Carbon footprint and energy consumption based on life cycle assessment of wood-based panel industry in China
WANGShanshan1,2,, ZHANGHan2,3, YANGHongqiang1,2,4, 1. College of Economics and Management, Nanjing Forestry University, Nanjing 210037, China2. Research Center for Economics and Trade in Forest Products, SFA, Nanjing 210037, China3. Department of Economics and Management, Northwest A&F University, Yangling 712100, China;4. Center for the Yangtze River Delta’s Socioeconomic Development, Nanjing University, Nanjing 210093, China; 通讯作者:通讯作者: 杨红强,E-mail: yhqnfu@aliyun.com 收稿日期:2018-05-16 修回日期:2018-11-27 网络出版日期:2019-03-20 版权声明:2019《资源科学》编辑部《资源科学》编辑部 基金资助:江苏省“333高层次人才工程”科研项目(BRA2018070); 国家社会科学基金重点项目(14AJY014); 江苏省研究生科研与实践创新计划项目(KYCX18_0974) 作者简介: -->作者简介:王珊珊,女,江苏徐州人,博士研究生,助理研究员,主要研究方向为气候变化与林产品碳足迹。E-mail: wssnjfu@outlook.com
展开
摘要 降低温室气体排放是应对气候变化的重要措施,基于生命周期分析的碳足迹评估被广泛应用于量化产品的温室气体排放。在减排承诺背景下,林业部门在应对气候变化中具有重要贡献。中国作为世界最大的人造板生产和出口国,人造板行业的碳足迹和能源耗用问题,是评价林业产业环境影响的重要领域。本文依据ISO 14067标准,测度了中国胶合板、纤维板和刨花板行业“从摇篮到大门”系统界限的碳足迹,通过对比国内外人造板行业的能源耗用,评估了中国人造板行业的节能潜力,结合量化改进方案的减排效果,提出了人造板行业减排和市场结构改善的建议措施。研究发现:①中国现有人造板行业的碳足迹结构中,纤维板最大(708.74 kg CO2e),胶合板最小(312.08 kg CO2e),刨花板居中(410.79 kg CO2e)。其中原材料获取对碳足迹贡献最大,化工材料如脲醛树脂胶的生产和使用是最主要的温室气体排放源;②对标国际标准和技术进步要求,中国人造板行业的能源耗用可减少13.27%~47.99%;③用木质燃料替代化石能源,对人造板行业的温室气体减排可实现11.53%~42.30%的提升空间。
关键词:人造板行业;生命周期分析;ISO 14067;温室气体;碳足迹;能源耗用;中国 Abstract Reducing greenhouse gas emissions (GHG) is an important measure to cope with climate change. Carbon footprint (CF) analysis is widely used to quantify greenhouse gas emissions of a product during its life cycle. Given that China has committed to decreasing its carbon dioxide (CO2) emissions, the forestry sector has to make important contributions in this effort to mitigate climate change. China has become the largest wood-based panel producer and exporter worldwide. As the pillar of the forestry industry, evaluating carbon footprint and energy consumption of the wood-based panel industry is a vital part of environmental analysis of the forestry industry. Based on the ISO 14067 standard, this study quantified the carbon footprint of plywood, fiberboard and particleboard in China using a cradle-to-gate life cycle assessment approach. This study also evaluated the energy-saving potential of the wood-based panel industry in China by comparing the energy consumption in China and internationally. Finally, combined with the quantitative reduction effect of the improvement scheme, suggestions for reducing emissions and optimizing the market structure of the wood-based panel industry were provided. The results of this study show that fiberboard manufacturing produced the largest contributions to the emissions of greenhouse gases (708.74 kg CO2e), followed by particleboard (410.79 kg CO2e) and plywood (312.08 kg CO2e). During the life cycle, the raw material acquisition subsystem had the greatest impact on carbon footprint. The production and use of chemicals such as the urea-formaldehyde resin were the main sources of greenhouse gas emissions. The energy consumption of China’s wood-based panel industry was higher than the requirements of international standards and could be reduced by 13.27%~47.99%. China’s wood-based panel industry could potentially contribute to climate change mitigation in the future. In particular, as a substitute for fossil energy, using wood fuels could reduce the emission of greenhouse gases by 11.53%~42.30%.
