Policy optimization of coal production capacity in China based on a computable general equilibrium model
HELing, CUIQi, CHENHao, SONGTao Beijing Key Laboratory of Urban Green Development Science and Technology Strategy Research, Institute of Economics and Resource Management, Beijing Normal University, Beijing 100875, China 通讯作者:通讯作者:陈浩,男,四川成都人,博士生导师,研究方向为环境与生态经济学。E-mail: hchen@bnu.edu.cn 收稿日期:2019-01-21 修回日期:2019-02-27 网络出版日期:2019-06-25 版权声明:2019《资源科学》编辑部《资源科学》编辑部 基金资助:国家发展改革委员会课题(221100055)中央高校基本科研业务费专项资金资助项目(2018NTSS14)北京师范大学城市绿色发展科技战略研究北京市重点实验室资助项目 作者简介: -->作者简介:贺玲,女,河北定州人,博士研究生,研究方向为能源经济学。E-mail:bjheling@foxmail.com
关键词:产能政策;宏观经济影响;产业影响;能源经济均衡(CGE)模型;多情景分析;煤炭;中国 Abstract Based on CHINAGEM, a MONASH-style dynamic computable general equilibrium (CGE) model, this study constructed China’s energy economic equilibrium model, conducted a differentiated multi-scenario policy analysis, and compared the impacts of different coal productivity policies and their portfolio on China’s macro economy and industries. The results show that, while optimizing coal production structure, the coal productivity policy significantly affects the output of other energy industries and non-energy industries with upstream and downstream linkages, and inevitably has a certain impact on the macro economy. Among the coal production capability policies, reducing non-quality coal production is most effective in optimizing coal production structure, but it has the greatest negative impacts on macro economy. While taxation policy would have a slightly negative impact on macro economy in that national GDP falls by 0.06%, it has the weakest effect in improving coal production structure. The impacts of reducing production capacity fall between the above two policies. In implementing coal production capacity policies, several policies including tax incentives, production capability replacement, and technological advancement would simultaneously improve coal production structure and dampen the negative impacts on macro economy, and ultimately achieve long-term development of the coal industry. It is more reasonable to simulate the capacity policy by means of reducing capital input, which is more in line with the economic meaning of coal deactivation. This method is also applicable to the research of steel, glass, cement, and other industries.
