删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

技术进步对关键金属矿产需求影响的研究综述

本站小编 Free考研考试/2021-12-29

董雪松,1,2, 黄健柏,1,2, 钟美瑞1,2, 谌金宇1,2, 刘刚3, 宋益41.中南大学商学院,长沙 410083
2.中南大学金属资源战略研究院,长沙 410083
3.南丹麦大学工学院生命周期工程研究中心,欧登塞5230,丹麦
4.中国地质大学(武汉)经济管理学院,武汉430074

A review on the impact of technological progress on critical metal mineral demand

DONG Xuesong,1,2, HUANG Jianbai,1,2, ZHONG Meirui1,2, CHEN Jinyu1,2, LIU Gang3, SONG Yi41. School of Business, Central South University, Changsha 410083, China
2. Institute of Metal Resources Strategy, Central South University, Changsha 410083, China
3. SDU Life Cycle Engineering, Department of Chemical Engineering, Biotechnology, and Environmental Engineering, University of Southern Denmark (SDU), 5230 Odense, Denmark
4. School of Economics and Management, China University of Geosciences (Wuhan), Wuhan 430074, China

通讯作者: 黄健柏,男,湖南临武人,教授,研究方向为资源经济与管理。E-mail: jbhuang@csu.edu.cn

收稿日期:2020-02-17修回日期:2020-08-2网络出版日期:2020-08-25
基金资助:湖南省社会科学基金智库专项项目.19ZWB45
国家自然科学基金重点项目.71633006
国家自然科学基金项目.71874207
国家自然科学基金重大项目.71991484


Received:2020-02-17Revised:2020-08-2Online:2020-08-25
作者简介 About authors
董雪松,女,辽宁营口人,博士生,研究方向为资源经济与管理。E-mail: codenamedxs@csu.edu.cn








摘要
新技术、新材料、新产业的蓬勃发展将对关键金属矿产需求产生深远影响,探讨技术进步如何影响关键金属矿产需求,从而确保关键金属矿产安全,对中国经济迈上高质量发展阶段和实现低碳转型具有一定现实意义。本文对技术进步与关键金属需求关系的文献展开了系统梳理,发现:随着资源安全成为国家重要需求问题,技术进步与关键金属需求预测研究逐渐成为热点,但现有文献量化研究较少且缺乏系统性,鉴于技术进步测度和数据获取等难点,需求预测结果的精准性有待进一步提高。本文提炼了技术进步作用于关键金属需求的3条微观影响机制,即技术进步—经济增长—关键金属、技术进步—产业结构—关键金属、技术进步—替代循环—关键金属,为后续研究提供整体分析框架;提出该领域后续研究重点,即重点关注低碳技术-关键金属、战略新兴产业-关键金属耦合问题,同时解决技术进步在理论模型和计量模型中的测度问题,推进新技术革命背景下关键金属需求预测分析框架的构建。
关键词: 技术进步;关键金属;影响机制;需求预测

Abstract
The emerging technologies, materials, and industries have a profound and increasing impact on the amount and structure of demand of critical metals. Understanding how technological progress affects the demand for critical metals and minerals is of certain practical significance for the high-quality economic transformation, the low-carbon energy transformation, and the critical minerals security in China. This paper conducted a systematic review of the literature on the relationship between technological progress and critical metal demand, and finds that: As resource security has become an important national demand issue, technological progress and critical metal demand prediction have gradually become a hot spot. However, there are few quantitative studies and lack of systematization in existing literature. And the accuracy of demand forecasting results needs to be further improved due to difficulties in measuring technological progress and data acquisition. In this paper, three micro-influencing mechanisms of technological progress on the demand for critical metals were applied: technological progress—economic growth, industrial structure and substitution and recycle—metal minerals, providing an overall analytical framework for subsequent studies. The focus of follow-up research in this field was proposed, that is, focusing on the coupling problem of low-carbon technology—critical metals and strategic emerging industries—critical metals, solving the measurement problem of technological progress in theoretical and econometric model, and promoting the construction of analytical frameworks for critical metal demand forecasting as technological revolution continues in the new era.
Keywords:technological progress;critical metal;mechanism of effect;demand forecasting


PDF (3260KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
董雪松, 黄健柏, 钟美瑞, 谌金宇, 刘刚, 宋益. 技术进步对关键金属矿产需求影响的研究综述. 资源科学[J], 2020, 42(8): 1592-1603 doi:10.18402/resci.2020.08.13
DONG Xuesong, HUANG Jianbai, ZHONG Meirui, CHEN Jinyu, LIU Gang, SONG Yi. A review on the impact of technological progress on critical metal mineral demand. RESOURCES SCIENCE[J], 2020, 42(8): 1592-1603 doi:10.18402/resci.2020.08.13


1 引言

关键矿产是近年美国和欧盟等西方发达国家提出的概念[1],目前国际上尚无统一、严格的定义,在不同国家、不同时段、不同场合会给出不同的动态界定概念。一般来说,所谓关键矿产是指对国家经济和安全至关重要、在人类社会发展到关键阶段发挥关键性作用的紧缺矿种或者优势矿种[2,3,4]。如铜和锡开启了青铜时代,铁开启了农耕文明时代,锗和硅开启了微电子时代和信息时代。而在中国特色社会主义新时代,关键金属矿产则是指对新能源产业、信息技术产业、高端装备制造业等战略性新兴产业发展具有不可替代重大用途的一类金属元素及其矿床的总称[5,6],大致包括稀有、稀土、稀散金属(简称“三稀”金属)、稀贵金属(铂族金属)和部分在中国被称为有色金属而国际上公认属于稀有金属的锑、锡、钴、钛、钒等[3]。各国或机构所认定的关键金属矿产高度重合,反映出各国对第四轮工业革命中诞生的战略性新兴产业和高新技术产业的关注,以及对支撑这些产业发展的关键金属矿产的高度认同[7]

改革开放40年来发展奇迹的创造离不开矿产资源的有力支撑和保障[8]。而关键金属作为支撑中国经济高质量发展、低碳能源转型和高新技术发展的重要矿种,是维系国民经济正常运行、经济调整及产业升级的关键,也是未来增强国家竞争力的关键[3]。当今世界贸易冲突加剧,国际形势面临更大不确定性,发达国家基础金属消费总量普遍达到或接近峰值,关键金属矿产的战略性不断凸显,目前已有多国根据自身新兴产业发展和制造业转型需要,相继发布关键原材料清单,纷纷推出“再工业化”战略,加剧了对关键金属矿产的争夺[9]。同时,中国已进入生态文明发展新阶段,大量消耗资源、不计环境成本的赶超式战略受到抑制,中国目前还处于工业化中后期,未来经济高质量发展和战略性新兴产业发展,仍需要大量关键金属支撑。经济有效性驱动下的资源使用将带来自主创新,由此催生的发展方式和产业结构变化,使得关键金属矿产需求呈现出新的特点。在以上三重作用叠加下的关键金属需求演变规律及其预测成为支撑中国第二个百年目标和经济高质量发展的重大理论课题。

过去的几十年中,越来越多的关键金属被用于支撑技术进步带来的特殊功能[10],尤其是21世纪以来,随着新技术革命的兴起,新能源技术与现代信息、材料和先进制造技术的深度融合依赖多种关键金属材料,进而影响关键金属矿产的需求,并推动其需求结构转型。技术所需的金属,以及技术在金属市场中的预期作用逐渐成为选择技术的一个重要标准[11],而评估关键金属矿产未来的需求更取决于新技术的突破和发展[12]。在这一背景下,关键金属的需求问题被赋予了新的内涵,面临更为复杂的风险与不确定性,受到极大关注[13],技术进步对关键金属矿产需求影响等问题亟待深入探讨。当前,新一轮技术革命迅猛发展,清洁能源与新材料等技术的推广与应用将通过应用拓展或替代效应,对应用端的关键金属需求产生深远影响[14]。如风力发电、燃料电池等技术的突破和应用将影响铂族、稀土等关键金属的需求[15]。太阳能光伏技术中稀土永磁风力发电机的广泛推广对相关11种关键金属的需求有重要影响[16]。此外,重型车领域全面电动化的绿色低碳技术将明显提升以锂为代表的关键金属需求,而铂族金属可以有效支撑未来燃料电池汽车的发展[17,18]。基于此,许多****对基于技术进步的关键金属矿产资源需求预测展开研究。考虑到关键金属技术路线变更快的特点,深入剖析技术进步对其需求的影响机制并精准预测其需求成为两大关键点与难点。

近年来,新技术、新材料、新产业的不断突破和快速发展对关键金属矿产需求产生哪些影响?如何厘清技术进步对关键金属需求的影响机制?怎样基于技术进步提出切实可行的研究框架,对关键金属矿产需求总量和结构进行精准预测?研判这些问题不仅对拓展资源需求理论与方法、丰富资源安全理论具有重要理论价值,而且对提前洞察关键金属矿产需求趋势与演变规律、化解供给约束瓶颈,进而保障国家金属资源安全、支撑中国第二个百年目标和经济高质量发展具有重大现实意义。据此,论文系统梳理国内外相关研究进展,尝试厘清技术进步对关键金属矿产需求的影响机制,进一步提出未来基于技术进步的关键金属需求预测研究的重点方向和分析框架,为构建中国新时代的关键金属资源战略提供理论和实证支撑。

2 技术进步对关键金属矿产需求的影响机制

关键金属作为支撑中国经济和高新技术产业发展的重要矿产资源,技术的不断进步将从供应端和需求端对其产生影响,但两者的作用机理存在显著差别。从供给端来看,以共生矿分离、生物选矿等为代表的采选冶技术进步,直接提高了关键金属的开发利用效率,再循环技术的突破则通过循环效应增加关键金属可回收品种、提高回收效率,影响关键金属矿产资源的供给。如由于锂电池回收技术的突破,二次资源的锂在2030年将对总供应量产生可识别的影响[19]。而从需求端来看,新技术、新材料、新业态的发展通过促进经济增长和产业结构转型升级间接拉动或减少相应关键金属的消费需求,而循环替代技术将直接或间接影响一次关键金属资源需求。两端影响机制的区别在于,供给端的技术进步对关键金属供给存在直接影响,而需求端的技术进步对关键金属需求既有直接影响又有间接影响,其影响机制更为复杂和多层次。下文主要针对这一方面进行详细阐述。

对矿产资源消费的研究始于矿产资源可持续优化利用理论[18]。Hartwick等[20]在此基础上进行拓展,重点研究了矿产资源的有效配置和使用效率。此后,矿产资源需求的影响因素研究引起国内外****的普遍关注[21]。现有研究多采用弹性系数法[22]、结构分解法(SDA)[23,24]、指数分解法(IDA)[25]、生产理论分解方法(PDA)[26,27]、结构路径分解法(SPD)[28]和计量模型法[29,30,31]等,得出了技术进步是影响矿产资源需求的重要因素这一结论。而关键金属的需求问题包括需求总量与结构两大内容,其本质又是经济增长模式和发展阶段问题,讨论技术进步对关键金属需求的影响,就不能不讨论中国的经济增长和产业结构变化,特别是那些不同于国际发展经验、具有中国特色的问题。技术进步主要通过拓展其应用领域和替代循环等渠道对不同关键金属需求产生不同的影响,一方面,技术的迅猛发展拓宽了关键金属的用途,促进其进入新的消费领域,并大幅提高关键金属使用效率,降低消费强度,引起高科技产品消费激增[32],大大增加相关关键金属需求。另一方面,技术进步可以通过改善关键金属资源循环利用效率,或为突破现有应用中关键材料所使用关键金属的替代技术来促进或转移需求,改变其需求总量和结构。