Keywords:wood-based panel industry;life cycle assessment;ISO 14067;greenhouse gas emissions;carbon footprint;energy consumption;China -->0 PDF (3406KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 王珊珊, 张寒, 杨红强. 中国人造板行业的生命周期碳足迹和能源耗用评估[J]. 资源科学, 2019, 41(3): 521-531 https://doi.org/10.18402/resci.2019.03.10 WANGShanshan, ZHANGHan, YANGHongqiang. Carbon footprint and energy consumption based on life cycle assessment of wood-based panel industry in China[J]. RESOURCES SCIENCE, 2019, 41(3): 521-531 https://doi.org/10.18402/resci.2019.03.10
2.1.1 系统界限及功能单位 功能单位的选取是评估碳足迹的基础,本文定义功能单位为生产1 m3胶合板、纤维板和刨花板[34]。系统界限决定何种过程应包含在研究范围内[35]。人造板是中间产品,下游产品使用较难追踪且最终处理方式存在很大的不确定性,故本文系统界限定义为“从摇篮到大门”(图1),涵盖从上游原料获取到工厂生产完成运出分配的所有工序,细分为以下三个主要子系统:①原材料获取;②原材料运输;③现场生产。 显示原图|下载原图ZIP|生成PPT 图1本项研究的系统边界:基于“从摇篮到大门”的生命周期评估 -->Figure 1System boundary of the present study based on cradle-to-gate life cycle assessment -->
在所界定的“从摇篮到大门”系统内分析人造板行业碳足迹,结果显示,纤维板生命周期的碳足迹最大(708.74 kg CO2e),胶合板最小(312.08 kg CO2e),刨花板居中(410.79 kg CO2e),纤维板的碳足迹分别是胶合板和刨花板的2.27倍和1.73倍(图2)。纵向各阶段分析:原材料获取阶段,纤维板和刨花板排放的GHG均高于胶合板,主要原因是纤维板和刨花板的原料参与上游森林管理和木材加工的环境负荷的分配。原材料运输阶段,由于纤维板和刨花板原料来源广,运输过程三板碳排放大小顺序为:纤维板>刨花板>胶合板。现场生产阶段,纤维板的能源耗用远高于刨花板和胶合板,故其GHG排放最高,其次是刨花板,最后是胶合板,最大者是最小者的2.54倍。 显示原图|下载原图ZIP|生成PPT 图2人造板“从摇篮到大门”生命周期的碳足迹 -->Figure 2Cradle-to-gate life cycle carbon footprint of wood-based panels -->
根据ISO 14067,木材储存的生物碳应以负值形式单独报告。人造板中的平均碳含量为52.40%[14],基于这一参数,1 m3胶合板、纤维板和刨花板中生物碳储存量分别为-1307.69 kg CO2e、-1442.31 kg CO2e和-1346.16 kg CO2e。 横向单个板材的生命周期分析,胶合板的GHG排放主要集中在原材料获取阶段,占总碳足迹的51.27%,尤其是木质原材料的获取及脲醛树脂胶生产。相对来说,运输阶段GHG排放较低,仅占6.17%。纤维板生命周期中,原材料获取的贡献最大(48.14%),现场生产对总碳足迹的贡献达到47.59%。刨花板原材料获取阶段总排放占比56.64%,远高于运输阶段和现场生产的GHG排放。 表3反映了胶合板、纤维板和刨花板生命周期各阶段碳足迹占总碳足迹的比重。三板生命周期各阶段GHG排放大小趋势一致,即:原材料获取>现场生产>原材料运输。脲醛树脂胶的生产和使用对原材料获取阶段总碳足迹的贡献最大,分别占比19.15%、37.09%和39.56%。胶水是木质复合材料不可或缺的组成部分,与其他人造板生产国相比,中国生产1 m3纤维板消耗110 kg脲醛树脂胶,而西班牙、巴西、美国和加拿大则分别仅需44.44 kg、70.30 kg、83.30 kg和85.3 kg[51,52,53,54]。 Table 3 表3 表3胶合板、纤维板和刨花板生命周期各阶段的碳足迹比重 Table 3Proportion of the carbon footprint for plywood, fiberboard and particleboard in different life cycle stages
中国是人造板生产大国,但不是生产强国[55]。通过碳足迹核算挖掘碳减排潜力,可全面了解生产过程能源及物料使用效率,有利于提高使用效率并降低成本,从而开发出最具成本有效性的生产方案。为客观地评价中国人造板行业的能源消耗现状,本文将三板现场生产的能耗量与国外主要人造板生产国能耗量进行比较。在能源结构方面,中国人造板与国外板材接近,以热能中心供热为主,电能等用于生产设备供电。 表4反映了人造板生产国不同板材的能耗量。由于统计研究所采用的系统界限不一,绝大多数研究[17,56,57,59]建立“从摇篮到大门”的系统模型,仅部分研究[52,58]聚焦现场生产,建立“从大门到大门”的系统界限。还有少数研究[14,15,34]基于双重系统界限分析了不同生命周期的环境产出。因此,表4仅整理参引的国内外研究中涉及现场生产子系统的能耗。排除统计口径的不一致,以及排放系数的差异等原因,中国胶合板在所对比的国家中能耗最小。其原因在于胶合板作为中国人造板市场的主体,经过多年淘汰落后产能,已具备充分的国际行业竞争和技术优势[39]。巴西的纤维板和刨花板在所对比的国家中能耗投入最小,对标巴西的能耗量,中国人造板行业尚可减少13.27%~47.99%的能源消耗。 Table 4 表4 表4中国人造板现场生产子系统能源耗用与国外相关板材能源耗用对比 Table 4Comparison of energy consumption for on-site manufacturing in China and internationally
