallium diselenide, and germanium for amorphous silicon. The model results show that the most critical photovoltaic solar metal in terms of resource availability and production capacity is tellurium. The demand for the base metals aluminium, copper, chromium, nickel, lead, and iron needed for electricity generation technologies can be met in the two scenarios. (C) 2013 Elsevier Ltd.

Bustamante M L, Gaustad G. Challenges in assessment of clean energy supply-chains based on byproduct minerals: A case study of tellurium use in thin film photovoltaics
[J]. Applied Energy, 2014,123:397-414.

DOI:10.1016/j.apenergy.2014.01.065URL [±¾ÎÄÒýÓÃ: 1]
Transitioning to a sustainable energy supply will be critical to meeting future economic and environmental goals. This transition will require optimizing and commercializing a portfolio of new clean energy technologies. However, many promising clean energy technologies are based on materials with inherent risks in their supply; these risks include scarcity, price volatility, criticality, and other potential supply-chain disruptions. Using tellurium use in CdTe photovoltaics as a case study, this paper presents analysis of some of the key challenges associated with modeling byproduct systems (a supply-chain where a key material is actually a byproduct of extraction of another material, copper in the case of tellurium). This work presents a novel modeling approach; the results of the case study are used to identify potential supply risks facing this clean technology, with a unique focus on sensitivity to changes in the preliminary lifecycle stages. Supply-chain sensitivities are connected with direct environmental impacts to frame the implications in a broader sustainability context and to emphasize the future role of recycling. Ultimately, it was shown that if historical supply and demand trends continue, supply gap conditions will emerge before the end of the current decade. However, improvements in byproduct yield, end-use recycling rate, and end-use material intensity exhibit significant leverage to minimize risk in the energy-critical tellurium supply-chain. (C) 2014 Elsevier Ltd.

Cao Z, O¡¯Sullivan C. Tan J, et al. Resourcing the fairytale country with wind power: A dynamic material flow analysis
[J]. Environmental Science & Technology, 2019,53(19):11313-11322.

DOI:10.1021/acs.est.9b03765URLPMID:31455077 [±¾ÎÄÒýÓÃ: 2]
Wind energy is key to addressing the global climate challenge, but its development is subject to potential constraints of finite primary materials. Prior studies on material demand forecasting of wind power development are often limited to a few materials and with low technological resolution, thus hindering a comprehensive understanding of the impact of microengineering parameters on the resource implications of wind energy. In this study, we developed a component-by-component and stock-driven prospective material flow analysis model and used bottom-up data on engineering parameters and wind power capacities to characterize the materials demand and secondary supply potentials of wind energy development in Denmark, a pioneering and leading country in wind power. We also explicitly addressed the uncertainties in the prospective modeling by the means of statistical estimation and sensitivity analysis methods. Our results reveal increasing challenges of materials provision and end-of-life (EoL) management in Denmark's ambitious transition toward 100% renewable energy in the next decades. Harnessing potential secondary resource supply from EoL and extending lifetime could curtail the primary material demand, but they could not fully alleviate the material supply risk. Such a model framework that considers bottom-up engineering parameters with increased precision could be applied to other emerging technologies and help reveal synergies and trade-offs of relevant resource, energy, and climate strategies in the future renewable energy and climate transition.

Manberger A, Stenqvist B. Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development
[J]. Energy Policy, 2018,119:226-241.

DOI:10.1016/j.enpol.2018.04.056URL [±¾ÎÄÒýÓÃ: 2]

Elshkaki A, Shen L. Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications
[J]. Energy, 2019,180:903-917.

DOI:10.1016/j.energy.2019.05.156URL [±¾ÎÄÒýÓÃ: 2]

Wiedmann T O, Schandl H, Moran D. The footprint of using metals: New metrics of consumption and productivity
[J]. Environmental Economics and Policy Studies, 2015,17(3):369-388.

DOI:10.1007/s10018-014-0085-yURL [±¾ÎÄÒýÓÃ: 1]

Nakicenovic N, Swart R. Emission Scenarios
[R]. Cambridge: Cambridge University Press, 2000.

[±¾ÎÄÒýÓÃ: 1]

UNEP. Global Environmental Outlook 4
[R]. Nairobi: Environment for Development, United Nations Environment Programme, 2007.



Greenpeace, EREC. Energy Revolution: A Sustainable World Energy Outlook
[R]. The Netherlands: Greenpeace International, European Renewable Energy Council, 2008.