概括而言,技术进步影响关键金属需求的传导机制主要有3种,分别是经济增长效应、产业结构效应和替代循环效应(图1)。

图1

新窗口打开|下载原图ZIP|生成PPT
图1技术进步对关键金属矿产需求的影响路径

Figure 1Pathway of technological progress affecting critical metal mineral demand



2.1 经济增长效应

面对疫情全球大流行、国际金融危机、欧美经济深度衰退、中美贸易摩擦、转型升级等重大挑战,中国经济正迈向高质量发展[33],亟需新的增长点。一个国家或地区经济增长的动力从短期看是来自于资本、劳动力等生产要素的投入,但长期的增长还要依赖于技术进步所带来的全要素生产率的提高,即技术进步是经济增长的源动力[34,35]。如通过大力发展5G、特高压、太阳能和风力发电技术、人工智能、工业互联网、城际高速铁路和城际轨道交通、新能源汽车充电桩等创新型技术,以技术进步稳增长[33]

经济增长会进一步影响关键金属需求。首先,经济增长将作用于战略新兴产业链中各节点,通过产业间的横纵向关系,推动关键矿产上游和下游产业链高端技术的发展,拉动太阳能和风力发电技术、新能源车及充电桩板块等建设规模,进而对所需的镉、碲、铅、锌、钴、锂等关键金属需求产生影 响[36,37,38,39],即经济增长能够反过来推动技术进步,技术进步与经济增长作为相互促进的两个因素,良性互动下,新技术的不断突破将持续影响关键金属的需求。其次,经济增长到一定程度带来的经济结构调整,能够改变关键金属需求。在经济增长初期,投入增加和产能扩张意味着对关键金属资源的过度使用,导致资源和环境的压力。随着经济增长超过一定规模,对增长质量的追求势必带来经济结构调整,而经济结构调整与工业化密切相关,且以稀有稀散金属为主的小矿产,如钽、铌、锂、稀土、钪、锗、镓、铟、铼、碲、砷等不仅是美国、欧盟、英国等发达经济体关注的重点,同时也是与中国未来建设5G通信站、物流网、新能源汽车充电站等新基建密切相关的关键矿产[14],是经济高质量增长和经济结构调整的关键,其需求必然会受到深远影响。

2.2 产业结构效应

技术进步还通过产业结构效应对关键金属需求产生影响。产业结构升级是技术进步的动力,技术进步更是产业结构转型升级的根本途径[40]。总的来说,技术进步从投入结构和最终需求结构两个方面影响产业结构。一方面,随着技术的发展,对初级商品的投入依赖逐渐转移到中间商品和最终商品,初级产品的投入减少,而制成品投入增加,中间商品使用量比重上升,促进了产业结构的转型升级。另一方面,技术进步通过节省劳动力、能源、金属等投入要素的成本,增加对应产品需求,进而改变了最终需求结构,对产业结构产生影响[41]

同时,产业结构效应会严重影响关键金属需求。从整体工业化进程来看,根据工业化发展与资源开发阶段性理论,不同发展阶段下各类资源的作用存在差异。随着工业化的发展,资源的需求结构则会发生显著变化[42]。而关键金属消费贯穿国家工业化始终,其消费趋势随着产业结构变化呈现出鲜明的阶段性特征[43],尤其在进入工业化中后期之后,产业结构高级化,战略性新兴产业的迅猛发展使相关关键金属需求逐步扩大[44,45]。如节能环保产业中的高效节能产业和先进环保产业对镓、稀土金属和稀贵金属有较强的依赖性,新一代信息技术产业的发展将消耗较多锂、锗、镓、铟、铊等关键金属,生物产业将增加钛和稀贵金属的需求,铍、铷、铯、钛、铌、钽、钨、钼和铼等对高端装备制造产业的发展具有重要作用,新材料产业依赖钛和钨,新能源产业的发展和普及将拉动钛、锆、铪和铌等关键金属的需求,此外,以锂、钴、镍、铂族金属等为代表的关键金属矿产,在以纯电动汽车、燃料电池汽车为代表的下一代交通绿色低碳技术中发挥支撑作用[14]

2.3 替代循环效应

随着替代、循环技术的引入,对一些关键金属需求增加,而对另一些关键金属的需求将减少[46]。一方面,技术的突破可以通过对现有应用中的关键金属进行替代来降低其临界性。如2009年UNEP发布的《未来可持续技术所使用的关键金属及其回收潜力》报告指出,电子技术的迭代更新将引致关键金属之间的替代[47]。具体来说,镍氢电池正逐渐被锂离子电池取代,铝掺杂氧化锌对液晶显示器中的铟锡氧化物、电容器中的各种稀土化合物存在替代潜力[48,49]。另一方面,循环技术的发展将使我们在未来用更少的关键金属生成相同的服务,从而促进相关产品的生产,或在产量不变的前提下减少对一次关键金属资源的需求[50],进而降低对外依存度。同时,某种关键金属的循环技术发展可能会鼓励对其他可替代品种的替代行为,间接影响两种关键金属的需求,如过氧化钠电池具有更好的循环性能和能源效率[51,52],在大规模储能方面极具优势,一旦突破现存的技术瓶颈,就将引发对锂的替代倾向。

3 基于技术进步的关键金属矿产需求预测研究进展

探究技术变革背景下关键金属需求变化趋势,对构建中国中长期随技术进步调整的关键金属消费图谱,提前洞察其需求演变规律、化解资源约束瓶颈,保障国家金属资源安全具有重要意义。20世纪初对石油耗竭时间的预测,开辟了矿产资源消费预测研究领域。早期分析金属需求多采用生产函数或需求函数[53]。目前预测大宗金属需求主要采用趋势外推法[54]、BP人工神经网络预测[55]、消费强度存量驱动模型[56]、灰色预测模型[57]、部门或产品预测分析法[58]、IPAT模型[59]、回归和库存动态模型[60]等方法。

考虑到关键金属在多方面有别于大宗金属矿产,具有应用涉及面广、技术路线变更快等特点,已有研究中大宗金属需求预测领域广泛使用的“S”型规律和“倒U”型规律[61,62,63,64,65]等传统方法对关键金属不具有适用性,为能更精准、合理地预测关键金属需求,就要采用区别于大宗金属领域的研究方法和框架。针对关键金属特点,****们基于技术进步对锂、铟、钨、钴、碲等需求预测进行了分类研究[66]。其中一些研究仅评估了一种技术,例如太阳能光伏技术,风力发电技术,新能源汽车技术等[36,67,68]。其他****则处理了一组可再生技术组合[11,69,70],提供有关新兴技术未来发展所需关键金属的有用信息。根据3种间接效应,相关研究主要采用以下路径:技术进步—经济增长—关键金属矿产,技术进步—产业结构—关键金属矿产,技术进步—替代循环—关键金属矿产。

3.1 技术进步—经济增长—关键金属矿产耦合

目前研究大多只对“技术进步—经济增长”或“经济增长—金属矿产”分别进行讨论。韩莹[34]、李晓宁[35]分别通过静态分析和动态模拟实证表明技术进步对经济增长有突出贡献。其他文献以人均GDP衡量经济增长水平,研究发现经济增长是金属消费的主要驱动因素。如王安建等[62,63,64]指出,中国工业化进程中,单种金属消费与人均GDP的关系符合“S”型规律。Wiedmann等[71]对1990—2008年186个国家的金属消费进行了时间序列分析,认为经济合作及发展组织和欧盟27国的金属消费足迹与GDP同步增长。可以看出,现有考虑经济增长效应的研究仅关注了大宗金属领域,且通常将“技术进步—经济增长—金属矿产”割裂开,对技术进步—经济增长—关键金属矿产框架的理论和实证研究不足;用来预测的方法仍停留在适用于大宗金属的“S”型规律和“倒U”型规律,对应用领域集中、技术路线变更快的关键金属。

3.2 技术进步—产业结构—关键金属矿产耦合

从已有研究来看,基于技术进步—产业结构—关键金属矿产耦合的文献较为丰富,研究框架一般遵循“情景设置—定量预测”模式。对于情景设置,目前已经开发了几种全球和区域能源情景方案用来分析能源、水和资源材料系统的未来情况[66,72-74]。这些情景通常考虑全球一体化发展趋势、生态、经济、技术等宏观因素。但在实际应用中,传统的情景方案不能很好地满足需求,需要根据不同研究目的和研究对象来设置。为此,****们设置了具有异质性和针对性的情景[37,38,39],并广泛用作技术进步视角下关键金属需求预测的基础。

对于如何在情景设置的基础上实现关键金属需求预测,现有文献提供了一些可参考的思路。主要方法有基于材料强度的预测方法[75,76,77,78],系统动力学模型(SD)[79,80],物质流分析(MFA)模型[81,82,83],Bass模型[39],基于生命周期评估(LCA)的投入产出方法[84],经济模型[85],或系统动力学与物质流相结 合[86,87]。其中,基于材料强度的预测方法、系统动力学和物质流模型的应用最为广泛。

Yano等[19]基于材料强度预测了到2030年日本混合动力汽车对稀有金属的需求。Houari等[80]使用系统动力学(SD)模型预测将来的太阳能光伏技术部署,首次尝试用动态供需参数解决此类预测问题。Sverdrup[88]构建了一个包括全球锂开采和需求、资源等级、市场和价格等因素的系统动力学模型。Liu等[79]根据锂市场价格、供需差距、进口量和锂消费构成趋势等因素设置情景,在此基础上使用系统动力学模型预测电能存储(EES)和新能源汽车(NEV)中金属锂的需求。这些方法能够定量预测关键金属需求,但其预测主要基于流量指标,忽略了社会经济系统中物质资本存量累积的内在规律,对短期趋势预测有一定适用性,但无法反映社会经济代谢过程中关键金属需求长期演变的非线性特征,缺乏稳健性,预测精度具有较高的不确定性[89,90]

基于此,Müller[91]提出了动态物质流分析方法,通过估算人口及其生活方式来同时确定国家或地区资源需求和废物产生。与其他方法相比,动态物质流模型不是通过反馈回路在内部产生动态变化,而是根据情景方案动态地进行模拟预测[92],系统计算在工业系统中的物质流[93],近年来越来越多地被用于分析新兴技术中的关键金属需求问题[94,95]。其中一些研究分析一种或一组关键金属在其所有最终用途部门中的流动[76],如Habib等[96]根据政策和技术、产品的市场渗透率等因素设置情景方案,预测了风力涡轮机、电动汽车、计算机等终端使用中钕和镝的需求量。Martin等[97]使用类似方法,通过推测锂所有应用领域技术的发展趋势,预测其使用量。而其他研究则分析特定技术或一系列技术的关键金属需求[69,98-100]。如Elshkaki等[70]设定7种能源场景,采用动态物质流模型,通过研究发电技术,分析出能源系统低碳化所需的关键金属及在此过程中由于技术进步使得供需风险降低的关键金属。Cao等[68]进一步收集大量单体风机微观技术数据,对丹麦未来风电技术发展过程中稀有金属钕、镝的需求与循环再生潜力进行了全面预测。

3.3 技术进步—替代循环—关键金属矿产耦合

目前在关键金属需求研究领域中,考虑替代循环因素的文献较少,且研究对象单一,但随着相关技术不断突破与改进,替代循环效应越来越引起关注。如Yano等[19]估计了2010—2030年日本混合动力传动装置中的稀土金属回收潜力。Martin等[97]考虑高端领域和日常应用中的锂替代品,创建了2020年锂的需求预测模型。实证结果预计,在2030年,二次资源的锂将产生可识别的影响,到2050年,将代替25%的一次锂资源需求量,其中最大的回收潜力在于锂电池。

4 结论

本文基于国内外相关研究进展,主要从技术进步对关键金属矿产资源需求影响机制和基于技术进步的关键金属需求预测两个方面,系统全面地梳理了已有研究成果,为进一步将技术进步嵌入关键金属需求预测框架奠定基础。对已有研究现状评价如下:

(1)技术进步对关键金属需求影响研究成果不断涌现。通过分析整理已有成果发现,相关文献多从技术进步测度、技术进步对关键金属需求影响和基于技术进步的关键金属需求预测等方面对该问题进行研究。研究尺度多为全球、国家或某一特定行业。总体看来,国内外****在这一问题上的关注越来越多,相关研究成果丰富了该领域的研究内容、创新了研究框架与方法,对以后的研究具有很好的指导和借鉴意义。但目前对微观产品尺度分析不足,分辨率不高,研究框架没有形成统一的体系,用于预测需求情况的数据和方法存在高度不确定性,还需进一步探讨[101]

(2)技术进步对关键金属需求影响机制尚未统一。目前大多数文献在这一问题上重现状研究而轻演变剖析。随着新一轮技术革命兴起,技术进步对不同关键金属需求产生不同影响,要想突破现有文献对技术进步外生的假定,应具体到技术进步内生于关键金属需求变化的微观作用机制上,考虑经济增长、产业结构和替代循环等效应。在这一方面,现有研究大多只对“技术进步—经济增长”或“经济增长—大宗金属矿产”的关系分别进行讨论,而对技术进步—经济增长—关键金属整体框架的理论和实证研究不足。虽然基于技术进步—产业结构—关键金属矿产耦合的研究越来越多,但大多专注于预测结果,没有对其中的传导路径进行深入剖析。总的来看,技术进步—关键金属的微观作用机制并没有定量化展开,还处于黑箱化。

(3)基于技术进步的关键金属需求预测研究框架有待规范。目前矿产资源需求预测体系较为成熟,已将大部分矿产资源涵盖在内,且研究手段与方法也趋于多样化,研究领域主要集中于大宗矿产消费规律及峰值预测。对基于技术进步的关键金属需求研究主要考虑经济增长、产业结构和替代循环3种效应。前者的研究方法仍停留在传统的“S”型规律和“倒U”型规律,没有充分考虑技术进步的影响,对关键金属需求的预测缺乏针对性。同时,考虑替代循环效应的文献较少,研究对象单一,这与替代循环技术仍处在发展初期有关。而目前在技术进步—产业结构—关键金属矿产耦合方面已经有了很多研究成果,广泛采用的“情景设置—定量预测”研究框架虽然能在一定程度上表征技术进步对未来关键金属需求的影响,但传导路径中各因素的相互作用在很大程度上没有得到体现。由于产业特点、投入情况等因素的行业差异性较大,情景设置选取的设计因素也存在决策单元差异较大的缺陷,具有一定主观性和随意性。且研究中选择的不同预测方法虽然能从不同角度实现预测,但结合研究对象对所选方法的适用性进行论述的文献不多,导致结果存在偏差。此外,预测方法本身存在的缺陷也会导致结果的误差。

5 研究展望

基于文献系统梳理,未来研究可以从以下4个方面深入拓展:

(1)构建技术进步作用关键金属需求预测的整体分析框架。考虑到关键金属应用涉及面广、技术路线变更快等特点,其需求预测采取区别于大宗金属矿产需求预测的理论模型和方法。未来可以沿本文提练的技术进步—经济增长—关键金属矿产、技术进步—产业结构—关键金属矿产、技术进步—替代循环—关键金属矿产3条作用路径继续深化研究,即技术进步—经济增长—主金属—伴生关键金属、技术进步—新材料—关键金属、低碳能源技术—清洁能源产品—关键金属等更加细化的微观路径来分类预测关键金属需求演变趋势。预测理论模型和方法构建方面,应结合研究对象特点和研究目的,基于科学性、客观性等原则,选取能够体现影响传导路径的设定因素和预测模型,结合大数据理念展开预测分析,增强预测结果的政策指导作用。大量研究比较关注技术进步产生的直接影响,但从中长期来看,预测理论模型和方法构建过程中更应考虑各种中介变量或者调节变量的影响,甚至相关政策因素的干预作用。

(2)在产业结构与关键金属关系分析中,重点关注低碳能源技术、战略新兴产业发展对关键金属需求的推动机理。相比传统能源依赖化石、水等资源,清洁能源不管是在种类还是数量方面都依赖更多的关键金属。如节能环保产业将拉大对镓、稀土金属和稀贵金属的需求,而钛、锆、铪和铌等的供需平衡问题也将制约新能源产业的发展。在清洁能源行业政策红利的推动下,清洁能源技术的推广与应用对关键金属需求产生了巨大冲击。如何基于清洁能源技术—关键金属矿产耦合的角度,合理预测关键金属需求变化,并据此推出相关政策,让清洁能源技术能打破资源约束长期持续地运营下去,还需要大量的科学研究和实践探索。未来应该在更加关注清洁能源技术的前提下,继续深入研究技术进步对关键金属需求的影响。

(3)在技术进步与关键金属关系研究中,推进技术进步测度研究,解决实证分析中的难点问题。测度技术进步是需求预测研究中的难点。由于技术进步的特点,直接衡量其质量和数量不够精准,但可以采用相关替代性指标来反映,如专利活动指标和单位价值指标可以针对不同领域,研究技术进步对不同种类关键金属需求的影响[102,103,104,105,106,107]。总的来说,技术进步测度已从同质走向差异化,但仍存在指标选择不全面、没有统一选取依据的缺点。未来技术进步测度应逐渐趋向微观和差异化,并借鉴Acemoglu[108]提出的技术进步偏向内生化的理念和方法,将技术进步内生到关键金属需求框架中。除此之外,还可以通过比较分析不同来源有偏技术进步对关键金属需求影响的差异,估计有偏技术进步对关键金属需求影响的偏弹性,并利用工业行业数据刻画资本、劳动、能源等要素对关键金属需求的动态影响机制,从而预判关键金属需求变化趋势。

(4)在需求预测基础上,为了分析关键金属安全问题,还需从供给端进一步研究技术进步对关键金属矿产的供需影响。新一轮技术革命也将对关键金属的供给端产生重大影响。如以共生矿分离、生物选矿等为代表的采选冶技术进步,提高了复杂多元素共生矿、低品位矿、难选难冶矿的开发利用,以再生铜、再生铝等为代表的金属资源再循环技术增加了金属可回收品种,提高了回收效率。未来可以在技术进步对关键金属供给端冲击这一方面进行下一步研究。以专利地图为基础,从技术活跃度、技术生命周期、技术进化方向3个方面对采选冶技术、替代循环技术进行预测,结合技术扩散理论深入分析这些技术对关键金属资源供给趋势及峰值的影响,阐明作用机理,并突破原有资源供需分析框架中技术不变的假定条件,分析新技术革命对关键金属供给侧的冲击作用。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

汪灵. 战略性非金属矿产的思考
[J]. 矿产保护与利用, 2019,39(6):1-7.

[本文引用: 1]

[ Wang L. Considerations on strategic non-metallic mineral resources
[J]. Conservation and Utilization of Mineral Resources, 2019,39(6):1-7.]

[本文引用: 1]

唐金荣, 杨宗喜, 周平, . 国外关键矿产战略研究进展及其启示
[J]. 地质通报, 2014,33(9):1445-1453.

[本文引用: 1]

[ Tang J R, Yang Z X, Zhou P, et al. The progress in the strategic study of critical minerals and its implications
[J]. Geological Bulletin of China, 2014,33(9):1445-1453.]

[本文引用: 1]

王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向
[J]. 地质学报, 2019,93(6):1189-1209.

[本文引用: 3]

[ Wang D H. Study on critical mineral resources: Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation
[J]. Acta Geologica Sinica, 2019,93(6):1189-1209.]

[本文引用: 3]

张所续, 刘伯恩, 马朋林. 美国关键矿产战略调整对我国的相关启示
[J]. 中国国土资源经济, 2019,32(7):38-45.

[本文引用: 1]

[ Zhang S X, Liu B E, Ma P L. The enlightenment of the strategic adjustment of key minerals in the United States to Our country
[J]. Natural Resource Economics of China, 2019, (7):38-45.]

[本文引用: 1]

Gulley A L, Nassar N T, Xun S. China, the United States, and competition for resources that enable emerging technologies
[J]. Proceedings of the National Academy of Sciences, 2018,115(16):4111-4115.

DOI:10.1073/pnas.1717152115URL [本文引用: 1]

郭佳, 易继宁, 王慧. 全球主要战略性矿产名录评价因素对比研究
[J]. 现代矿业, 2018,34(12):1-5.

[本文引用: 1]

[ Guo J, Yi J N, Wang H. Comparative study on evaluation factors of global major strategic mineral resources lists
[J]. Modern Mining, 2018,34(12):1-5.]

[本文引用: 1]

毛景文, 杨宗喜, 谢桂青, . 关键矿产: 国际动向与思考
[J]. 矿床地质, 2019,38(4):689-698.

[本文引用: 1]

[ Mao J W, Yang Z X, Xie G Q, et al. Critical minerals: International trend and thinking
[J]. Mineral Deposits, 2019,38(4):689-698.]

[本文引用: 1]

王安建, 王高尚, 邓祥征, . 新时代中国战略性关键矿产资源安全与管理
[J]. 中国科学基金, 2019,33(2):31-38.

[本文引用: 1]

[ Wang A J, Wang G S, Deng X Z, et al. Security and management of China’s critical mineral resources in the new era
[J]. Bulletin of National Natural Science Foundation of China, 2019,33(2):31-38.]

[本文引用: 1]

翟明国, 吴福元, 胡瑞忠, . 战略性关键金属矿产资源: 现状与问题
[J]. 中国科学基金, 2019,33(2):106-111.

[本文引用: 1]

[ Zhai M G, Wu F Y, Hu R Z, et al. Critical metal mineral resources: Current research status and scientific issues
[J]. Bulletin of National Natural Science Foundation of China, 2019,33(2):106-111.]

[本文引用: 1]

Nassar N T, Graedel T E, Harper E M. By-product metals are technologically essential but have problematic supply
[J]. Science Advances, 2015, DOI: 10.1126/sciadv.1400180.

DOI:10.1126/sciadv.abb1219URLPMID:33028519 [本文引用: 1]
Electrified solid/liquid interfaces are the key to many physicochemical processes in a myriad of areas including electrochemistry and colloid science. With tremendous efforts devoted to this topic, it is unexpected that molecular-level understanding of electric double layers is still lacking. Particularly, it is perplexing why compact Helmholtz layers often show bell-shaped differential capacitances on metal electrodes, as this would suggest a negative capacitance in some layer of interface water. Here, we report state-of-the-art ab initio molecular dynamics simulations of electrified Pt(111)/water interfaces, aiming at unraveling the structure and capacitive behavior of interface water. Our calculation reproduces the bell-shaped differential Helmholtz capacitance and shows that the interface water follows the Frumkin adsorption isotherm when varying the electrode potential, leading to a peculiar negative capacitive response. Our work provides valuable insight into the structure and capacitance of interface water, which can help understand important processes in electrocatalysis and energy storage in supercapacitors.

Grandell L, Lehtil A, Kivinen M, et al. Role of critical metals in the future markets of clean energy technologies
[J]. Renewable Energy, 2016,95:53-62.

DOI:10.1016/j.renene.2016.03.102URL [本文引用: 2]

Vidal O, Rostom F, Fran?ois C, et al. Global trends in metal consumption and supply: The raw material-energy nexus
[J]. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 2017,13(5):319-324.

[本文引用: 1]

Choi C H, Eun J, Cao J J, et al. Global strategic level supply planning of materials critical to clean energy technologies: A case study on indium
[J]. Energy, 2018,147:950-964.

DOI:10.1016/j.energy.2018.01.063URL [本文引用: 1]

李鹏飞, 杨丹辉, 渠慎宁, . 稀有矿产资源的战略评估: 基于战略性新兴产业发展的视角
[J]. 中国工业经济, 2014, (7):44-57.