国外人造板行业多采用木质燃料供热。木质燃料是一种可再生燃料,可有效替代化石能源,从而能改善产品生产过程中的环境排放[63]。Kouchakipenchah等[58]研究发现,伊朗刨花板生产过程使用木质燃料替代化石能源燃烧供热,显著地降低了对环境的影响。中国胶合板、纤维板和刨花板生产消耗热能分别为:1505.20 MJ、3588.77 MJ和542.22 MJ,由蒸汽、原煤等实现。改进方案为:设计所有热能均由木质燃料提供。根据张南等[64]针对木质家具生态设计方案减排效果公式,本文提出的改进方案对GHG减排效果量化公式为: (2) 式中:EF为减排效果(%);GHGBS为人造板基准碳足迹(kg CO2e);GHGIS为改进方案碳足迹(kg CO2e)。按方案设计,使用木质燃料供热,胶合板的碳足迹为180.08 kg CO2e,减排效果最显著,减排约42.30%。纤维板和刨花板碳足迹下降较大,替代后碳足迹分别为605.78 kg CO2e和363.41 kg CO2e,有效减排14.53%和11.53%。总体来看,使用木质燃料替代化石能源的减排效果显著。
林业是应对气候变化国家战略的重要组成部分,减少林业排放是实现林业部门对气候变化贡献的有效手段。人造板行业不仅是林业产业中的支柱产业,在国际贸易中也占据主导地位。分析人造板的环境影响,做好节能工作,对发挥林业的减排贡献有借鉴意义。为综合评估中国人造板“从摇篮到大门”系统界限GHG排放及能源耗用,利用生命周期分析方法测度了三大主要板材的碳足迹,并进一步量化改进方案的减排效果,主要结论如下: (1)人造板行业。该行业中,三板的碳足迹 从大到小依次为:纤维板>刨花板>胶合板。1 m3胶合板、纤维板和刨花板中的生物碳储存量分别为-1307.69 kg CO2e、-1442.31 kg CO2e和-1346.16 kg CO2e。三大板材生命周期各阶段GHG排放大小趋势一致,即“原材料获取>现场生产>原材料运输”。化工材料,尤其是脲醛树脂胶的生产和使用是最大的GHG排放源,对总碳足迹的贡献达到19.15%~39.56%,且高于国外同类板材的使用量和排放量。 (2)对标国外市场。由于中国人造板行业的集中度低且企业规模较小、产业布局较分散等原因,现场生产能耗与国外市场差异性较大,生产成本高于国外市场,中国人造板行业还具有很大的节能潜力。对标巴西等在板材现场生产过程中能耗投入较小的国家,尚可减少13.27%~47.99%的能源耗用。 (3)燃料替代。采用木质燃料替代化石能源的改进方案,对人造板行业的GHG减排效果显著,可实现11.53%~42.30%的提升空间。 综上所述,虽然中国人造板行业发展进步较快,但其能源结构仍有待调整优化。基于木质燃料存储的碳有效抵消CO2排放的特性,大力开发木质燃料有助于实现GHG减排。同时,回收使用人造板生产过程产生的木质废料有助于减少运输阶段的能源耗用,从而降低全生命周期的碳足迹。人造板行业能源结构的优化转型,应坚持木质燃料等的可持续利用。 中国人造板市场结构也有改善空间,现行市场忽视了刨花板的发展潜力。根据中国林业统计[27],2011-2016年刨花板的消费量平均增长18.54%,超过胶合板和纤维板的平均增速(分别为17.81%和7.95%)。对标欧美市场,刨花板是欧美市场的主导产品,比重达50%以上。与世界人造板产业格局不同,中国刨花板仅占8.82%,市场规模过小。刨花板是中国人造板国际贸易中唯一进口量大于出口量的人造板材,进口量高达出口量的3倍。由于其不消耗大径材,在木材资源日益枯竭的现实背景下,发展刨花板有利于缓解林木资源匮乏的严峻性。同时,刨花板下游产业刚需旺盛,可作为家具和室内装修的主要材料和承重部件,部分替代胶合板和纤维板的使用。此外,碳足迹评估结果显示,刨花板在应对气候变化中有很大的减排潜力。其碳储量高于胶合板且碳足迹低于纤维板,能源耗用也远低于纤维板。在未来的产业结构调整中考虑进刨花板的减排潜力,发展优质刨花板的生产和使用,符合中国人造板产业结构升级方向。在此形势下,刨花板行业应致力于提高产品质量和降低生产能耗,同时调整优化生产能力构成,积极参与市场竞争,推动人造板行业在生态、环境、社会和经济等方面的可持续协调发展。 The authors have declared that no competing interests exist.
Intergovernmental Panel on Climate Change( IPCC ). 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol[R] . , 2014. [本文引用: 1]
[3]
Pan YD, Birdsey RA, Fang JY, et al. A large and persistent carbon sink in the world’s forests [J]. , 2011, 333(6045): 988-993. [本文引用: 1]
[4]
SathreR, O’Connor J. Meta-analysis of greenhouse gas displacement factors of wood product substitution [J]. , 2010, 13(2): 104-114. [本文引用: 1]