Keywords:production capacity policy;macroeconomic impacts;industrial impacts;computable general equilibrium (CGE) model;multi-scenario analysis;coal;China -->0 PDF (3248KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 贺玲, 崔琦, 陈浩, 宋涛. 基于CGE模型的中国煤炭产能政策优化[J]. 资源科学, 2019, 41(6): 1024-1034 https://doi.org/10.18402/resci.2019.06.02 HELing, CUIQi, CHENHao, SONGTao. Policy optimization of coal production capacity in China based on a computable general equilibrium model[J]. RESOURCES SCIENCE, 2019, 41(6): 1024-1034 https://doi.org/10.18402/resci.2019.06.02
3.2.1 煤炭产能政策对宏观经济的影响 从表2可以看出,煤炭产能政策调整会给宏观经济造成一定的负面影响。降产量政策对宏观经济造成的负面影响较大,而税收政策对宏观经济冲击较小,去产能政策的宏观经济影响则处于两者之间。具体而言,仅降产量(S1)对宏观经济冲击最大。实施减量化生产的政策使煤炭产出大幅度降低,进而导致煤炭下游产业甚至所有需要煤炭投入的部门产出下降,进一步导致就业(-0.30%)、居民消费(-0.25%)和社会总投资(-0.10%)的下降;而由于煤炭行业供给的减少,各部门产品价格的相对变化导致CPI下降(-0.03%),最终给宏观经济带来较大损失(GDP下降0.51%)。税收政策(S1)通过提高非优质煤炭部门的生产成本,降低非优质煤炭的产量,但因税收在煤炭部门生产成本中占比不大,故对宏观经济的负面影响非常小(GDP下降0.06%)。去产能(S7)是指关闭有一定产出的矿井、淘汰其附属的厂房、设备、机器等,因此煤炭行业产能降低实际上是煤炭行业资本投入的减少,由此降低了各部门的产出和就业,造成宏观经济有所损失(GDP下降0.18%),但明显小于降产量政策对宏观经济的冲击程度。采用削减资本投入模拟去产能的经济影响明显小于降产量的模拟效果。 Table 2 表2 表2不同煤炭产能政策情景对宏观经济的影响 Table 2Macroeconomic impacts of different coal production capacity policies (%)
降产量政策
税收政策
去产能政策
S1
S2
S3
S4
S5
S6
S7
S8
S9
实际GDP
-0.51
-0.50
-0.48
-0.06
-0.05
-0.02
-0.18
-0.14
-0.12
居民消费
-0.25
-0.25
-0.24
-0.01
-0.01
0.00
-0.08
-0.06
-0.05
投资
-0.10
-0.09
-0.09
-0.02
-0.02
-0.01
-0.03
-0.03
-0.02
就业量
-0.30
-0.29
-0.27
-0.04
-0.04
-0.02
-0.12
-0.09
-0.08
CPI
-0.03
-0.03
-0.03
-0.02
-0.01
-0.01
-0.02
-0.02
-0.02
名义工资
-0.03
-0.03
-0.03
-0.02
-0.01
-0.01
-0.02
-0.02
-0.02
资本租金
-0.55
-0.52
-0.49
-0.20
-0.16
-0.14
-0.11
-0.09
-0.06
注:数据来源于CHINAGEM模型模拟结果。 新窗口打开 与单一政策相比,煤炭产能政策的组合对宏观经济的冲击更小。在单一政策加入税收优惠、技术进步及产能置换等政策工具之后,优质煤炭行业受到正向影响,从而部分抵消了煤炭产能政策调整对宏观经济的负面冲击,有效地减缓了宏观经济的下降程度;但由于优质煤炭在煤炭产量中所占比重较小,多种政策组合的减缓作用在短期内相对有限,并未改变煤炭产能政策的宏观经济影响方向。在情景6中,非优质煤炭实施税收倒逼的同时,实施差异税制和推动优质煤炭部门的技术进步,显著地降低了对宏观经济的冲击,GDP的损失由情景4中单一政策的0.06%下降为0.02%。因此,实施煤炭产能综合政策,会减缓单一政策对宏观经济的冲击程度,从而更能起到稳定经济的作用。 3.2.2 煤炭产能政策对产业产出的影响 (1)煤炭产能政策对能源产业产出的影响 煤炭产能政策均可有效地调整能源行业的生产结构,起到了优化煤炭产出质量的作用。其中,降产量政策对煤炭生产结构调整的作用最显著,税收政策对煤炭生产结构调整的作用最弱,去产能政策对煤炭生产结构调整的效果介于两者之间。“276工作日”(S1)、税收倒逼(S4)、去产能的政策(S7)分别使非优质煤炭产出下降9.00%、2.31%、3.35%,优质煤炭产出分别提高0.40%、0.05%、0.19%。模拟结果见表3。 Table 3 表3 表3不同煤炭产能政策情景对能源产业产出的影响 Table 3Impacts of different coal production capacity policies on energy output (%)