[±¾ÎÄÒýÓÃ: 1]

Alonso E, Sherman A M, Wallington T J, et al. Evaluating rare earth element availability: A case with revolutionary demand from clean technologies
[J]. Environmental Science & Technology, 2012,46:3406-3414.

DOI:10.1021/es203518dURLPMID:22304002 [±¾ÎÄÒýÓÃ: 1]
The future availability of rare earth elements (REEs) is of concern due to monopolistic supply conditions, environmentally unsustainable mining practices, and rapid demand growth. We present an evaluation of potential future demand scenarios for REEs with a focus on the issue of comining. Many assumptions were made to simplify the analysis, but the scenarios identify some key variables that could affect future rare earth markets and market behavior. Increased use of wind energy and electric vehicles are key elements of a more sustainable future. However, since present technologies for electric vehicles and wind turbines rely heavily on dysprosium (Dy) and neodymium (Nd), in rare-earth magnets, future adoption of these technologies may result in large and disproportionate increases in the demand for these two elements. For this study, upper and lower bound usage projections for REE in these applications were developed to evaluate the state of future REE supply availability. In the absence of efficient reuse and recycling or the development of technologies which use lower amounts of Dy and Nd, following a path consistent with stabilization of atmospheric CO(2) at 450 ppm may lead to an increase of more than 700% and 2600% for Nd and Dy, respectively, over the next 25 years if the present REE needs in automotive and wind applications are representative of future needs.

Hoenderdaal S, Tercero E L, Marscheider W F, et al. Can a dysprosium shortage threaten green energy technologies?
[J]. Energy, 2013,49:344-355.

DOI:10.1016/j.energy.2012.10.043URL [±¾ÎÄÒýÓÃ: 2]
Dysprosium, one of the various rare earth elements, is currently for more than 99% mined in China. As China is reducing its exports, new mining projects outside of China are needed to sustain supply and meet future demands. Dysprosium is mainly used in permanent magnets to retain the magnet's strength at elevated temperatures. Therefore, the use of dysprosium doped permanent magnets is preferred in electric vehicles and direct-drive wind turbines. Based on four scenarios it could be shown that dysprosium demand will probably outstrip supply in the short term (up to 2020). Although new mines are being developed, it takes several years for them to become productive. For the long term it is expected that enough dysprosium oxide is available in the earth crust (which is economically feasible to mine with current dysprosium prices) to fulfil the projected demand of dysprosium up to 2050. Recycling of dysprosium can further secure dysprosium supply in the long term by reducing primary dysprosium use by 35% in 2050. Electric vehicles are likely to play a dominant role in future increases in dysprosium demand. Even with the limited market share in 2011, electric vehicles already contribute to 20% of dysprosium use. (c) 2012 Elsevier Ltd.

Kim J, Guillaume B, Chung J, et al. Critical and precious materials consumption and requirement in wind energy system in the EU 27
[J]. Applied Energy, 2015,139:327-334.

DOI:10.1016/j.apenergy.2014.11.003URL [±¾ÎÄÒýÓÃ: 1]

Pavel C C, Lacal A R, Marmier A, et al. Substitution strategies for reducing the use of rare earths in wind turbines
[J]. Resource Policy, 2017,52:349-357.

DOI:10.1016/j.resourpol.2017.04.010URL [±¾ÎÄÒýÓÃ: 1]

Liu D H, Gao X Y, An H Z, et al. Supply and demand response trends of lithium resources driven by the demand of emerging renewable energy technologies in China
[J]. Resources Conservation & Recycling, 2019,145:311-321.

[±¾ÎÄÒýÓÃ: 2]

Houari Y, Speirs J, Candelise C, et al. A system dynamics model of tellurium availability for CdTe PV
[J]. Progress in Photovoltaics: Research and Applications, 2014,22(1):129-146.

DOI:10.1002/pip.v22.1URL [±¾ÎÄÒýÓÃ: 2]

Tazi N, Kim J, Bouzidi Y, et al. Waste and material flow analysis in the end-of-life wind energy system
[J]. Resources Conservation Recycling, 2019,145:199-207.

DOI:10.1016/j.resconrec.2019.02.039URL [±¾ÎÄÒýÓÃ: 1]

Moreau V, Dos R P, Vuille F. Enough metals? Resource constraints to supply a fully renewable energy system
[J]. Resources, 2019, DOI: 10.3390/resources8010029.