[本文引用: 3]

[ Li P F, Yang D H, Qu S N, et al. A strategic assessment of rare minerals: Based on the perspective of strategic emerging industries development
[J]. China Industrial Economics, 2014, (7):44-57.]

[本文引用: 3]

Han H, Geng Y, Tate J E, et al. Securing platinum-group metals for transport low-carbon transition
[J]. One Earth, 2019,1(1):117-125.

DOI:10.1016/j.oneear.2019.08.012URL [本文引用: 1]

Pieronni M P, Mcaloone T, Pigosso D A C. Business model innovation for circular economy and sustainability: A review of approaches
[J]. Journal of Cleaner Production, 2019,215:198-216.

DOI:10.1016/j.jclepro.2019.01.036URL [本文引用: 1]

Hao H, Geng Y, Tate J E, et al. Impact of transport electrification on critical metal sustainability with a focus on the heavy-duty segment
[J]. Nature Communications, 2019,10(1):1-7.

DOI:10.1038/s41467-018-07882-8URLPMID:30602773 [本文引用: 1]
Wave-particle duality is an inherent peculiarity of the quantum world. The double-slit experiment has been frequently used for understanding different aspects of this fundamental concept. The occurrence of interference rests on the lack of which-way information and on the absence of decoherence mechanisms, which could scramble the wave fronts. Here, we report on the observation of two-center interference in the molecular-frame photoelectron momentum distribution upon ionization of the neon dimer by a strong laser field. Postselection of ions, which are measured in coincidence with electrons, allows choosing the symmetry of the residual ion, leading to observation of both, gerade and ungerade, types of interference.

Hotelling H. The economics of exhaustible resources
[J]. Bulletin of Mathematical Biology, 1931,39(1-2):137-175.

[本文引用: 2]

Yano J, Muroi T, Sakai S I. Rare earth element recovery potentials from end-of-life hybrid electric vehicle components in 2010-2030
[J]. Journal of Material Cycles and Waste Management, 2016,18(4):655-664.

DOI:10.1007/s10163-015-0360-4URL [本文引用: 3]

Hartwick J M, Dasgupta P S, Heal G M. Economic theory and exhaustible resources
[J]. The Canadian Journal of Economics/Revue Canadienne d’Economique, 1981,14(2):355-358.

[本文引用: 1]

梁姗姗, 杨丹辉. 矿产资源消费与产业结构演进的研究综述
[J]. 资源科学, 2018,40(3):535-546.

DOI:10.18402/resci.2018.03.08URL [本文引用: 1]
世界范围来看,新一轮科技革命和工业革命蓬勃兴起,实体经济向绿色化、智能化、服务化转型发展将对全球矿产资源消费总量和结构产生深远的影响,开展世界及中国矿产资源消费总量、结构的变动趋势及其影响因素等相关研究具有重大的理论和现实意义。本文从矿产资源消费对产业结构演进的影响、工业化对矿产资源消费总量和结构变动的作用以及研究方法三个方面对已有研究成果进行了梳理。综述发现已有研究成果对于支撑战略性新兴产业发展的关键稀有金属消费的研究不足,同时忽视了技术创新和环境保护对矿产资源消费的影响。鉴于中国与发达国家的工业化路径不同,今后应强化对后起工业化大国矿产资源消费规律的探索,精准刻画原材料库兹涅兹曲线,科学研判和揭示技术创新和绿色发展对矿产资源消费的影响,从而更好地为新时代矿产资源开发利用战略调整提供理论和实证支撑。
[ Liang S S, Yang D H. A review of mineral resource consumption and industrial structure evolution
[J]. Resources Science, 2018,40(3):535-546.]

[本文引用: 1]

刘东霖, 张俊瑞. 我国能源消费需求的时变弹性分析
[J]. 中国人口·资源与环境, 2010,20(2):92-97.

[本文引用: 1]

[ Liu D L, Zhang J R. Time varying elasticity of energy consumption demand
[J]. China Population, Resources and Environment, 2010,20(2):92-97.]

[本文引用: 1]

Weinzettel J, Kovanda J. Structural decomposition analysis of raw material consumption
[J]. Journal of Industrial Ecology, 2011,15(6):893-907.

DOI:10.1111/j.1530-9290.2011.00378.xURL [本文引用: 1]
The aim of this article is to quantify the drivers for the changes in raw material consumption (domestic material consumption expressed in the form of all materials extracted and used in the production phase) in terms of technology, which refers to the concept of sustainable production; the product structure of final demand, which refers to the concept of sustainable consumption; and the volume of final demand, which is related to economic growth. We also aim to determine to what extent the technological development and a shift in product structure of the final demand compensate for the growth in final consumption volume. Therefore, we apply structural decomposition analysis (SDA) to the change in raw material consumption (RMC) of the Czech Republic between 2000 and 2007. To present the study in a broader context, we also show other material flow indicators for the Czech Republic for 2000 and 2007.

Song Y, Huang J B, Zhang Y J, et al. Drivers of metal consumption in China: An input- output structural decomposition analysis
[J]. Resources Policy, 2019,63:101421.

DOI:10.1016/j.resourpol.2019.101421URL [本文引用: 1]

王双英, 李东, 王群伟. 基于LMDI指数分解的中国石油消费影响因素分析
[J]. 资源科学, 2011,33(4):759-765.

URL [本文引用: 1]
石油消费是能源消费的重要组成部分。为全面分析我国石油消费量变化情况及其影响因素,本文利用LMDI指数分解法将影响石油消费增长的因素分解为化石能耗结构效应、非清洁能耗效应、能源强度效应和经济规模效应四个部分。分解结果表明,经济规模效应是造成我国石油消费增长的主要原因;除个别年份或省区外,我国能源强度逐年降低,清洁能源消费比例稳步增长,能源结构逐步改善,我国石油供需矛盾趋于缓和。
[ Wang S Y, Li D, Wang Q W. Analysis of factors affecting China’s oil consumption based on LMDI
[J]. Resources Science, 2011,33(4):759-765.]

[本文引用: 1]

Du K, Lin B. Understanding the rapid growth of China’s energy consumption: A comprehensive decomposition framework
[J]. Energy, 2015,90:570-577.

DOI:10.1016/j.energy.2015.07.079URL [本文引用: 1]

Wang C. Decomposing energy productivity change: A distance function approach
[J]. Energy, 2007,32(8):1326-1333.

DOI:10.1016/j.energy.2006.10.001URL [本文引用: 1]
AbstractBy using output distance functions, this paper decomposes energy productivity change into several components: effects of the changes in the ratios of non-energy inputs to energy, energy supply composition, and output composition; technical efficiency change; technological change. We apply this method to decompose energy productivity change in 23 OECD countries between 1980 and 1990. Results show that technological change is the most important source; increase in capital–energy ratio and the growing importance within total energy supply of electricity also contribute to it.]]>

Wood R, Lenzen M. Structural path decomposition
[J]. Energy Economics, 2009,31(3):335-341.

DOI:10.1016/j.eneco.2008.11.003URL [本文引用: 1]
AbstractWe combine Structural Decomposition Analysis (SDA) and Structural Path Analysis (SPA) in order to examine the temporal changes within a full production chain perspective. To our knowledge this work constitutes the first formulation of what we call Structural Path Decomposition (SPD). SPD provides noteworthy insight in two instances: first it extracts and ranks those interactions within an economy that are most important in driving change; second it provides a temporal perspective to standard input–output-based Life-Cycle Assessment. In this paper, we develop the mathematical model of SPD and provide two case studies of the most important changes in structural paths in Australia from 1995 to 2005.]]>

Cheng F F, Yang S L, Zhou K L. Quantile partial adjustment model with application to predicting energy demand in China
[J]. Energy, 2019, DOI: 10.1016/j.energy.2019.116519.

DOI:10.1016/j.energy.2012.01.072URLPMID:23761949 [本文引用: 1]
JTHERGAS is a versatile calculator (implemented in JAVA) to estimate thermodynamic information from two dimensional graphical representations of molecules and radicals involving covalent bonds based on the Benson additivity method. The versatility of JTHERGAS stems from its inherent philosophy that all the fundamental data used in the calculation should be visible, to see exactly where the final values came from, and modifiable, to account for new data that can appear in the literature. The main use of this method is within automatic combustion mechanism generation systems where fast estimation of a large number and variety of chemical species is needed. The implementation strategy is based on meta-atom definitions and substructure analysis allowing a highly extensible database without modification of the core algorithms. Several interfaces for the database and the calculations are provided from terminal line commands, to graphical interfaces to web-services. The first order estimation of thermodynamics is based summing up the contributions of each heavy atom bonding description. Second order corrections due to steric hindrance and ring strain are made. Automatic estimate of contributions due to internal, external and optical symmetries are also made. The thermodynamical data for radicals is calculated by taking the difference due to the lost of a hydrogen radical taking into account changes in symmetry, spin, rotations, vibrations and steric hindrances. The software is public domain and is based on standard libraries such as CDK and CML.

Benjamin N I, Lin B Q. Influencing factors on electricity demand in Chinese nonmetallic mineral products industry: A quantile perspective
[J]. Journal of Cleaner Production, 2020, DOI: 10.1016/j.jclepro.2019.118584.

DOI:10.1016/j.jclepro.2020.123647URLPMID:32834572 [本文引用: 1]
The political upheaval and the civil war in Libya had a painful toll on the operational reliability of the electric energy supply system. With frequent power cuts and crumbling infrastructure, mainly due to the damage inflicted upon several power plants and grid assets as well as the lack of maintenance, many Libyans are left without electricity for several hours a day. As the country has a staggeringly immense potential of solar energy, it is inevitable to exploit such potential, to avert system-wide blackouts. This paper investigates the use of small-scale PV systems in local communities as non-wires alternative (NWA), offering excess energy exchange within local/neighboring microgrids (MGs) for reliable electric power supply. Different combinations of PV/storage/diesel distributed generations (DGs), with grid-interface options, were applied on a case study of a typical dwelling in the Eastern Libyan city of Benghazi. Technical and financial feasibility assessments were carried out to contrast between various supply combinations. Sensitivity analysis of the PV-grid system was also conducted using Net Present Value (NPV) and the payback time indicators to determine the impacts of Feed-in Tariff (FiT) rates, financial incentives, electricity tariff, and inflation rate on the economic viability of the PV grid system. Results show that the PV-grid system has a promising potential under reasonable set of varying system parameters. On top of its social and environmental-friendly advantages, the PV-battery system is found to be more economical when adopted as a standalone NWA solution as compared to the diesel generator option, even at the lowest diesel price. The PV-grid system does not only provide a short-term remedy to the rolling blackouts in Libya but also enhances system operational reliability by providing a NWA to rundown or shattered grid infrastructure, thus bolstering energy provision in residential neighborhoods.

Alam M M, Murad M W. The impacts of economic growth, trade openness and technological progress on renewable energy use in organization for economic cooperation and development countries
[J]. Renewable Energy, 2020,145:382-390.

DOI:10.1016/j.renene.2019.06.054URL [本文引用: 1]

Izatt R M, Izatt S R, Bruening R L, et al. Challenges to achievement of metal sustainability in our high-tech society
[J]. Chemical Society Reviews, 2014,43(8):2451-2475.