降产量政策
税收政策
去产能政策
S1
S2
S3
S4
S5
S6
S7
S8
S9
优质煤炭
0.40
1.59
2.88
0.05
1.23
2.51
0.19
2.20
3.45
非优质煤炭
-
-
-
-2.31
-2.32
-2.34
-3.25
-3.28
-3.30
石油和天然气
-0.42
-0.41
-0.39
-0.07
-0.06
-0.03
-0.17
-0.13
-0.11
石油加工
-0.34
-0.33
-0.31
-0.08
-0.07
-0.05
-0.13
-0.10
-0.09
电力和热力
-1.73
-1.67
-1.58
-0.38
-0.31
-0.23
-0.67
-0.53
-0.45
燃气
-0.45
-0.43
-0.41
-0.09
-0.07
-0.05
-0.18
-0.14
-0.12
焦炭
-1.98
-1.91
-1.81
-0.40
-0.33
-0.24
-0.91
-0.72
-0.62
注:数据来源于CHINAGEM模型模拟结果;“-”表示外生冲击下降9.00%。 新窗口打开 与单一政策相比,3种政策的组合能进一步加强煤炭产能政策对煤炭生产结构优化的作用。其中,实施产能置换政策的同时,可提高优质煤炭行业的生产效率,使得非优质煤炭的产出下降3.30%,优质煤炭的产出提高3.45%。表明了在去产能政策淘汰落后生产能力、关停闲置工厂设备时,实施产能置换政策将增加煤炭行业的先进生产设备,对煤炭生产结构的调整发挥了最优的政策效果。 采用冲击资本投入方式模拟产能政策的结果更为合理,更符合煤炭去产能的经济学含义。对比S1和S7两种政策模拟结果,降产量政策明显对煤炭生产结构调整作用更大。由于煤炭产能与产量在现实情况中变化程度存在差异,采用直接降低产量的方法进行模拟,明显地高估产能政策的效果。但去产能政策的实施实际上是淘汰落后产能并关停闲置的厂房、机器、设备等,采用冲击煤炭部门生产资本投入的方式模拟,其结果更具现实意义。 其他能源产业产出根据其所受影响的机理可以分为两类:一类是与煤炭行业存在直接上下游关联的能源产业,如焦炭、电力和热力;另一类是与煤炭行业存在竞争替代关系的能源产业,包括石油和天然气、石油加工、燃气。 对于前者,煤炭产能政策的调整在降低煤炭的产出的同时减少煤炭供给,使得煤炭的下游部门(即焦炭、电力和热力产业)产出受到较大的影响。另外,焦炭、电力和热力作为能源产品与煤炭存在替代关系,煤炭供给的减少导致煤炭价格上升,此时各产业将更多地使用焦炭、电力和热力等能源产品以部分替代煤炭。最终,焦炭、电力和热力部门的产出受以上两种情景的共同作用而有所下降。在降产量情景下(S1),焦炭产出下降1.98%,电力和热力的产出下降1.73%。第二类能源部门的产出也出现小幅下降。煤炭产出的下降导致各部门产出和中间投入需求下降,进而使得石油和天然气、石油加工、燃气等能源产品需求相应地下降,最终这些能源行业产出也随之下降。由于能源产品投入采用了多层嵌套结构,煤炭与这些能源产品之间存在一定的替代关系,但替代性相对较弱,因此这些能源产业产出仍有所下降。 (2)煤炭产能政策对非能源产业产出的影响 煤炭产能政策调整显著影响与之有上下游关联的产业部门,包括化工行业、金属冶炼行业、金属加工行业和铁路运输行业。各行业受影响程度主要取决于两方面因素:一是煤炭产能政策导致煤炭供给减少,对上下游产业造成直接影响;二是煤炭产能政策通过产品市场和要素市场导致全行业产出下降,对其他产业造成间接影响(表4)。 Table 4 表4 表4不同煤炭产能政策情景对非能源产业产出的影响 Table 4Impacts of different coal production capacity policies on non-energy industry output (%)
基于上述研究结论,本文提出以下政策建议: (1)相对谨慎地使用减量化生产政策。煤炭行业降产量政策在短期内属于简单的行政手段,是控制煤炭新增产能、改善煤企营业亏损状态的有效途径。但由于该政策具有强制性,对宏观经济和全行业产出冲击较大,对煤炭生产结构的改善只能是“治标不治本”。这是因为煤炭行业产能过剩主要在于大规模超前建设,短期内限制煤炭行业的产量并不意味着产能的彻底退出[45]。 (2)去产能政策能有效减轻改革过程中的阵痛。相比减量化生产政策以及税收倒逼政策,产能置换政策在结合技术进步的情况下对产业结构、能源结构、宏观经济等具最优的政策效果。由于产能置换政策在现实经济中更易充分发挥市场机制的资源配置作用,有利于实现煤炭产能调整的长效机制[46]。 (3)煤炭去产能应当根据不同的现实需求采用不同的政策及其组合。在当前阶段,改革重心应向从直接干预转向综合施策,更多地从政府强制性手段转向依靠市场力量优化配置资源,并综合运用多种煤炭去产能的政策措施,最终实现煤炭行业的长效发展。 The authors have declared that no competing interests exist.