DOI:10.1080/23802359.2016.1197070URLPMID:28367503 [±¾ÎÄÒýÓÃ: 1]
We obtained a complete mitochondrial genome of a skipper butterfly Achalarus lyciades (Hesperiidae, Eudaminae) from next generation sequencing reads. The 15,612 bp mitogenome covers 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and an A+T rich region. Its gene order is typical for mitogenomes of Lepidoptera. Phylogenetic analysis placed A. lyciades as a sister to Lobocla bifasciatus, the only other Eudaminae with available mitogenome.

Fishman T, Graedel T E. Impact of the establishment of US offshore wind power on neodymium flows
[J]. Nat. Sustain, 2019,2:332-338.

DOI:10.1038/s41893-019-0252-zURL [±¾ÎÄÒýÓÃ: 1]

Hertwich E G, Gibon T, Bouman E A, et al. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies
[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112:6277-6282.

DOI:10.1073/pnas.1312753111URLPMID:25288741 [±¾ÎÄÒýÓÃ: 1]
Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11-40 times more copper for photovoltaic systems and 6-14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050.

Imholte D D, Nguyen R T, Vedantam A, et al. An assessment of U. S. rare earth availability for supporting U. S. wind energy growth targets
[J]. Energy Policy, 2018,113:294-305.

DOI:10.1016/j.enpol.2017.11.001URL [±¾ÎÄÒýÓÃ: 1]

Gloser S, Soulier M, Tercero E L A. Dynamic analysis of global copper flows. Global stocks, post consumer material flows, recycling indicators, and uncertainty evaluation
[J]. Environmental Science & Technology, 2013,47(12):6564-6572.

DOI:10.1021/es400069bURLPMID:23725041 [±¾ÎÄÒýÓÃ: 1]
We present a dynamic model of global copper stocks and flows which allows a detailed analysis of recycling efficiencies, copper stocks in use, and dissipated and landfilled copper. The model is based on historical mining and refined copper production data (1910-2010) enhanced by a unique data set of recent global semifinished goods production and copper end-use sectors provided by the copper industry. To enable the consistency of the simulated copper life cycle in terms of a closed mass balance, particularly the matching of recycled metal flows to reported historical annual production data, a method was developed to estimate the yearly global collection rates of end-of-life (postconsumer) scrap. Based on this method, we provide estimates of 8 different recycling indicators over time. The main indicator for the efficiency of global copper recycling from end-of-life (EoL) scrap--the EoL recycling rate--was estimated to be 45% on average, +/- 5% (one standard deviation) due to uncertainty and variability over time in the period 2000-2010. As uncertainties of specific input data--mainly concerning assumptions on end-use lifetimes and their distribution--are high, a sensitivity analysis with regard to the effect of uncertainties in the input data on the calculated recycling indicators was performed. The sensitivity analysis included a stochastic (Monte Carlo) uncertainty evaluation with 10(5) simulation runs.

Mancheri N A, Sprecher B, Deetman S, et al. Resilience in the tantalum supply chain. Resources
[J]. Resources, Conservation and Recycling, 2018,129:56-69.

DOI:10.1016/j.resconrec.2017.10.018URL [±¾ÎÄÒýÓÃ: 1]

Sverdrup H U. Modelling global extraction, supply, price and depletion of the extractable geological resources with the LITHIUM model
[J]. Resources, Conservation and Recycling, 2016,114:112-129.

DOI:10.1016/j.resconrec.2016.07.002URL [±¾ÎÄÒýÓÃ: 1]

ÍõÁÕ, ÆëÖÐÓ¢, ÅË·å. Éç»áÑݽøÖиÖδÀ´Ê¹ÓùæÂÉÔ¤²â¼°Õþ²ß·ÖÎö
[J]. Ô˳ïÓë¹ÜÀí, 2017,26(1):173-181.

[±¾ÎÄÒýÓÃ: 1]

[ Wang L, Qi Z Y, Pan F. Patterns prediction and policy analysis of steel use in societal evolution
[J]. Operations Research and Management Science, 2017,26(1):173-181.]

[±¾ÎÄÒýÓÃ: 1]

Õų¬, Íõèº, ³Âΰǿ, µÈ. Öйú¸ÖÌú³¤ÆÚÐèÇóÄ£Äâ¼°²úÄܹýʣ̬ÊÆÆÀ¹À
[J]. ÖйúÈË¿Ú¡¤×ÊÔ´Óë»·¾³, 2018,28(10):169-176.

