Effects of land management scale on fertilizer use efficiency: Taking Jiangsu as an example
ZOUWei, ZHANGXiaoyuan College of Public Administration, Nanjing Agricultural University, Nanjing 210095, China 收稿日期:2019-01-2 修回日期:2019-04-2 网络出版日期:2019-07-25 版权声明:2019《资源科学》编辑部《资源科学》编辑部 基金资助:国家社会科学基金重点项目(18AGL014)全国党校系统重点调研课题项目 作者简介: -->作者简介:邹伟,男,四川渠县人,教授,博导,主要从事土地经济与政策研究。E-mail:njauzw@126.com
关键词:经营规模;转入土地;化肥使用效率;随机前沿生产函数;江苏省 Abstract Moderate management scale is an inexorable trend of modern agriculture development. Examining the effect of management scale on fertilizer use efficiency and whether moderate management scale can improve fertilizer use efficiency and realize zero growth of fertilizer application is of great significance for promoting sustainable development. Based on farm-level data collected from Jiangsu Province and a stochastic production frontier model, this study estimated the fertilizer use efficiency and the elasticities of land, fertilizer, and labor with respect to output. Furthermore, this study adopted the Tobit model to estimate the main factors influencing fertilizer use efficiency. The empirical results show that the average fertilizer use efficiency was 0.53 in Jiangsu, implying that about 47% fertilizer was not effectively absorbed by crops. Farm size has significantly different impacts on fertilizer use efficiency, expansion of large-scale farms would increase fertilizer use efficiency, whereas expansion of small-scale farms would decrease fertilizer use efficiency, which would result in a serious waste of fertilizer. In general, the fertilizer use efficiency of Jiangsu Province is generally low, but expanding the scale of operation will help to improve the fertilizer use efficiency under certain conditions. Based on these results, we conclude that it is necessary to promote the reduction of farmers’ fertilizer use costs through the economy of scale and division of labor, guide small-scale farmers to outsource services in the fertilization process, thus reducing the once for all and over-fertilization tendency; promote precision fertilization technology by local governments to reduce the unintended excessive fertilization of farmers; and make full use of the scale of economy effects and further promote appropriate scale management.
(1)投入产出指标 在生产函数中,产出指标用水稻总产量表示,单位为kg。投入指标主要包括化肥、劳动、土地以及其他中间投入;其中,为避免实际施用的氮、磷、钾肥和复合肥等化肥中有效成分含量不同带来的差异,化肥投入采用折纯量计算;劳动力投入包含水稻生产中的自家劳动和雇佣劳动力总和;土地投入选择农户实际经营的土地面积,包括自家承包地与转入土地;其他中间投入以农户水稻生产中投入的物质费用总价值来表示,包含种子费、水费以及管理费等费用总和。 (2)化肥使用效率的影响因素指标 为了验证土地经营规模扩张能否提高化肥使用效率,结合江苏地区水稻种植户具体情况,在实证分析中首先选择农户水稻经营规模作为主要解释变量,粮食产量、产值或播种面积等变量可用于表征经营规模[24,31],考虑到本研究的对象为水稻单一品种,播种面积在不同农户间具有较强的代表性,故利用“当年农户水稻的实际播种面积”表示“经营规模”。在数据分析中,主要依据张晓恒等[32]对中国经营规模分布的统计口径和本文样本特征,将经营规模划分为6个等级,对应的规模区间为: <10亩、[10,30)亩、[30,50)亩、[50,100)亩、[100,200)亩以及≥200亩。由于在农地流转参与背景下经营规模变化对化肥使用效率可能会产生影响,也将“相对于上一年是否转入土地”和“水稻经营规模与相对于上一年农户是否转入土地的交互项”作为主要解释变量。 考虑到经济发展水平的区域差异性,模型以苏南为基础,分别设置了苏中、苏北2个地区虚拟变量,用于反映地区之间的经济发展特征、非农就业特征以及地理位置等方面对化肥使用效率产生的影响。此外,借鉴其他****的做法和研究成果[33,34,35],水稻单产、户主个体特征(年龄、受教育程度)以及化肥价格也作为影响农户化肥使用效率的因素纳入模型进行分析,其中,将户主的受教育程度划分为5个等级:文盲、小学、初中、高中和大专及以上,并以文盲为基础,分别设置了小学、初中、高中和大专及以上4个虚拟变量。具体变量说明及描述性统计如表1所示。 Table 1 表1 表1变量定义及描述性统计 Table 1Definition and descriptive statistics of variables