DOI:10.1039/c3cs60440cURL [本文引用: 1]
Achievement of sustainability in metal life cycles from mining of virgin ore to consumer and industrial devices to end-of-life products requires greatly increased recycling rates and improved processing of metals using conventional and green chemistry technologies. Electronic and other high-tech products containing precious, toxic, and specialty metals usually have short lifetimes and low recycling rates. Products containing these metals generally are incinerated, discarded as waste in landfills, or dismantled in informal recycling using crude and environmentally irresponsible procedures. Low recycling rates of metals coupled with increasing demand for high-tech products containing them necessitate increased mining with attendant environmental, health, energy, water, and carbon-footprint consequences. In this tutorial review, challenges to achieving metal sustainability, including projected use of urban mining, in present high-tech society are presented; health, environmental, and economic incentives for various government, industry, and public stakeholders to improve metal sustainability are discussed; a case for technical improvements, including use of molecular recognition, in selective metal separation technology, especially for metal recovery from dilute feed stocks is given; and global consequences of continuing on the present path are examined.

任泽平, 熊柴, 孙婉莹, . 中国新基建研究报告
[J]. 发展研究, 2020, (4):4-19.

[本文引用: 2]

[ Ren Z P, Xiong C, Sun W Y, et al. Research report of China’s new infrastructure
[J]. Development Research, 2020, (4):4-19.]

[本文引用: 2]

韩莹. 技术进步对我国经济增长贡献率的测定及实证分析
[J]. 经济问题探索, 2008, (4):11-16.

URL [本文引用: 2]
本文在经济增长因素研究理论的基础上,运用索洛余值法对我国改革开放以来技术进步对经济增长的贡献率进行测算,选取1978-2006年宏观经济基础数据作为实证样本,对计算过程涉及的经济指标和参数尤其是资本存量进行了详尽的讨论,通过对经济增长三大重要因素的分解分析,证实技术进步对我国经济增长的突出贡献,从而为经济长期增长的要素投入结构调整和路径选择提出可供借鉴的方向.
[ Han Y. The measurement and its substantial evidence analysis for the growth contribution rate of technique progress to Chinese economy
[J]. Inquiry into Economic Issues, 2008, (4):11-16.]

[本文引用: 2]

李晓宁. 经济增长的技术进步效率研究: 1978-2010
[J]. 科技进步与对策, 2012,29(7):5-10.

[本文引用: 2]

[ Li X N. Study on technology advancement efficiency of economic growth: 1978-2010
[J]. Science & Technology Progress and Policy, 2012,29(7):5-10.]

[本文引用: 2]

Sun X, Hao H, Liu Z W, et al. The dynamic equilibrium mechanism of regional lithium flow for transportation electrification
[J]. Environmental Science & Technology, 2018,53(2):743-751.

DOI:10.1021/acs.est.8b04288URLPMID:30576596 [本文引用: 2]
To assess changes in the lithium supply chain resulting from the development of the electric vehicle industry and corresponding impacts, this study established a regional dynamic flow model of the entire anthropogenic life cycle of lithium in China from 2000 to 2050. Based on historical data, this model provides output data including production, consumption and international trade of lithium embodied in five types of commodities. Results indicate that the amount of lithium flow in 2050 will be 13-20 times greater than that in 2015. The lithium applied in electric vehicles will account for the largest proportion of in-use stocks of lithium starting in 2022. Lithium recovery will not play a big role in reducing supply pressure until 2030. Comparing all types of lithium-containing commodities, import dependence on minerals will remain the greatest within the temporal boundary. This factor reflects a nonnegligible risk to the supply demand balance considering the high concentration of mineral import structure in China currently. Several policy recommendations are offered for the optimization of China's flow structure. On the demand side, limited capacity expansion and cutting overcapacity of downstream commodities should be under consideration to distribute lithium import more reasonably. On the supply side, the potential oversupply issues caused by low-grade scrap require further development of recycling technology.

Nassar N T, Wilburn D R, Goonan T G. Byproduct metal requirements for U. S. wind and solar photo voltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios
[J]. Applied Energy, 2016,183:1209-1226.

DOI:10.1016/j.apenergy.2016.08.062URL [本文引用: 2]

Arowosola A, Gaustad G. Estimating increasing diversity and dissipative loss of critical metals in the aluminum automotive sector
[J]. Resources, Conservation and Recycling, 2019,150:104382.

DOI:10.1016/j.resconrec.2019.06.016URL [本文引用: 2]

Li X Y, Ge J P, Chen W Q, et al. Scenarios of rare earth elements demand driven by automotive electrification in China: 2018-2030
[J]. Resources, Conservation and Recycling, 2019,145:322-331.

DOI:10.1016/j.resconrec.2019.02.003URL [本文引用: 3]

李健, 徐海成. 技术进步与我国产业结构调整关系的实证研究
[J]. 软科学, 2011,25(4):8-13.

[本文引用: 1]

[ Li J, Xu H C. Research on the relationship between technical progress and adjustment of industry structure in China
[J]. Soft Science, 2011,25(4):8-13.]

[本文引用: 1]

Langkau S, Luis A T E, Technological change and metal demand over time: What can we learn from the past?
[J]. Sustainable Materials and Technologies, 2018,16:54-59.

DOI:10.1016/j.susmat.2018.02.001URL [本文引用: 1]

Burns L S, Friedmann J. Natural Resources Endowment and Regional Economic Growth
[R]. Springfield: Environment, Development and Public Policy (Cities and Development), 1961.

[本文引用: 1]

陈其慎, 于汶加, 张艳飞, . 资源-产业雁行式演进规律
[J]. 资源科学, 2015,37(5):871-882.

URL [本文引用: 1]
探寻经济-产业-资源之间内在规律,对把握资源产业发展脉络、明确不同阶段矿产资源战略重点意义重大。本文首先总结了一国经济增速及第二产业占比随人均GDP呈先增长、后达到峰值区的“钟”形变化规律,且二者峰值区均在人均GDP 7 500GK美元左右,其次,通过分析美国和日本产业演进历史,总结了第二产业内部“雁行式”演进序列。进一步提出了资源-产业“雁行式”演进规律:即在理想状态下,对于典型的走工业化发展道路的国家,其产业部门基本遵循建筑→冶金→家电→机械制造→化工与汽车→电力→计算机、电子→航天军工→其他新兴产业等的“雁行式”演进序列,而支撑上述产业发展的矿产资源消费峰期也具有相应的“雁行式”演进序列,美国和日本产业发展与资源消费历史的相关关系较好地验证了该规律。中国工业部门相对完善,矿产资源消费领域相对集中,符合资源-产业“雁行式”演进规律,本文基于该规律建立了中国矿产资源消费图谱,确定了主要矿产资源需求峰值到来时间及峰值水平。
[ Chen Q S, Yu W J, Zhang Y F, et al. Resources-industry ‘flying geese’ evolving pattern
[J]. Resources Science, 2015,37(5):871-882.]

[本文引用: 1]

王昶, 黄健柏. 中国金属资源战略形势变化及其产业政策调整研究
[J]. 中国人口·资源与环境, 2014,24(171):391-394.

[本文引用: 1]

[ Wang C, Huang J B. The changes in strategic situation of China’s metal resources and the adjustment of the industrial policy
[J]. China Population, Resources and Environment, 2014,24(171):391-394.]

[本文引用: 1]

王昶, 宋慧玲, 耿红军, . 关键新材料创新突破的研究回顾与展望
[J]. 资源科学, 2019,41(2):207-218.

DOI:10.18402/resci.2019.02.01URL [本文引用: 1]
“制造强国梦、材料当先行”。关键新材料是未来高新技术产业发展的基石和先导。本文从关键新材料创新突破的演进规律、技术创新、商业化应用、战略与政策等四个方面梳理了近年来关键新材料创新突破的研究进展。研究表明,产业升级不断对关键新材料创新突破提出新的要求和挑战,而关键新材料的创新突破也会进一步推动产业升级。为此,世界各国都根据本国新材料发展情况纷纷制定关键新材料创新突破战略和政策,争夺科技制高点。然而,关键新材料具有“高技术不确定性”和“高市场不确定性”,这决定了关键新材料创新突破面临“技术创新”和“商业化应用”两大难题。未来需要加强智能制造技术经济范式变革和重点领域智能转型对关键新材料创新突破的影响、关键新材料技术创新突破的实现路径、不同类别关键新材料商业化应用模式的创新以及战略与政策的精准设计等方面的研究。
[ Wang C, Song H L, Geng H J, et al. Review and prospect of advanced material innovative development
[J]. Resources Science, 2019,41(2):207-218.]

[本文引用: 1]

Sprecher B, Reemeyer L, Alonso E, et al. How black swan disruptions impact minor metals
[J]. Resources Policy, 2017,54:88-96.

DOI:10.1016/j.resourpol.2017.08.008URL [本文引用: 1]

UNEP. Critical Metals for Future Sustainable Technologies and Their Recycling Potential
[R]. Darmstadt: ?ko-Institut, United Nations Environment Programme, 2009.

[本文引用: 1]

Kim J Y, Shin D O, Chang T, et al. Effect of the dielectric constant of a liquid electrolyte on lithium metal anodes
[J]. Electrochimica Acta, 2019,300:299-305.

DOI:10.1016/j.electacta.2019.01.113URL [本文引用: 1]

Nevin K P, Woodard T L, Franks A E, et al. Microbial electrosynjournal: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
[J]. mBio, 2010, DOI: 10.1128/mBio.00103-10.

DOI:10.1128/mBio.02426-20URLPMID:32994333 [本文引用: 1]
Characterizing the asymptomatic spread of SARS-CoV-2 is important for understanding the COVID-19 pandemic. This study was aimed at determining asymptomatic spread of SARS-CoV-2 in a suburban, Southern U.S. population during a period of state restrictions and physical distancing mandates. This is one of the first published seroprevalence studies from North Carolina and included multicenter, primary care, and emergency care facilities serving a low-density, suburban and rural population since description of the North Carolina state index case introducing the SARS-CoV-2 respiratory pathogen to this population. To estimate point seroprevalence of SARS-CoV-2 among asymptomatic individuals over time, two cohort studies were examined. The first cohort study, named ScreenNC, was comprised of outpatient clinics, and the second cohort study, named ScreenNC2, was comprised of inpatients unrelated to COVID-19. Asymptomatic infection by SARS-CoV-2 (with no clinical symptoms) was examined using an Emergency Use Authorization (EUA)-approved antibody test (Abbott) for the presence of SARS-CoV-2 IgG. This assay as performed under CLIA had a reported specificity/sensitivity of 100%/99.6%. ScreenNC identified 24 out of 2,973 (0.8%) positive individuals among asymptomatic participants accessing health care during 28 April to 19 June 2020, which was increasing over time. A separate cohort, ScreenNC2, sampled from 3 March to 4 June 2020, identified 10 out of 1,449 (0.7%) positive participants.IMPORTANCE This study suggests limited but accelerating asymptomatic spread of SARS-CoV-2. Asymptomatic infections, like symptomatic infections, disproportionately affected vulnerable communities in this population, and seroprevalence was higher in African American participants than in White participants. The low, overall prevalence may reflect the success of shelter-in-place mandates at the time this study was performed and of maintaining effective physical distancing practices among suburban populations. Under these public health measures and aggressive case finding, outbreak clusters did not spread into the general population.

L?vik A N, Hagelüken C, W?ger P. Improving supply security of critical metals: Current developments and research in the EU
[J]. Sustainable Materials and Technologies, 2018,15:9-18.

DOI:10.1016/j.susmat.2018.01.003URL [本文引用: 1]

Nevin K P, Hensley S A, Franks A E, et al. Electrosynjournal of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
[J]. Applied and Environmental Microbiology. 2011,77(9):2882-2886.