[5]
KutnarA, HillC.Assessment of Carbon Foot Printing in the Wood Industry[A]. Muthu S. Assessment of Carbon Footprint in Different Industrial Sectors [M]. , 2014. [本文引用: 1]
[Zhang XB, Yong HQ.Dynamic projection of storage efficiency and carbon pool structure of China’s harvested wood products based on GFPM [J]. , 2015, 37(7): 1403-1413. ] [本文引用: 1]
[LiuY, Shi HD, Zeng XG.A life-cycle carbon footprint assessment of electric power companies [J]. , 2011, 33(4): 653-658. ] [本文引用: 1]
[11]
Martínez-AlonsoC, BerdascoL.Carbon footprint of sawn timber products of Castanea sativa, Mill. in the north of Spain [J]. , 2015, 102(9): 127-135. [本文引用: 2]
[12]
LaurentA, Olsen SI, Hauschild MZ.Carbon footprint as environmental performance indicator for the manufacturing industry [J]. , 2010, 59(1): 37-40. [本文引用: 1]
[13]
KomataH, KatoY, TakayamaM, et al. Evaluation of greenhouse gas emissions and problems of the methods for the production of lumber, glued laminated timber and plywood [J]. , 2010, 539: 1-5. [本文引用: 1]
[14]
Wilson JB.Life-cycle inventory of medium density fiberboard in terms of resources, emissions, energy and carbon [J]. , 2010, 42(5): 107-124. [本文引用: 4]
[15]
Wilson JB.Life-cycle inventory of particleboard in terms of resources, emissions, energy and carbon [J]. , 2010, 42(5): 90-106. [本文引用: 3]
[16]
GarciaR, FreireF.Carbon footprint of particleboard: A comparison between ISO/TS 14067, GHG protocol, PAS 2050 and climate declaration [J]. , 2014, 66(2): 199-209. [本文引用: 2]
[17]
HussainM, Naseem MR, TaylorA.Carbon footprint as an environmental sustainability indicator for the particleboard produced in Pakistan [J]. , 2017, 155: 385-393. [本文引用: 4]
[18]
Newell JP, Vos RO.Accounting for forest carbon pool dynamics in product carbon footprints: Challenges and opportunities [J]. , 2012, 37(4): 23-36. [本文引用: 1]
[ChenS, Yang XG, Li YP, et al. Life cycle GHG emissions of paper in China [J]. , 2014, 40(6): 944-949. ] [本文引用: 2]
[20]
TaharaK, ShimizuH, NakazawaK, et al. Life-cycle greenhouse gas emissions of e-books vs. paper books: A Japanese case study [J]., 2018, 189: 59-66. [本文引用: 1]
[21]
González-GarcíaS, Gasol CM, Lozano RG, ,et al. Assessing the global warming potential of wooden products from the furniture sector to improve their ecodesign [J]. ,2011, 410-411: 16-25. [本文引用: 1]
[22]
LiuM, LiG Y. Carbon footprint assessment methods of wood furniture based on LCA [J]. , 2014, 912-914: 1600-1602. [本文引用: 1]
[23]