[±¾ÎÄÒýÓÃ: 1]

[ Zhang C, Wang T, Chen W Q, et al. Simulation of China¡¯s long-term steel demand and evaluation of the trend of overcapacity of steel industry
[J]. China Population, Resources and Environment, 2018,28(10):169-176.]

[±¾ÎÄÒýÓÃ: 1]

M¨¹ller D B, Wang T, Duval B, et al. Exploring the engine of anthropogenic iron cycles
[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103:16111-16116.

DOI:10.1073/pnas.0603375103URLPMID:17053079 [±¾ÎÄÒýÓÃ: 1]
Stocks of products in use are the pivotal engines that drive anthropogenic metal cycles: They support the lives of people by providing services to them; they are sources for future secondary resources (scrap); and demand for in-use stocks generates demand for metals. Despite their great importance and their impacts on other parts of the metal cycles and the environment, the study of in-use stocks has heretofore been widely neglected. Here we investigate anthropogenic and geogenic iron stocks in the United States (U.S.) by analyzing the iron cycle over the period 1900-2004. Our results show the following. (i) Over the last century, the U.S. iron stock in use increased to 3,200 Tg (million metric tons), which is the same order of magnitude as the remaining U.S. iron stock in identified ores. On a global scale, anthropogenic iron stocks are less significant compared with natural ores, but their relative importance is increasing. (ii) With a perfect recycling system, the U.S. could substitute scrap utilization for domestic mining. (iii) The per-capita in-use iron stock reached saturation at 11-12 metric tons in approximately 1980. This last finding, if applicable to other economies as well, could allow a significant improvement of long-term forecasting of steel demand and scrap availability in emerging market economies and therefore has major implications for resource sustainability, recycling technology, and industrial and governmental policy.

Stamp A, Wager P A, Hellweg S. Linking energy scenarios with metal demand € modeling: The case of indium in CIGS solar cells
[J]. Resources, Conservation and Recycling, 2014,93:156-167.

DOI:10.1016/j.resconrec.2014.10.012URL [±¾ÎÄÒýÓÃ: 1]

Brunner P H, Rechberger H. Practical handbook of material flow analysis
[J]. The International Journal of Life Cycle Assessment, 2004,9(5):337-338.

DOI:10.1007/BF02979426URL [±¾ÎÄÒýÓÃ: 1]

Elshkaki A, Graedel T E, Ciacci L, et al. Resource demand scenarios for the major metals
[J]. Environmental Science & Technology, 2018,52:2491-2497.

DOI:10.1021/acs.est.7b05154URLPMID:29380602 [±¾ÎÄÒýÓÃ: 1]
The growth in metal use in the past few decades raises concern that supplies may be insufficient to meet demands in the future. From the perspective of historical and current use data for seven major metals-iron, manganese, aluminum, copper, nickel, zinc, and lead-we have generated several scenarios of potential metal demand from 2010 to 2050 under alternative patterns of global development. We have also compared those demands with various assessments of potential supply to midcentury. Five conclusions emerge: (1) The calculated demand for each of the seven metals doubles or triples relative to 2010 levels by midcentury; (2) The largest demand increases relate to a scenario in which increasingly equitable values and institutions prevail throughout the world; (3) The metal recycling flows in the scenarios meet only a modest fraction of future metals demand for the next few decades; (4) In the case of copper, zinc, and perhaps lead, supply may be unlikely to meet demand by about midcentury under the current use patterns of the respective metals; (5) Increased rates of demand for metals imply substantial new energy provisioning, leading to increases in overall global energy demand of 21-37%. These results imply that extensive technological transformations and governmental initiatives could be needed over the next several decades in order that regional and global development and associated metal demand are not to be constrained by limited metal supply.

Deetman S, Pauliuk S, Van Vuuren D P, et al. Scenarios for demand growth of metals in electricity generation technologies, cars, and electronic appliances
[J]. Environmental Science & Technology: ES&T, 2018,52(8):4950-4959.

DOI:10.1021/acs.est.7b05549URL [±¾ÎÄÒýÓÃ: 1]

Habib K, Wenzel H. Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling
[J]. Journal of Cleaner Production, 2014,84:348-359.