DOI:10.1128/AEM.02642-10URL [本文引用: 1]
Microbial electrosynthesis, a process in which microorganisms use electrons derived from electrodes to reduce carbon dioxide to multicarbon, extracellular organic compounds, is a potential strategy for capturing electrical energy in carbon-carbon bonds of readily stored and easily distributed products, such as transportation fuels. To date, only one organism, the acetogen Sporomusa ovata, has been shown to be capable of electrosynthesis. The purpose of this study was to determine if a wider range of microorganisms is capable of this process. Several other acetogenic bacteria, including two other Sporomusa species, Clostridium ljungdahlii, Clostridium aceticum, and Moorella thermoacetica, consumed current with the production of organic acids. In general acetate was the primary product, but 2-oxobutyrate and formate also were formed, with 2-oxobutyrate being the predominant identified product of electrosynthesis by C. aceticum. S. sphaeroides, C. ljungdahlii, and M. thermoacetica had high (> 80%) efficiencies of electrons consumed and recovered in identified products. The acetogen Acetobacterium woodii was unable to consume current. These results expand the known range of microorganisms capable of electrosynthesis, providing multiple options for the further optimization of this process.

Hartmann P, Bender C L, Vracar M, et al. A rechargeable room-temperature sodium superoxide (NaO2) battery
[J]. Nature Materials, 2013,12(3):228-232.

DOI:10.1038/NMAT3486URL [本文引用: 1]

Slade M E. Recent advances in econometric estimation of materials substitution
[J]. Resources Policy, 1981,7(2):103-109.

DOI:10.1016/0301-4207(81)90033-7URL [本文引用: 1]

王安建, 王高尚, 张建华, . 矿产资源与国家经济发展[M]. 北京: 地质出版社, 2002.
[本文引用: 1]

[ Wang A J, Wang G S, Zhang J H, et al. Mineral Resources and National Economic Development[M]. Beijing: Geological Publishing House, 2002.]
[本文引用: 1]

任忠宝, 王世虎, 唐宇, . 矿产资源需求拐点理论与峰值预测
[J]. 自然资源学报, 2012,27(9):1480-1489.

DOI:10.11849/zrzyxb.2012.09.005URL [本文引用: 1]
8~50×108 t标准煤;钢铁需求拐点将在"十三五"时期出现,峰值为8×108 t左右;铜需求拐点将在"十三五"时期出现,峰值为900×104 t左右;铝需求拐点将在"十二五"时期出现,峰值为1 600×104~1 700×104 t左右。]]>
[ Ren Z B, Wang S H, Tang Y, et al. The inflection point theory of mineral resources demand and peak forecast
[J]. Journal of Natural Resources, 2012,27(9):1480-1489.]

[本文引用: 1]

Pauliuk S, Wang T, Muller D B, et al. Moving toward the circular economy: The role of stocks in the Chinese steel cycle
[J]. Environmental Science & Technology, 2012,46(1):148-154.

DOI:10.1021/es201904cURLPMID:22091699 [本文引用: 1]
As the world's largest CO(2) emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic development with environmental protection and sustainable resource use. This work applies dynamic material flow analysis to forecast production, recycling, and iron ore consumption in the Chinese steel cycle until 2100 by using steel services in terms of in-use stock per capita as driver of future development. The whole cycle is modeled to determine possible responses of the steel industry in light of the circular economy concept. If per-capita stock saturates at 8-12 tons as evidence from industrialized countries suggests, consumption may peak between 2015 and 2020, whereupon it is likely to drop by up to 40% until 2050. A slower growing in-use stock could mitigate this peak and hence reduce overcapacity in primary production. Old scrap supply will increase substantially and it could replace up to 80% of iron ore as resource for steel making by 2050. This would require advanced recycling technologies as manufacturers of machinery and transportation equipment would have to shift to secondary steel as well as new capacities in secondary production which could, however, make redundant already existing integrated steel plants.

Ma W, Zhu X, Wang M. Forecasting iron ore import and consumption of China using grey model optimized by particle swarm optimization algorithm
[J]. Resources Policy, 2013,38(4):613-620.

DOI:10.1016/j.resourpol.2013.09.007URL [本文引用: 1]
The iron and steel industry plays a fundamental role in a country's national economy, especially in developing countries. China is the largest iron ore consumption market in the world. However, because of limited domestic iron ore resources, a large proportion of iron ore is imported from other countries. Faced with the conflict between the iron ore supply shortage and the growing demand, it is necessary for the government to predict imports and total consumption. This paper develops a high-precision hybrid model based on grey prediction and rolling mechanism optimized by particle swarm optimization algorithm. We use the China Statistical Yearbook (1996-2011) as our database to test the efficiency and accuracy of the proposed method. According to the experimental results, the proposed new method clearly can improve the prediction accuracy of the original grey model. Future projections have also been done for iron ore imports and total consumption in China in the next five years. (C) 2013 Elsevier Ltd.

刘艳飞, 张艳, 于汶加, . 全球原镁需求预测及中国合理产能分析
[J]. 资源科学, 2015,37(5):1047-1058.

URL [本文引用: 1]
镁被誉为“21世纪最具开发和应用潜力的绿色工程材料”,是重要的战略性金属材料。本文运用部门分析预测法,对中国、北美、欧洲、日本等全球主要国家和地区原镁消费历史和未来原镁需求进行了系统分析和预测,结果表明:未来15年全球原镁消费将持续增长,2020年、2030年需求量将分别达到234万t和303万t ;较目前增加1.87倍和2.72倍;亚太地区将成为全球原镁需求的主要地区,2020年和2030年其需求全球占比将分别达到58.38%和68.97%;中国将成为未来全球原镁需求的拉动者,2013-2030年全球原镁需求增量的78.50%将来自中国。以全球需求为基础,结合全球一次和二次资源供应现状及未来趋势,针对国内产能严重过剩的问题,提出2020年和2030年,中国原镁合理产能分别为107~130万t和203~247万t。建议国家应提高行业准入标准,淘汰落后产能,提高行业集中度;同时加大研发力度,提高中国原镁生产和利用领域的全球竞争力。
[ Liu Y F, Zhang Y, Yu W J, et al. Analysis and forecast of world primary magnesium demand and reasonable productivity for China
[J]. Resources Science, 2015,37(5):1047-1058.]

[本文引用: 1]

Xuan Y, Yue Q. Forecast of steel demand and the availability of depreciated steel scrap in China
[J]. Resources Conservation & Recycling, 2016,109:1-12.

[本文引用: 1]

Schipper B W, Lin H C, Meloni M A, et al. Estimating global copper demand until 2100 with regression and stock dynamics
[J]. Resources, Conservation and Recycling, 2018,132:28-36.

DOI:10.1016/j.resconrec.2018.01.004URL [本文引用: 1]

王昶, 宋慧玲, 左绿水, . 国家金属资源安全研究回顾与展望
[J]. 资源科学, 2017,39(5):805-817.

DOI:10.18402/resci.2017.05.01URL [本文引用: 1]
金属资源是国民经济建设的重要物质基础,金属资源安全事关国家安全。本文从内涵机理、驱动因素、评估方法、战略与政策四个方面梳理了近年来国家金属资源安全研究进展。研究表明,国家金属资源安全涵盖供给安全、经济安全和生态安全,主要受资源禀赋、经济发展、技术进步等因素的影响。国家战略性金属的关键性评估方法包括关键性矩阵、关键性指数和未来供需定量分析等;金属资源需求预测方法主要有趋势外推法、自下而上法和数理统计法等;国家金属资源市场势力和定价权评估方法主要有勒纳指数、HHI指数以及均衡博弈模型等。世界各国都根据本国国情采取了不同的金属资源安全保障战略和政策工具。未来应加强在国家金属资源非常规安全机理、新技术革命对金属资源供需的冲击、国际贸易规则以及重大战略实施对国家金属资源安全的影响等方面的研究。
[ Wang C, Song H L, Zuo L S, et al. Review and prospects of national metal resource security
[J]. Resources Science, 2017,39(5):805-817.]

[本文引用: 1]

王安建, 王高尚, 陈其慎, . 能源与国家经济发展[M]. 北京: 地质出版社, 2008.
[本文引用: 2]

[ Wang A J, Wang G S, Chen Q S, et al. Energy and National Economic Development[M]. Beijing: Geology Press, 2008.]
[本文引用: 2]

王安建, 王高尚, 陈其慎, . 矿产资源需求理论与模型预测
[J]. 地球学报, 2010,31(2):137-147.

[本文引用: 2]

[ Wang A J, Wang G S, Chen Q S, et al. The mineral resources demand theory and the prediction model
[J]. Acta Geoscientica Sinica, 2010,31(2):137-147.]

[本文引用: 2]

王安建, 王高尚, 周凤英. 能源和矿产资源消费增长的极限与周期
[J]. 地球学报, 2017,38(1):3-10.

[本文引用: 2]

[ Wang A J, Wang G S, Zhou F Y. The limits and cycles of the growth of energy and mineral resources consumption
[J]. Acta Geoscientica Sinica, 2017,38(1):3-10.]

[本文引用: 2]

陈其慎, 于汶加, 张艳飞, . 点石: 未来20年全球矿产资源产业发展研究[M]. 北京: 科学出版社, 2016.
[本文引用: 1]

[ Chen Q S, Yu W J, Zhang Y F, et al. Point Stone: Research on the Development of Global Mineral Resources Industry in the Next 20 Years[M]. Beijing: Science Press, 2016.]
[本文引用: 1]

Elshkaki A, Graedel T E. Dynamic analysis of the global metals flows and stocks in electricity generation technologies
[J]. Journal of Cleaner Production, 2013,59:260-273.

DOI:10.1016/j.jclepro.2013.07.003URL [本文引用: 2]
The demand for energy and consequently the emissions from energy generation have been increasing in recent years at rapid rates, leading to an urgent need for cleaner technologies. Cleaner technologies, however, require scarce resources. This paper analyzes the future development of electricity generation technologies and the metals required for their components, using a multi level dynamic material flow model. The model includes ten electricity generation technologies and the most important factors determining the dynamics of their metals requirement. The analysis is carried out from 1980 through 2050, using two scenarios, termed Market First and Policy First, combined with specific scenarios for the technologies. The results show that no resource problems occur in production capacity or in the availability of resources for wind power technologies in either scenario. In contrast, each photovoltaic solar technology has a constraining metal supply in the Policy First scenario: silver for silicon based technologies, tellurium for cadmium telluride technology, indium for copper indium gallium diselenide, and germanium for amorphous silicon. The model results show that the most critical photovoltaic solar metal in terms of resource availability and production capacity is tellurium. The demand for the base metals aluminium, copper, chromium, nickel, lead, and iron needed for electricity generation technologies can be met in the two scenarios. (C) 2013 Elsevier Ltd.

Bustamante M L, Gaustad G. Challenges in assessment of clean energy supply-chains based on byproduct minerals: A case study of tellurium use in thin film photovoltaics
[J]. Applied Energy, 2014,123:397-414.

DOI:10.1016/j.apenergy.2014.01.065URL [本文引用: 1]
Transitioning to a sustainable energy supply will be critical to meeting future economic and environmental goals. This transition will require optimizing and commercializing a portfolio of new clean energy technologies. However, many promising clean energy technologies are based on materials with inherent risks in their supply; these risks include scarcity, price volatility, criticality, and other potential supply-chain disruptions. Using tellurium use in CdTe photovoltaics as a case study, this paper presents analysis of some of the key challenges associated with modeling byproduct systems (a supply-chain where a key material is actually a byproduct of extraction of another material, copper in the case of tellurium). This work presents a novel modeling approach; the results of the case study are used to identify potential supply risks facing this clean technology, with a unique focus on sensitivity to changes in the preliminary lifecycle stages. Supply-chain sensitivities are connected with direct environmental impacts to frame the implications in a broader sustainability context and to emphasize the future role of recycling. Ultimately, it was shown that if historical supply and demand trends continue, supply gap conditions will emerge before the end of the current decade. However, improvements in byproduct yield, end-use recycling rate, and end-use material intensity exhibit significant leverage to minimize risk in the energy-critical tellurium supply-chain. (C) 2014 Elsevier Ltd.