LinkosalmiL, HusgafvelR, FomkinA, et al. Main factors influencing greenhouse gas emissions of wood-based furniture industry in Finland [J]. , 2016, 113: 596-605. [本文引用: 1]
[ChenS, Hu JM, Shen NQ, et al. “Carbon footprint” calculation and analysis for laminate flooring [J]. , 2014, 28(2): 36-38. ] [本文引用: 1]
[25]
TakanoA, PittauF, HafnerA, et al. Greenhouse gas emission from construction stage of wooden buildings [J]. , 2014, 5(4): 217-223. [本文引用: 1]
[26]
Chang YS, KimS, Son WL, et al. Evaluation of greenhouse gas emission for wooden house using simplified life cycle assessment tool [J]. , 2017, 45(5): 650-660. [本文引用: 1]
[Li XP, Zhou DG, Yu YC.Value environment characters of crop stalks based board with life cycle assessment [J]. , 2010, 27(2): 210-216. ] [本文引用: 1]
[29]
Food and Agriculture Organization of the United Nations (FAO) . . (2019-01-10)[2019-01-23]. .URL [本文引用: 1]
[30]
British StandardsInstitution (BSI). Publicly Available Specification 2050: 2008 Specification for the Assessment of the Life Cycle Greenhouse Gas Emissions of Goods and Services [S]. , 2008. [本文引用: 1]
[31]
British StandardsInstitution (BSI). Publicly Available Specification 2050: 2011 Specification for the Assessment of the Life Cycle Greenhouse Gas Emissions of Goods and Services [S]. , 2011. [本文引用: 1]
[32]
. Product Life Cycle Accounting and Reporting Standard [S]. , 2011. [本文引用: 1]
[33]
International Organization forStandardization (ISO). ISO 14067: Carbon Footprint of Product-Requirements and Guidelines for Quantification and Communication [S]. , 2013. [本文引用: 1]
[34]
NakanoK, AndoK, TakigawaM, et al. Life cycle assessment of wood-based boards produced in Japan and impact of formaldehyde emissions during the use stage [J]., 2018, 23(4): 957-969. [本文引用: 4]
[35]
WuP, XiaB, WangX.The contribution of ISO 14067 to the evolution of global greenhouse gas standards: A review [J]. , 2015, 47: 142-150. [本文引用: 1]
[36]
EuropeanCommission.Analysis of Existing Environmental Footprint Methodologies for Products and Organizations: Recommendations, Rationale, and Alignment[R] . , 2011. [本文引用: 1]
[37]
JungmeierG, WernerF, JarnehammarA, et al. Allocation in LCA of wood-based products [J]. , 2002, 7(5): 290-294. [本文引用: 1]
[38]
FPInnovations. Product Category Rules (PCR) for Preparing an Environmental Product Declaration (EPD) for North American Structural and Architectural Wood Products [S]. , 2013. [本文引用: 1]
[National Bureau of Statistics of the People’s Republic of China. [M]. Beijing: China Statistics Press, 2018. ] [本文引用: 1]
[46]