DOI:10.1016/j.jclepro.2014.04.035URL [±¾ÎÄÒýÓÃ: 1]
The dependency on critical resources like Rare Earth Elements (REEs) has been pronounced as a potential barrier to a wider implementation of emerging renewable energy technologies. This study explores the dependency of such technologies especially wind turbines and electric vehicles along with other background end-uses on two key REEs, i.e. neodymium (Nd) and dysprosium (Dy). Our study reveals that a Business As Usual Development (BAUD) projected primary supply is unable to meet the forecasted demand of Nd and Dy in all the four modelled demand scenarios by 2050. This means that a highly accelerated rate of Nd and Dy mining is unavoidable in order to keep up with the pace of increasing demand from new technologies required in a renewable energy strategy for meeting the climate change challenge. Recycling does not seem to be in a position to close the wide gap between future demand and supply by 2050 mainly due to the long lifetime of key end-use products. However, in the long term, i.e. by 2100, secondary supply from recycling can meet almost 50% of the demand. Moreover, recycling, is found to play major role in reducing the geopolitical aspects of supply risk due to diversification of geographical distribution of supply by 2100. The study suggests that China is very likely to play its dominant role for Dy primary supply in the short-to-medium term future, as 72% of the geological reserves of Dy are in China. Our study indicates that considering the historically proven developments in metal reserve estimates as being analogous for REEs, geological reserves of Nd and Dy will not deplete for many hundred years ahead. Opening of new mines at an accelerated pace remains a supply bottleneck issue in the short-to-medium term future until recycling provides significant secondary supply to reduce the future demand. (C) 2014 Elsevier Ltd.

Martin G, Rentsch L, H?ck M, et al. Lithium market research: Global supply, future demand and price development
[J]. Energy Storage Materials, 2017,6:171-179.

DOI:10.1016/j.ensm.2016.11.004URL [±¾ÎÄÒýÓÃ: 2]

Kucukvar M, Onat N C, Haider M A. Material dependence of national energy development plans: The case for Turkey and United Kingdom
[J]. Journal of Cleaner Production, 2018,200:490-500.

DOI:10.1016/j.jclepro.2018.07.245URL [±¾ÎÄÒýÓÃ: 1]

Watari T, McLellan B C, Ogata S, et al. Analysis of potential for critical metal resource constraints in the international energy agency¡¯s long-term low-carbon energy scenarios
[J]. Minerals, 2018, DOI: 10.3390/min8040156.

DOI:10.3390/min8090413URLPMID:31223499
Vibrational spectroscopies (Fourier Transform Infra Red, FTIR, and Raman) are exceptionally valuable tools for the identification and crystal-chemical study of fibrous minerals, and asbestos amphiboles in particular. Raman spectroscopy has been widely applied in toxicological studies and thus a large corpus of reference data on regulated species is found in the literature. However, FTIR spectroscopy has been mostly used in crystal-chemical studies and very few data are found on asbestos amphiboles. This paper is intended to fill this gap. We report new FTIR data collected on a suite of well-characterized samples of the five regulated amphibole species: anthophyllite, amosite, and crocidolite, provided by the Union for International Cancer Control (UICC) Organization, and tremolite and actinolite, from two well-known occurrences. The data from these reference samples have been augmented by results from additional specimens to clarify some aspects of their spectroscopic features. We show that the FTIR spectra in both the OH-stretching region and in the lattice modes region can be effective for rapid identification of the asbestos type.

Watari T, McLellan B C, Ogata S, et al. Analysis of potential for critical metal resource constraints in the international energy agency¡¯s long-term low-carbon energy scenarios
[J]. Minerals, 2018, DOI: 10.3390/min8040156.

DOI:10.3390/min8090413URLPMID:31223499 [±¾ÎÄÒýÓÃ: 1]
Vibrational spectroscopies (Fourier Transform Infra Red, FTIR, and Raman) are exceptionally valuable tools for the identification and crystal-chemical study of fibrous minerals, and asbestos amphiboles in particular. Raman spectroscopy has been widely applied in toxicological studies and thus a large corpus of reference data on regulated species is found in the literature. However, FTIR spectroscopy has been mostly used in crystal-chemical studies and very few data are found on asbestos amphiboles. This paper is intended to fill this gap. We report new FTIR data collected on a suite of well-characterized samples of the five regulated amphibole species: anthophyllite, amosite, and crocidolite, provided by the Union for International Cancer Control (UICC) Organization, and tremolite and actinolite, from two well-known occurrences. The data from these reference samples have been augmented by results from additional specimens to clarify some aspects of their spectroscopic features. We show that the FTIR spectra in both the OH-stretching region and in the lattice modes region can be effective for rapid identification of the asbestos type.