Cao Z, O’Sullivan C. Tan J, et al. Resourcing the fairytale country with wind power: A dynamic material flow analysis
[J]. Environmental Science & Technology, 2019,53(19):11313-11322.

DOI:10.1021/acs.est.9b03765URLPMID:31455077 [本文引用: 2]
Wind energy is key to addressing the global climate challenge, but its development is subject to potential constraints of finite primary materials. Prior studies on material demand forecasting of wind power development are often limited to a few materials and with low technological resolution, thus hindering a comprehensive understanding of the impact of microengineering parameters on the resource implications of wind energy. In this study, we developed a component-by-component and stock-driven prospective material flow analysis model and used bottom-up data on engineering parameters and wind power capacities to characterize the materials demand and secondary supply potentials of wind energy development in Denmark, a pioneering and leading country in wind power. We also explicitly addressed the uncertainties in the prospective modeling by the means of statistical estimation and sensitivity analysis methods. Our results reveal increasing challenges of materials provision and end-of-life (EoL) management in Denmark's ambitious transition toward 100% renewable energy in the next decades. Harnessing potential secondary resource supply from EoL and extending lifetime could curtail the primary material demand, but they could not fully alleviate the material supply risk. Such a model framework that considers bottom-up engineering parameters with increased precision could be applied to other emerging technologies and help reveal synergies and trade-offs of relevant resource, energy, and climate strategies in the future renewable energy and climate transition.

Manberger A, Stenqvist B. Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development
[J]. Energy Policy, 2018,119:226-241.

DOI:10.1016/j.enpol.2018.04.056URL [本文引用: 2]

Elshkaki A, Shen L. Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications
[J]. Energy, 2019,180:903-917.

DOI:10.1016/j.energy.2019.05.156URL [本文引用: 2]

Wiedmann T O, Schandl H, Moran D. The footprint of using metals: New metrics of consumption and productivity
[J]. Environmental Economics and Policy Studies, 2015,17(3):369-388.

DOI:10.1007/s10018-014-0085-yURL [本文引用: 1]

Nakicenovic N, Swart R. Emission Scenarios
[R]. Cambridge: Cambridge University Press, 2000.

[本文引用: 1]

UNEP. Global Environmental Outlook 4
[R]. Nairobi: Environment for Development, United Nations Environment Programme, 2007.



Greenpeace, EREC. Energy Revolution: A Sustainable World Energy Outlook
[R]. The Netherlands: Greenpeace International, European Renewable Energy Council, 2008.

[本文引用: 1]

Alonso E, Sherman A M, Wallington T J, et al. Evaluating rare earth element availability: A case with revolutionary demand from clean technologies
[J]. Environmental Science & Technology, 2012,46:3406-3414.

DOI:10.1021/es203518dURLPMID:22304002 [本文引用: 1]
The future availability of rare earth elements (REEs) is of concern due to monopolistic supply conditions, environmentally unsustainable mining practices, and rapid demand growth. We present an evaluation of potential future demand scenarios for REEs with a focus on the issue of comining. Many assumptions were made to simplify the analysis, but the scenarios identify some key variables that could affect future rare earth markets and market behavior. Increased use of wind energy and electric vehicles are key elements of a more sustainable future. However, since present technologies for electric vehicles and wind turbines rely heavily on dysprosium (Dy) and neodymium (Nd), in rare-earth magnets, future adoption of these technologies may result in large and disproportionate increases in the demand for these two elements. For this study, upper and lower bound usage projections for REE in these applications were developed to evaluate the state of future REE supply availability. In the absence of efficient reuse and recycling or the development of technologies which use lower amounts of Dy and Nd, following a path consistent with stabilization of atmospheric CO(2) at 450 ppm may lead to an increase of more than 700% and 2600% for Nd and Dy, respectively, over the next 25 years if the present REE needs in automotive and wind applications are representative of future needs.

Hoenderdaal S, Tercero E L, Marscheider W F, et al. Can a dysprosium shortage threaten green energy technologies?
[J]. Energy, 2013,49:344-355.

DOI:10.1016/j.energy.2012.10.043URL [本文引用: 2]
Dysprosium, one of the various rare earth elements, is currently for more than 99% mined in China. As China is reducing its exports, new mining projects outside of China are needed to sustain supply and meet future demands. Dysprosium is mainly used in permanent magnets to retain the magnet's strength at elevated temperatures. Therefore, the use of dysprosium doped permanent magnets is preferred in electric vehicles and direct-drive wind turbines. Based on four scenarios it could be shown that dysprosium demand will probably outstrip supply in the short term (up to 2020). Although new mines are being developed, it takes several years for them to become productive. For the long term it is expected that enough dysprosium oxide is available in the earth crust (which is economically feasible to mine with current dysprosium prices) to fulfil the projected demand of dysprosium up to 2050. Recycling of dysprosium can further secure dysprosium supply in the long term by reducing primary dysprosium use by 35% in 2050. Electric vehicles are likely to play a dominant role in future increases in dysprosium demand. Even with the limited market share in 2011, electric vehicles already contribute to 20% of dysprosium use. (c) 2012 Elsevier Ltd.

Kim J, Guillaume B, Chung J, et al. Critical and precious materials consumption and requirement in wind energy system in the EU 27
[J]. Applied Energy, 2015,139:327-334.

DOI:10.1016/j.apenergy.2014.11.003URL [本文引用: 1]

Pavel C C, Lacal A R, Marmier A, et al. Substitution strategies for reducing the use of rare earths in wind turbines
[J]. Resource Policy, 2017,52:349-357.

DOI:10.1016/j.resourpol.2017.04.010URL [本文引用: 1]

Liu D H, Gao X Y, An H Z, et al. Supply and demand response trends of lithium resources driven by the demand of emerging renewable energy technologies in China
[J]. Resources Conservation & Recycling, 2019,145:311-321.

[本文引用: 2]

Houari Y, Speirs J, Candelise C, et al. A system dynamics model of tellurium availability for CdTe PV
[J]. Progress in Photovoltaics: Research and Applications, 2014,22(1):129-146.

DOI:10.1002/pip.v22.1URL [本文引用: 2]

Tazi N, Kim J, Bouzidi Y, et al. Waste and material flow analysis in the end-of-life wind energy system
[J]. Resources Conservation Recycling, 2019,145:199-207.

DOI:10.1016/j.resconrec.2019.02.039URL [本文引用: 1]

Moreau V, Dos R P, Vuille F. Enough metals? Resource constraints to supply a fully renewable energy system
[J]. Resources, 2019, DOI: 10.3390/resources8010029.

DOI:10.1080/23802359.2016.1197070URLPMID:28367503 [本文引用: 1]
We obtained a complete mitochondrial genome of a skipper butterfly Achalarus lyciades (Hesperiidae, Eudaminae) from next generation sequencing reads. The 15,612 bp mitogenome covers 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and an A+T rich region. Its gene order is typical for mitogenomes of Lepidoptera. Phylogenetic analysis placed A. lyciades as a sister to Lobocla bifasciatus, the only other Eudaminae with available mitogenome.

Fishman T, Graedel T E. Impact of the establishment of US offshore wind power on neodymium flows
[J]. Nat. Sustain, 2019,2:332-338.

DOI:10.1038/s41893-019-0252-zURL [本文引用: 1]

Hertwich E G, Gibon T, Bouman E A, et al. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies
[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112:6277-6282.

DOI:10.1073/pnas.1312753111URLPMID:25288741 [本文引用: 1]
Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11-40 times more copper for photovoltaic systems and 6-14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050.

Imholte D D, Nguyen R T, Vedantam A, et al. An assessment of U. S. rare earth availability for supporting U. S. wind energy growth targets
[J]. Energy Policy, 2018,113:294-305.

DOI:10.1016/j.enpol.2017.11.001URL [本文引用: 1]

Gloser S, Soulier M, Tercero E L A. Dynamic analysis of global copper flows. Global stocks, post consumer material flows, recycling indicators, and uncertainty evaluation
[J]. Environmental Science & Technology, 2013,47(12):6564-6572.

DOI:10.1021/es400069bURLPMID:23725041 [本文引用: 1]
We present a dynamic model of global copper stocks and flows which allows a detailed analysis of recycling efficiencies, copper stocks in use, and dissipated and landfilled copper. The model is based on historical mining and refined copper production data (1910-2010) enhanced by a unique data set of recent global semifinished goods production and copper end-use sectors provided by the copper industry. To enable the consistency of the simulated copper life cycle in terms of a closed mass balance, particularly the matching of recycled metal flows to reported historical annual production data, a method was developed to estimate the yearly global collection rates of end-of-life (postconsumer) scrap. Based on this method, we provide estimates of 8 different recycling indicators over time. The main indicator for the efficiency of global copper recycling from end-of-life (EoL) scrap--the EoL recycling rate--was estimated to be 45% on average, +/- 5% (one standard deviation) due to uncertainty and variability over time in the period 2000-2010. As uncertainties of specific input data--mainly concerning assumptions on end-use lifetimes and their distribution--are high, a sensitivity analysis with regard to the effect of uncertainties in the input data on the calculated recycling indicators was performed. The sensitivity analysis included a stochastic (Monte Carlo) uncertainty evaluation with 10(5) simulation runs.

Mancheri N A, Sprecher B, Deetman S, et al. Resilience in the tantalum supply chain. Resources
[J]. Resources, Conservation and Recycling, 2018,129:56-69.

DOI:10.1016/j.resconrec.2017.10.018URL [本文引用: 1]

Sverdrup H U. Modelling global extraction, supply, price and depletion of the extractable geological resources with the LITHIUM model
[J]. Resources, Conservation and Recycling, 2016,114:112-129.

DOI:10.1016/j.resconrec.2016.07.002URL [本文引用: 1]

王琳, 齐中英, 潘峰. 社会演进中钢未来使用规律预测及政策分析
[J]. 运筹与管理, 2017,26(1):173-181.

[本文引用: 1]

[ Wang L, Qi Z Y, Pan F. Patterns prediction and policy analysis of steel use in societal evolution
[J]. Operations Research and Management Science, 2017,26(1):173-181.]

[本文引用: 1]

张超, 王韬, 陈伟强, . 中国钢铁长期需求模拟及产能过剩态势评估
[J]. 中国人口·资源与环境, 2018,28(10):169-176.

[本文引用: 1]

[ Zhang C, Wang T, Chen W Q, et al. Simulation of China’s long-term steel demand and evaluation of the trend of overcapacity of steel industry
[J]. China Population, Resources and Environment, 2018,28(10):169-176.]

[本文引用: 1]

Müller D B, Wang T, Duval B, et al. Exploring the engine of anthropogenic iron cycles
[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103:16111-16116.

DOI:10.1073/pnas.0603375103URLPMID:17053079 [本文引用: 1]
Stocks of products in use are the pivotal engines that drive anthropogenic metal cycles: They support the lives of people by providing services to them; they are sources for future secondary resources (scrap); and demand for in-use stocks generates demand for metals. Despite their great importance and their impacts on other parts of the metal cycles and the environment, the study of in-use stocks has heretofore been widely neglected. Here we investigate anthropogenic and geogenic iron stocks in the United States (U.S.) by analyzing the iron cycle over the period 1900-2004. Our results show the following. (i) Over the last century, the U.S. iron stock in use increased to 3,200 Tg (million metric tons), which is the same order of magnitude as the remaining U.S. iron stock in identified ores. On a global scale, anthropogenic iron stocks are less significant compared with natural ores, but their relative importance is increasing. (ii) With a perfect recycling system, the U.S. could substitute scrap utilization for domestic mining. (iii) The per-capita in-use iron stock reached saturation at 11-12 metric tons in approximately 1980. This last finding, if applicable to other economies as well, could allow a significant improvement of long-term forecasting of steel demand and scrap availability in emerging market economies and therefore has major implications for resource sustainability, recycling technology, and industrial and governmental policy.