变量
变量说明及单位
平均值
标准差
被解释变量
水稻总产量
农户2016年的水稻总产量/kg
43544.93
147516.10
化肥使用效率
计算值
0.53
0.10
解释变量
化肥投入量
水稻生产中化肥投入的折纯量/kg
2603.69
8487.73
劳动力投入量
水稻生产中劳动总用工数/人
167.03
487.25
其他中间投入
包括种子费、水费以及管理费等费用总和/元
35415.76
114424.90
水稻单产
kg/亩
595.89
50.38
种植规模
水稻实际种植面积/亩
75.70
253.42
年龄
户主实际年龄/岁
58
9.73
户主受教育程度
0=文盲;1=小学;2=初中;3=高中;4=大专及以上
2.35
0.67
化肥价格
农户购买化肥的总费用/化肥折纯量/(元/kg)
4.38
0.45
相对于上一年是否转入土地
1=是;0=否
0.43
0.50
种植规模×相对于上一年是否转入土地
水稻种植规模与相对于上一年是否转入土地的交叉项
67.01
252.37
苏中
1=苏中;其他=0
0.28
0.45
苏北
1=苏北;其他=0
0.38
0.49
新窗口打开 (3)样本农户水稻种植规模与化肥施用情况 表2显示,样本农户中,经营规模在10亩以下的农户占比71.3%,50亩以上的农户占19.9%,由此可以看出,样本中稻农多以小规模经营为主。从种植规模来看,10亩以下农户的水稻总面积为996.10亩,约占样本总面积的4.0%,而50亩及以上农户的种植总面积为23504.38亩,约占样本总面积的93.8%。从亩均化肥施用量来看,单位面积化肥投入随着水稻种植规模扩大呈现“高-低-高”的变化趋势,且施肥强度均已达到国际化肥安全施用上限的2.2倍以上。其中,经营规模在[30,50)亩、[50,100)亩及[100,200)亩区间的农户每亩化肥施用量最低,相较10亩以下的农户分别降低了8.0%、7.8%和7.3%,相较[10,30)亩的农户分别降低了14.4%、14.2%和13.8%。但当经营规模大于等于200亩,亩均化肥施用量又开始升高,相较10亩以下和[10,30)亩的农户分别降低了2.8%、9.6%,比重明显下降。究其原因,在现有的技术和管理水平下,投入土地的数量是相对有限的,超过此限度,将会囿于劳动力短缺等因素,出现报酬递减,进而又会促使农户增加化肥投入。基于以上分析可知,土地经营规模的扩大必须与劳动力和技术等生产要素相匹配,坚持适度原则,防止规模过大造成负面影响。 Table 2 表2 表2样本农户水稻种植规模分布与亩均化肥施用量 Table 2Distribution of rice planting scale and average fertilizer application amount per mu of surveyed farmers
超越对数随机前沿生产函数的参数估计结果(表3)显示,模型中大部分参数都具有统计上的显著性,其中,技术效率损失方差与总方差的比值γ为0.979,说明保持现有的农业技术条件和投入要素不变,若消除效率损失,水稻生产技术效率将还有约2.1%的提升空间。 Table 3 表3 表3随机前沿生产函数参数估计结果 Table 3Parameter estimation results of stochastic frontier production function analysis
变量
系数
变量
系数
化肥
-0.886(0.88)
土地平方
0.565*(0.34)
土地
4.571***(1.65)
土地与劳动力
0.157**(0.07)
劳动力
0.305(0.36)
土地与其他中间投入
-0.626***(0.21)
其他中间投入
-2.655**(1.14)
劳动力平方
-0.066(0.04)
化肥平方
-0.164(0.15)
劳动力与其他中间投入
0.035(0.06)
化肥与规模
-0.032(0.19)
其他中间投入平方
0.261(0.18)
化肥与劳动力
-0.126**(0.05)
常数项
15.624***(4.21)
化肥与其他中间投入
0.292**(0.12)
Sigma_v2
0.002(0.00)
γ
0.979(0.02)
Sigma_u2
0.091(0.09)
样本量
331
Log likelihood
398.78
注:小括号中数值是标准误;***、**、*分别表示在1%、5%和10%水平下显著。 新窗口打开 表4为江苏分区域水稻生产中的投入要素产出弹性以及技术效率和化肥使用效率情况。其中,苏南、苏中和苏北地区化肥投入的产出弹性均值几乎为0,这与该地区普遍存在过度或不合理施肥现象有关,说明增加化肥投入已难以促进水稻产量的提升。土地的产出弹性最大,且均值为1.01,即每增加1%种植面积,产量将提高1.01%,与以往的研究结论相一致[36],表明当前土地投入仍是水稻生产中最为重要的要素投入,这也为中国鼓励土地流转,扩大经营规模提供了现实证据。劳动的产出弹性系数为-0.02,即在保持其他投入要素不变的情况下,每增加1%的劳动投入,将会引起水稻产出下降0.02%,这个估算结果与张晓恒等[24]和冯淑怡等[37]研究得出的结论相似。可能的原因是主要依靠农业经营收入的小规模农户因非农就业受限,为实现产量最大化,通常不计较劳动成本,投入过多时间到农业生产中,结果导致劳动力投入过剩,劳动的边际产出为负。根据苏南、苏中和苏北地区的化肥、土地和劳动产出弹性,可以计算出3个地区样本农户平均规模报酬分别为0.99、0.99和1,说明苏北、苏南、苏中3个地区水稻种植均呈现规模报酬不变状态,这意味着要素投入与产出同比例变化,但是随着经营规模的变化,农户可能购买的要素价格相对低廉,从而降低单位生产成本,并可能提高农户的总收入水平。 Table 4 表4 表4不同地区技术效率、化肥使用效率及各要素产出弹性 Table 4Technical efficiency, fertilizer use efficiency, and output elasticity of various factors in different regions
变量
苏南
苏中
苏北
江苏
化肥产出弹性
0.01
0.01
0.00
0.01
土地产出弹性
1.00
1.01
1.02
1.01
劳动产出弹性
-0.02
-0.02
-0.02
-0.02
技术效率
0.92
0.95
0.95
0.94
化肥使用效率
0.51
0.57
0.51
0.53