Candelisea C, Spiersa J F, Gross R J K. Materials availability for thin film (TF) PV technologies development: A real concern?
[J]. Renewable and Sustainable Energy Reviews, 2011,15:4972-4981.

DOI:10.1016/j.rser.2011.06.012URL [±¾ÎÄÒýÓÃ: 1]

Chen Y H, Chen C Y, Lee S C. Technology forecasting and patent strategy of hydrogen energy and fuel cell technologies
[J]. International Journal of Hydrogen Energy, 2011,36(12):6957-6969.

DOI:10.1016/j.ijhydene.2011.03.063URL [±¾ÎÄÒýÓÃ: 1]
This study presents the technological S-curves that integrates the Bibliometric and patent analysis into the Logistic growth curve model for hydrogen energy and fuel cell technologies and identifies the optimal patent strategy for the fuel cell industry, including PEMFC, SOFC, and DMFC/DAFC. Empirical analysis is via an expert survey and Co-word analysis using the United States Patent and Trademark Office database to obtain useful data. Analytical results demonstrate that the S-curves is a highly effective means of quantifying how technology forecasting of cumulative publication patent number. Analytical results also indicate that technologies for generating and storing hydrogen have not yet reached technological maturity; thus, additional R&D funding is needed to accelerate the development of hydrogen technology. Conversely, fuel cell technologies have reached technological maturity, and related patent strategies include freedom to operate, licensing, and niche inventions. The proposed model can be applied to all high-technology cases, and particularly to new clean technologies. The study concludes by outlining the limitations of the proposed model and directions for further research. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd.

Lanzi E, Verdolini E. Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends
[J]. Energy Policy, 2011,39(11):7000-7014.

DOI:10.1016/j.enpol.2011.07.052URL [±¾ÎÄÒýÓÃ: 1]
This paper studies patenting dynamics in efficiency improving electricity generation technologies as an important indicator of innovation activity. We build a novel database of worldwide patent applications in efficiency-improving fossil fuel technologies for electricity generation and then analyse patenting trends over time and across countries. We find that patenting has mostly been stable over time, with a recent decreasing trend. OECD countries represent the top innovators and the top markets for technology. Some non-OECD countries, and particularly China, are also very active in terms of patenting activity in this sector. The majority of patents are first filed in OECD countries and only then in BRIC and other non-OECD countries. BRIC and other non-OECD countries apply for patents that are mostly marketed domestically, but BRIC countries represent important markets for patent duplication of OECD inventions. These results are indicative of significant technology transfer in the field of efficiency-improving technologies for electricity production. (C) 2011 Elsevier Ltd.

Íõ°à°à, ÆëÉÜÖÞ. ÓÐÆ«¼¼Êõ½ø²½¡¢ÒªËØÌæ´úÓëÖйú¹¤ÒµÄÜÔ´Ç¿¶È
[J]. ¾­¼ÃÑо¿, 2014, (2):117-129.

[±¾ÎÄÒýÓÃ: 1]

[ Wang B B, Qi S Z. Biased technological progress, factor substitution and China¡¯s industrial energy intensity
[J]. Economic Research Journal, 2014, (2):117-129.]

[±¾ÎÄÒýÓÃ: 1]

Koh H, Magee C L. A functional approach for studying technological progress: Application to information technology
[J]. Technological Forecasting and Social Change, 2006,73(9):1061-1083.

DOI:10.1016/j.techfore.2006.06.001URL [±¾ÎÄÒýÓÃ: 1]

Saur M I. How methodological issues affect the energy indicator results for different electricity generation technologies
[J]. Energy Policy, 2013,63(6):283-299.

DOI:10.1016/j.enpol.2013.09.005URL [±¾ÎÄÒýÓÃ: 1]

Zhang Y G, Gu Y, Chen X Y, et al. An effective indicator for evaluation of wavelength extending InGaAs photodetector technologies
[J]. Infrared Physics & Technology, 2017,83:45-50.

[±¾ÎÄÒýÓÃ: 1]

Acemoglu D. Directed technical change
[J]. Review of Economic Studies, 2002,69(4):781-809.

DOI:10.1111/roes.2002.69.issue-4URL [±¾ÎÄÒýÓÃ: 1]

Ïà¹Ø»°Ìâ/½ðÊô ¼¼Êõ ×ÊÔ´ ¿ó²ú ¾­¼Ã