Stamp A, Wager P A, Hellweg S. Linking energy scenarios with metal demand € modeling: The case of indium in CIGS solar cells
[J]. Resources, Conservation and Recycling, 2014,93:156-167.

DOI:10.1016/j.resconrec.2014.10.012URL [本文引用: 1]

Brunner P H, Rechberger H. Practical handbook of material flow analysis
[J]. The International Journal of Life Cycle Assessment, 2004,9(5):337-338.

DOI:10.1007/BF02979426URL [本文引用: 1]

Elshkaki A, Graedel T E, Ciacci L, et al. Resource demand scenarios for the major metals
[J]. Environmental Science & Technology, 2018,52:2491-2497.

DOI:10.1021/acs.est.7b05154URLPMID:29380602 [本文引用: 1]
The growth in metal use in the past few decades raises concern that supplies may be insufficient to meet demands in the future. From the perspective of historical and current use data for seven major metals-iron, manganese, aluminum, copper, nickel, zinc, and lead-we have generated several scenarios of potential metal demand from 2010 to 2050 under alternative patterns of global development. We have also compared those demands with various assessments of potential supply to midcentury. Five conclusions emerge: (1) The calculated demand for each of the seven metals doubles or triples relative to 2010 levels by midcentury; (2) The largest demand increases relate to a scenario in which increasingly equitable values and institutions prevail throughout the world; (3) The metal recycling flows in the scenarios meet only a modest fraction of future metals demand for the next few decades; (4) In the case of copper, zinc, and perhaps lead, supply may be unlikely to meet demand by about midcentury under the current use patterns of the respective metals; (5) Increased rates of demand for metals imply substantial new energy provisioning, leading to increases in overall global energy demand of 21-37%. These results imply that extensive technological transformations and governmental initiatives could be needed over the next several decades in order that regional and global development and associated metal demand are not to be constrained by limited metal supply.

Deetman S, Pauliuk S, Van Vuuren D P, et al. Scenarios for demand growth of metals in electricity generation technologies, cars, and electronic appliances
[J]. Environmental Science & Technology: ES&T, 2018,52(8):4950-4959.

DOI:10.1021/acs.est.7b05549URL [本文引用: 1]

Habib K, Wenzel H. Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling
[J]. Journal of Cleaner Production, 2014,84:348-359.

DOI:10.1016/j.jclepro.2014.04.035URL [本文引用: 1]
The dependency on critical resources like Rare Earth Elements (REEs) has been pronounced as a potential barrier to a wider implementation of emerging renewable energy technologies. This study explores the dependency of such technologies especially wind turbines and electric vehicles along with other background end-uses on two key REEs, i.e. neodymium (Nd) and dysprosium (Dy). Our study reveals that a Business As Usual Development (BAUD) projected primary supply is unable to meet the forecasted demand of Nd and Dy in all the four modelled demand scenarios by 2050. This means that a highly accelerated rate of Nd and Dy mining is unavoidable in order to keep up with the pace of increasing demand from new technologies required in a renewable energy strategy for meeting the climate change challenge. Recycling does not seem to be in a position to close the wide gap between future demand and supply by 2050 mainly due to the long lifetime of key end-use products. However, in the long term, i.e. by 2100, secondary supply from recycling can meet almost 50% of the demand. Moreover, recycling, is found to play major role in reducing the geopolitical aspects of supply risk due to diversification of geographical distribution of supply by 2100. The study suggests that China is very likely to play its dominant role for Dy primary supply in the short-to-medium term future, as 72% of the geological reserves of Dy are in China. Our study indicates that considering the historically proven developments in metal reserve estimates as being analogous for REEs, geological reserves of Nd and Dy will not deplete for many hundred years ahead. Opening of new mines at an accelerated pace remains a supply bottleneck issue in the short-to-medium term future until recycling provides significant secondary supply to reduce the future demand. (C) 2014 Elsevier Ltd.

Martin G, Rentsch L, H?ck M, et al. Lithium market research: Global supply, future demand and price development
[J]. Energy Storage Materials, 2017,6:171-179.

DOI:10.1016/j.ensm.2016.11.004URL [本文引用: 2]

Kucukvar M, Onat N C, Haider M A. Material dependence of national energy development plans: The case for Turkey and United Kingdom
[J]. Journal of Cleaner Production, 2018,200:490-500.

DOI:10.1016/j.jclepro.2018.07.245URL [本文引用: 1]

Watari T, McLellan B C, Ogata S, et al. Analysis of potential for critical metal resource constraints in the international energy agency’s long-term low-carbon energy scenarios
[J]. Minerals, 2018, DOI: 10.3390/min8040156.

DOI:10.3390/min8090413URLPMID:31223499
Vibrational spectroscopies (Fourier Transform Infra Red, FTIR, and Raman) are exceptionally valuable tools for the identification and crystal-chemical study of fibrous minerals, and asbestos amphiboles in particular. Raman spectroscopy has been widely applied in toxicological studies and thus a large corpus of reference data on regulated species is found in the literature. However, FTIR spectroscopy has been mostly used in crystal-chemical studies and very few data are found on asbestos amphiboles. This paper is intended to fill this gap. We report new FTIR data collected on a suite of well-characterized samples of the five regulated amphibole species: anthophyllite, amosite, and crocidolite, provided by the Union for International Cancer Control (UICC) Organization, and tremolite and actinolite, from two well-known occurrences. The data from these reference samples have been augmented by results from additional specimens to clarify some aspects of their spectroscopic features. We show that the FTIR spectra in both the OH-stretching region and in the lattice modes region can be effective for rapid identification of the asbestos type.

Watari T, McLellan B C, Ogata S, et al. Analysis of potential for critical metal resource constraints in the international energy agency’s long-term low-carbon energy scenarios
[J]. Minerals, 2018, DOI: 10.3390/min8040156.

DOI:10.3390/min8090413URLPMID:31223499 [本文引用: 1]
Vibrational spectroscopies (Fourier Transform Infra Red, FTIR, and Raman) are exceptionally valuable tools for the identification and crystal-chemical study of fibrous minerals, and asbestos amphiboles in particular. Raman spectroscopy has been widely applied in toxicological studies and thus a large corpus of reference data on regulated species is found in the literature. However, FTIR spectroscopy has been mostly used in crystal-chemical studies and very few data are found on asbestos amphiboles. This paper is intended to fill this gap. We report new FTIR data collected on a suite of well-characterized samples of the five regulated amphibole species: anthophyllite, amosite, and crocidolite, provided by the Union for International Cancer Control (UICC) Organization, and tremolite and actinolite, from two well-known occurrences. The data from these reference samples have been augmented by results from additional specimens to clarify some aspects of their spectroscopic features. We show that the FTIR spectra in both the OH-stretching region and in the lattice modes region can be effective for rapid identification of the asbestos type.

Candelisea C, Spiersa J F, Gross R J K. Materials availability for thin film (TF) PV technologies development: A real concern?
[J]. Renewable and Sustainable Energy Reviews, 2011,15:4972-4981.

DOI:10.1016/j.rser.2011.06.012URL [本文引用: 1]

Chen Y H, Chen C Y, Lee S C. Technology forecasting and patent strategy of hydrogen energy and fuel cell technologies
[J]. International Journal of Hydrogen Energy, 2011,36(12):6957-6969.

DOI:10.1016/j.ijhydene.2011.03.063URL [本文引用: 1]
This study presents the technological S-curves that integrates the Bibliometric and patent analysis into the Logistic growth curve model for hydrogen energy and fuel cell technologies and identifies the optimal patent strategy for the fuel cell industry, including PEMFC, SOFC, and DMFC/DAFC. Empirical analysis is via an expert survey and Co-word analysis using the United States Patent and Trademark Office database to obtain useful data. Analytical results demonstrate that the S-curves is a highly effective means of quantifying how technology forecasting of cumulative publication patent number. Analytical results also indicate that technologies for generating and storing hydrogen have not yet reached technological maturity; thus, additional R&D funding is needed to accelerate the development of hydrogen technology. Conversely, fuel cell technologies have reached technological maturity, and related patent strategies include freedom to operate, licensing, and niche inventions. The proposed model can be applied to all high-technology cases, and particularly to new clean technologies. The study concludes by outlining the limitations of the proposed model and directions for further research. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd.

Lanzi E, Verdolini E. Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends
[J]. Energy Policy, 2011,39(11):7000-7014.

DOI:10.1016/j.enpol.2011.07.052URL [本文引用: 1]
This paper studies patenting dynamics in efficiency improving electricity generation technologies as an important indicator of innovation activity. We build a novel database of worldwide patent applications in efficiency-improving fossil fuel technologies for electricity generation and then analyse patenting trends over time and across countries. We find that patenting has mostly been stable over time, with a recent decreasing trend. OECD countries represent the top innovators and the top markets for technology. Some non-OECD countries, and particularly China, are also very active in terms of patenting activity in this sector. The majority of patents are first filed in OECD countries and only then in BRIC and other non-OECD countries. BRIC and other non-OECD countries apply for patents that are mostly marketed domestically, but BRIC countries represent important markets for patent duplication of OECD inventions. These results are indicative of significant technology transfer in the field of efficiency-improving technologies for electricity production. (C) 2011 Elsevier Ltd.

王班班, 齐绍洲. 有偏技术进步、要素替代与中国工业能源强度
[J]. 经济研究, 2014, (2):117-129.

[本文引用: 1]

[ Wang B B, Qi S Z. Biased technological progress, factor substitution and China’s industrial energy intensity
[J]. Economic Research Journal, 2014, (2):117-129.]

[本文引用: 1]

Koh H, Magee C L. A functional approach for studying technological progress: Application to information technology
[J]. Technological Forecasting and Social Change, 2006,73(9):1061-1083.

DOI:10.1016/j.techfore.2006.06.001URL [本文引用: 1]

Saur M I. How methodological issues affect the energy indicator results for different electricity generation technologies
[J]. Energy Policy, 2013,63(6):283-299.

DOI:10.1016/j.enpol.2013.09.005URL [本文引用: 1]

Zhang Y G, Gu Y, Chen X Y, et al. An effective indicator for evaluation of wavelength extending InGaAs photodetector technologies
[J]. Infrared Physics & Technology, 2017,83:45-50.

[本文引用: 1]

Acemoglu D. Directed technical change
[J]. Review of Economic Studies, 2002,69(4):781-809.

DOI:10.1111/roes.2002.69.issue-4URL [本文引用: 1]

寮€閫歏IP锛氫竾绉嶈€冪爺鑰冭瘉瑙嗛闅忎究鐪嬶紝姣忔湰涓嶅埌涓€鍒嗛挶
547鎵€闄㈡牎鑰冪爺鑰冨崥1130绉嶆寚瀹氭暀鏉愮殑鍗冧綑绉嶉厤濂楅搴撱€佽棰戯紝娑电洊鑻辫銆佺粡娴庛€佽瘉鍒搞€侀噾铻嶃€佺悊宸ャ€佺鐞嗐€佺ぞ浼氥€佽储浼氥€佹暀鑲插績鐞嗐€佷腑鏂囥€佽壓鏈€佹柊闂讳紶鎾€佹硶瀛︺€佸尰瀛︺€佽绠楁満銆佸巻鍙层€佸湴鐞嗐€佹斂娌汇€佸摬瀛︺€佷綋鑲茬被绛�28绫诲绉戯紝VIP浼氬憳浣庤嚦128.00鍏冿紒
相关话题/金属 技术 资源 矿产 经济

鎵嬫満蹇€熷厤璐规敞鍐屼細鍛�锛岀珛鍗宠幏鍙栨湰绔欒祫鏂欒В鍘嬬缉瀵嗙爜锛