新窗口打开 样本农户水稻生产技术效率均值为0.94,表明在现有条件下,技术水平较好,区域差异不大,但仍有改进空间。而化肥使用效率均值仅为0.53,说明在维持当前投入与产出水平不变的情况下,若消除效率损失,水稻生产中化肥使用效率尚可提升47%。相比于技术效率,该地区化肥使用效率偏低,约为技术效率的一半,因此可以推断,现阶段农户减少水稻生产中的化肥投入,并不会带来产量的降低,反而有利于提高化肥使用效率。 经简单平均处理,得到了样本农户的技术效率和化肥使用效率频率分布。从表5中可以看出,所有水稻生产技术效率低的农户化肥使用效率均较低,所有技术效率高的农户中也仅有5%的农户化肥使用效率较高,而大部分农户的化肥使用效率均处于低效率区间。相反,无论农户的化肥使用效率如何,其技术效率值都相对较高。这说明,在现有的生产技术水平下,农户化肥使用效率尚存在较大的提升空间。 Table 5 表5 表5技术效率和化肥使用效率分布 Table 5Distribution of technical efficiency and fertilizer use efficiency (%)
[Wang XQ, ZouW, Zhu GL, et al.The impact of local government-dominated farmland transfer on farmer’s transfer scale and grain yield in five cities in Jiangsu [J]. , 2018, 40(2): 326-334.] [本文引用: 1]
[Zhang YQ, Pu CX, WangY, et al.The efficiency estimation of fertilizer input and attribution: Panel evidence from 20 corn producing provinces [J]. , 2018, 40(7): 1333-1343.] [本文引用: 1]
[Ji YQ, ZhangH, Lu WY, et al.Differentiation, incomplete information and excessive application of fertilizer to farmers [J]. , 2016, (2): 14-22.] [本文引用: 1]
[Wang BY, Zhang WG.A research of agricultural eco-efficiency measure in China and space-time differences [J]. , 2016, 26(6): 11-19.] [本文引用: 1]
[4]
Huang JK, Hu RF, Cao JM, et al.Training programs and in-the-field guidance to reduce China’s overuse of fertilizer without hurting profitability [J]. , 2008, 63(5): 165A-167A. [本文引用: 1]
[Yin XF, Liu YZ.Behaviors and its influencing factors of peasant household to participate in protection of cultivated land quality: A case study in Dantu District, Zhenjiang City, Jiangsu Province [J]. , 2015, (3): 317-324.] [本文引用: 1]
[Zhang CQ, DuM, LiuR, et al.Resource and environmental impacts of farmers’ production behavior and relevant countermeasures suggestions: Based on questionnaire survey of national cotton farmers [J]. , 2015, (28): 82-86.] [本文引用: 1]
[Tan QC.Green agriculture as a production mode [J]. , 2015, 25(9): 44-51.] [本文引用: 1]
[10]
Foster AD, Rosenzweig MR.Are there too Many Farms in the World? Labor-Market Transaction Costs, Machine Capacities and Optimal Farm Size [R]. . 23909, 2017. [本文引用: 1]
[Department of Economic System and Management, Ministry of Agriculture. Current Basic Situation of Rural Economic Management [EB/OL]. (2018-01-05) [2019-01-02]. .]URL [本文引用: 1]
[Cai YP, Du ZX.Ecological consciousness of family farm production behavior and its influencing factors: An empirical test based on national family farm monitoring data [J]. , 2016, (12): 33-45.] [本文引用: 1]
[Qiu HG, LiuL, Li DW, et al.Farm size, tenure security and land productivity: An empirical study based on plot-level survey data from four provinces in China [J]. , 2017, (6): 30-43.] [本文引用: 1]
[Xu ZG, Zhang JY, Lv KY.The scale of operation, term of land ownership and the adoption of inter-temporal agricultural technology: An example of “straw return to soil directly” [J]. , 2018, (3): 61-74.] [本文引用: 1]
[Meng XF.Analysis of the effect of mechanical subsoiling on the increase of grain production [J]. , 2016, (5): 89-90.] [本文引用: 1]
[19]
Wu YY, Xi XC, TangX, et al.Policy distortions, farm size, and the overuse of agricultural chemicals in China [J]. , 2018, 115(27): 7010-7015. [本文引用: 2]