WangD, NieR, LongR, et al.Scenario prediction of China’s coal production capacity based on system dynamics model [J]. Resources, Conservation and Recycling, 2018, 129: 432-442. [本文引用: 1]
[2]
WangJ, FengL.Curve-fitting models for fossil fuel production forecasting: Key influence factors [J]. Journal of Natural Gas Science and Engineering, 2016, 32: 138-149. [本文引用: 1]
[3]
Li BB, Liang QM, Wang JC.A comparative study on prediction methods for China’s medium-and long-term coal demand [J]. Energy, 2015, 93: 1671-1683. [本文引用: 1]
[4]
HaoY, Zhang ZY, LiaoH, et al.China’s farewell to coal: A forecast of coal consumption through 2020 [J]. Energy Policy, 2015, 86: 444-455. [本文引用: 1]
[General Office of the State Council. Notice of the State Council on Further Strengthening the Work of Eliminating Backward Production Capacities [EB/OL]. (2010-04-06) [2019-01-21]. .]URL [本文引用: 1]
[General Office of the State Council. Guiding Opinions of the State Council on Resolving Serious Production Overcapacity Conflicts [EB/OL]. (2013-10-15) [2019-01-21]. .]URL [本文引用: 1]
[The State Council. Opinions on Solving the Problem of Excess Capacity in Coal Industry and Realizing the Development of Difficulty Relief [EB/OL]. (2016-02-01) [2019-01-21]. .]URL [本文引用: 1]
[PangJ, Gao XM, Shi YC.The effect of energy and resources tax reform on income distribution of urban residents in China: An analysis based on input-output model [J]. China Environmental Science, 2019, (1): 402-411.] [本文引用: 1]
[WuH, YuJ.Problems and countermeasures since the reform of coal resources tax: Take Shandong Province’s coal resources tax reform as an example [J]. Tax Research, 2017, (8): 48-50.] [本文引用: 2]
[Xu XL, ChengQ, CheY, et al.Impact on industry development and energy saving and emission reduction by coal resource tax reform on [J]. China Population, Resources and Environment, 2015, 25(8): 77-83.] [本文引用: 1]
[LiuY, Zhou MF.The economic impact of coal resource tax reform on China: Based on the measurement of CGE model [J]. Macroeconomic Research, 2015, (2): 60-67.] [本文引用: 1]
[WuD.Study on the impact of resource tax reform on the coal industry based on the CGE model [J]. Contemporary Economic Management, 2014, 36(7): 62-65.] [本文引用: 1]
[13]
Zhang ZK, Guo JE, QianD, et al.Effects and mechanism of influence of China’s resource tax reform: A regional perspective [J]. Energy Economics, 2013, 36: 676-685. [本文引用: 1]
[Lin BQ, Liu XY, Zou CY, et al.Resource tax reform: A case study of coal from the perspective of resource economics [J]. China Social Sciences, 2012, (2): 58-78.] [本文引用: 3]
[Ren JQ.The impact of china’s steel and coal de-capacity on employment: An empirical analysis based on input-output table [J]. Macroeconomic Research, 2017, (10): 83-91.] [本文引用: 5]
[16]
Shi XP, RiouxB, GalkinP.Unintended consequences of China’s coal capacity cut policy [J]. Energy Policy, 2018, 113: 478-486. [本文引用: 3]
[Li ZJ, Yuan PF.Evaluation and route of overcapacity cutting: Analysis based on dynamic computable general equilibrium model [J]. China Soft Science, 2018, (1): 10-18.] [本文引用: 2]
[Zhang JL, Mu YD.Re-distribution of production capacity and labor factors: General equilibrium analysis based on CGE [J]. Management Modernization, 2017, 37(3): 30-32.] [本文引用: 4]
[20]
ShepherdC. China Provinces Fall Short on Coal and Steel Capacity Cuts [EB/OL]. (2016-08-19) [2019-01-21]. .URL [本文引用: 2]
[ShenY, Ding SH.On the relations between the reduction on industrial overcapacity and unemployment risk? [J]. Shanghai Economic Research, 2016, (11): 12-19.] [本文引用: 1]
[Cheng JJ.China’s industrial policy and excess capacity in the transition period: An empirical study based on the panel data of manufacturing [J]. Journal of Finance and Economics, 2015, 41(8): 131-144.] [本文引用: 2]