González-GarcíaS, BergS, FeijooG, et al. Environmental impacts of forest production and supply of pulpwood: Spanish and Swedish case studies [J]. , 2009, 14(4): 340-353. [本文引用: 1]
[Zhang XZ, WangY, Wei HH, et al. Assessment of carbon footprint for a specific agricultural product and discussion of carbon label designing [J]. , 2018, (1):188-196. ] [本文引用: 1]
[Liu XL, Wang HT, ChenJ, et al. Method and basic model for development of Chinese reference life cycle database of fundamental industries [J]. , 2010, 30(10): 2136-2144. ] [本文引用: 1]
[The State Forestry Administration of the People’s Republic of China. Beijing: Standards Press of China, 2012. ] [本文引用: 1]
[51]
Athena Sustainable MaterialInstitute (ASMI). A Cradle-to-Gate Life Cycle Assessment of Canadian Medium Density Fiberboard (MDF): 2013 Update[R] . , 2013. [本文引用: 2]
[52]
RivelaB, Ma TM, FeijooG.Life cycle inventory of medium density fiberboard [J]. , 2007, 12(3): 143-150. [本文引用: 2]
[53]
Piekarski CM, de Francisco AC, Da LL, et al. Life cycle assessment of medium-density fiberboard (MDF) manufacturing process in Brazil [J]. , 2017, 575: 103-111. [本文引用: 2]
[54]
PuettmannM, OneilE, WilsonJ.Cradle to Gate Life Cycle Assessment of U. S. Medium Density Fiberboard Production[R] . , 2013. [本文引用: 1]
MeilJ, BushiL, GarrahanP, et al. Status of Energy Use in the Canadian Wood Products Sector[R] . , 2010. [本文引用: 7]
[57]
KaestnerD.Life Cycle Assessment of the Oriented Strand Board and Plywood Industries in the United States of America[D] . , 2015. [本文引用: 2]
[58]
KouchakipenchahH, SharifiM, MousazadehH, et al. Life cycle assessment of medium-density fiberboard manufacturing process in Islamic Republic of Iran [J]. , 2016, 112: 351-358. [本文引用: 3]
[59]
Silva D AL, Lahr F AR, Garcia RP, et al. Life cycle assessment of medium density particleboard (MDP) produced in Brazil [J]. , 2013, 18(7): 1404-1411. [本文引用: 2]
[Zhang FW, Chen SL, Zhang HX, et al. Life cycle assessment of oriented strand board production [J]. , 2017, 31(3): 31-34. ] [本文引用: 1]
[63]
SmythC, RampleyG, Lemprière TC, et al. Estimating product and energy substitution benefits in national scale mitigation analyses for Canada [J]. , 2016, 9:1071-1084. [本文引用: 1]
[ZhangN, LiN, LiuY, et al. Calculation of the carbon footprint of eco-design furniture and measures for its mitigation: A case study of wooden furniture [J]. , 2016, 36(22): 7235-7243. ] [本文引用: 1]
[65]
SandinG, Peters GM, SvanströmM.Life Cycle Assessment of Forest Products-Challenges and Solutions [M]. , 2016. [本文引用: 1]