[HuH, Yang YB.Study on fertilizer application of farmers under the perspective of factor substitution: farmers’ data based on national rural fixed observation points [J]. , 2015, (3): 84-91.] [本文引用: 1]
[Ge JH, Zhou SD.Does factor market distortions stimulate the agricultural non-point source pollution? A case study of fertilizer [J]. , 2012, 33(3): 92-98.] [本文引用: 1]
[LiuQ, Zhao MZ.Study on the change law of agricultural element use intensity in the process of agricultural modernization: Based on the international experience of 29 major agricultural countries in the world [J]. , 2018, (3): 23-32.] [本文引用: 1]
[Zhang CY, ChangQ, Huo XX.Can the moderate-scale management really reduce the production costs of agricultural products: An empirical analysis based on 661 Shanxi apple farmers [J]. , 2018, (10): 26-35.] [本文引用: 1]
[26]
ReinhardS, ThijssenG.Econometric estimation of technical and environmental efficiency: an application to Dutch dairy farms [J]., 1999, 81(1): 44-60. [本文引用: 1]
[27]
Zhou YH, Zhang XH, TianX, et al.Technical and environmental efficiency of hog production in China - A stochastic frontier production function analysis [J]. , 2015, 14(6):1069-1080. [本文引用: 1]
[28]
MeeusenW, BroeckJ V D. Efficiency estimation from cobb-Douglas production functions with composed error [J]. , 1977, 18(2): 435-444. [本文引用: 1]
[29]
AignerD, LovellC A K, SchmidtP. Formulation and estimation of stochastic frontier production function models [J]. , 1977, 6(1): 21-37. [本文引用: 1]
[Zhang XH, Zhou YH, ZhangP.Estimation of environmental efficiency of pig breeding in China: Taking nitrogen surplus in feces as an example [J]. , 2015, (5): 92-102.] [本文引用: 1]
[Ji YQ, Gu TZ, Chen YS, et al.Agricultural scale management from the perspective of land parcels: Discussion on the relationship between circulation rent and land size [J]. , 2017, (7): 65-73.] [本文引用: 1]
[Zhu PX, SuM, YanJ.Impact of farmland scale and stability on fertilizer input: Taking rice production of four counties of Jiangsu Province [J]. , 2017, 17(4): 85-94.] [本文引用: 1]
[34]
Wu YR.Chemical fertilizer use efficiency and its determinants in China’s farming sector [J]. , 2011, 3(2): 117-130. [本文引用: 1]
[Shi CL, Zhu JF, LuanJ.Analysis on the efficiency of wheat fertilizer input and its influencing factors in China: Based on the empirical study of 15 major wheat producing provinces in China [J]. , 2015, (11): 69-78.] [本文引用: 1]
[XuQ, Ying RL, ZhangH.Economies of scale, scale return and moderate scale operation of agriculture: An empirical study based on grain production in China [J]. , 2011, 46(3): 59-71.] [本文引用: 1]
[Luo XJ, Feng SY, HuangT, et al.Assessment on environmental and economic effects of formula fertilization by soil testing project [J]. , 2014, (1): 86-93.] [本文引用: 1]
[Li KQ, Ma DD.Study on farmers' fertilizer reduction and input behavior and decision mechanism in ecologically vulnerable areas: A case study of 421 farmers in 4 counties of Shanxi Province [J]. , 2018, 18(5): 138-145.] [本文引用: 1]