[GengQ, Jiang FT, FuT.Policy-relates subsidy, overcapacity and China’s economic fluctuation: Empirical testing based on RBC model [J]. China Industrial Economics, 2011, (5): 27-36.] [本文引用: 2]
[24]
Pan LY, LiuP, LiZ.A system dynamic analysis of China’s oil supply chain: Over-capacity and energy security issues [J]. Applied Energy, 2017, 188: 508-520. [本文引用: 1]
[25]
ZengM, ZhangP, Yu SK, et al.Overall review of the overcapacity situation of China’s thermal power industry: Status quo, policy analysis and suggestions [J]. Renewable and Sustainable Energy Reviews, 2017, 76: 768-774. [本文引用: 1]
[Qin SY.Effective exploration of workers’ diversion and resettlement in the process of de-capacity: Based on the analysis of steel de-capacity of MG(HF) company [J]. Macroeconomic Research, 2017, (2): 152-156.] [本文引用: 1]
[27]
LiW, LuC, DingY, et al.The impacts of policy mix for resolving overcapacity in heavy chemical industry and operating national carbon emission trading market in China [J]. Applied Energy, 2017, 204: 509-524. [本文引用: 1]
[28]
Wang JL, Feng LY, Tverberg GE.An analysis of China’s coal supply and its impact on China’s future economic growth [J]. Energy Policy, 2013, 57: 542-551. [本文引用: 1]
[29]
Dixon PB, RimmerM.Simulating the US Recession with or without the Obama Package: The Role of Excess Capacity [R]. Clayton: Centre of Policy Studies and the Impact Project, 2010. [本文引用: 2]
[30]
Dixon PB, Rimmer MT.You can’t have a CGE recession without excess capacity [J]. Economic Modelling, 2011, 28(1-2): 602-613. [本文引用: 2]
Peng XJ, Adams PD, LiuJ.China’s new growth pattern and its effect on energy demand and greenhouse gas emissions [J]. Global Energy Interconnection, 2018, 1(4): 428-442. [本文引用: 1]
[Guo ZQ, Zhang XP, Zheng YH.Impact of energy price fluctuations on energy-environment-economy system in China [J]. Chinese Journal of Management Science, 2018, 26(11): 31-41.] [本文引用: 1]
[LouF.Simulation study on the carbon tax impact on China’s macro economy and carbon emission reduction [J]. The Journal of Quantitative & Technical Economics, 2014, 31(10): 84-96.] [本文引用: 1]
[Wei WX.An analysis of China’s energy and environmental policies based on CGE model [J]. Statistical Research, 2009, 26(7): 3-13.] [本文引用: 1]
[38]
MaiY, Dixon PB, RimmerM.CHINAGEM: A Monash-Styled Dynamic CGE Model of China [R]. Clayton: Centre of Policy Studies and the Impact Project, 2010. [本文引用: 1]
[39]
BeckmanJ, HertelT.Why Previous Estimates of the Cost of Climate Mitigation Are Likely Too Low [C]. Santiago: The 12th Annual Conference on Global Economic Analysis, 2009. [本文引用: 1]
[40]
Liang QM, Wei YM.Distributional impacts of taxing carbon in China: Results from the CEEPA model [J]. Applied Energy, 2012, 92: 545-551. [本文引用: 1]
[41]
Mu YQ, WangC, Cai WJ.The economic impact of China’s INDC: Distinguishing the roles of the renewable energy quota and the carbon market [J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2955-2966. [本文引用: 1]
[ Qi XY, Guo PB.Study on total factor coal efficiency of industrial industry based on DEA model [J]. Science and Technology and Industry, 2017, 17(8): 59-63.] [本文引用: 1]
[National Development and Reform Commission. Notice on Further Accelerating the Construction of Coal Mine Capacity Replacement Work [EB/OL]. (2017-05-25) [2019-01-21]. .]URL [本文引用: 1]
[WangY, Zhu YE, Zhang JY, et al.Construction and development stage decision model of coal industry life cycle in China [J]. Resources Science, 2015, 37(10): 1881-1890.] [本文引用: 1]
[Sun XM, LiuK, Liu XJ.Industrial synergy effects of coal enterprises according to system dynamics [J]. Resources Science, 2015, 37(3): 555-564.] [本文引用: 1]