Spatial correlation between the agglomeration and CO2 emissions of China’s tourism industry
WANGKai1,, YANGYaping1, ZHANGShuwen1, GANChang1, LIUHaolong2, 1. Tourism College of Hunan Normal University, Changsha 410081, China2. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China 通讯作者:通讯作者: 刘浩龙,E-mail:liuhl@igsnrr.ac.cn 收稿日期:2018-08-15 修回日期:2018-12-11 网络出版日期:2019-02-25 版权声明:2019《资源科学》编辑部《资源科学》编辑部 基金资助:湖南省社会科学基金项目(18YBA318)国家社会科学基金项目(18BJY191) 作者简介: -->作者简介: 王凯,男,湖南新宁人,博士,教授,博士生导师,研究方向为低碳经济、区域旅游发展规划。E-mail:kingviry@163.com
关键词:旅游产业集聚;旅游业碳排放;空间关联性;重心轨迹;回归模型;中国 Abstract The location quotient and decomposition method are used to estimate the degree of tourism industry agglomeration and the intensity of tourism CO2 emissions from 2001 to 2016. The approach of the center of gravity analysis and the spatial autocorrelation are applied to explore the spatial evolution and intrinsic correlation. A regression model of two issues is constructed to clarify the impact of tourism industry agglomeration on tourism CO2 emissions. Results show that: (1) The agglomeration of tourism industry and the intensity of tourism CO2 emissions are in an unbalance spatial distribution. The agglomeration of tourism industry is characterized by high-value in the east and central part, and low-value in the west, and the intensity of tourism CO2 emissions is opposite. (2) The concentration of tourism industry is distributed in Zhumadian City and Nanyang City and the junction zone in Henan Province. The overall trajectory of the tourism industry is slightly shifted to the northwest. The moving distance is about 112.362 km. The center of gravity of tourism CO2 emissions intensity is distributed in Shangluo City, Ankang City in Shaanxi Province, Shiyan City in Hubei Province. The center of gravity of trajectories shows a tendency toward the south to the east. The moving distance is about 256.734 km. (3) The tourism industry agglomeration will reduce the intensity of tourism CO2 emissions. There is a spatial negative correlation between tourism industry agglomeration and tourism CO2 emissions intensity. High agglomeration-low emissions are mainly distributed in Beijing, Tianjin, Shanghai, Jiangsu, Zhejiang, Guangdong, Guizhou, Yunnan and so on. Low agglomeration-high emissions are mainly distributed in the northwestern regions such as Xinjiang, Inner Mongolia, Ningxia, Gansu and Qinghai.
Keywords:tourism industry agglomeration;CO2 emissions from tourism;spatial correlation;gravity center trajectory;the regression model;China -->0 PDF (4155KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 王凯, 杨亚萍, 张淑文, 甘畅, 刘浩龙. 中国旅游产业集聚与碳排放空间关联性[J]. 资源科学, 2019, 41(2): 362-371 https://doi.org/10.18402/resci.2019.02.14 WANGKai, YANGYaping, ZHANGShuwen, GANChang, LIUHaolong. Spatial correlation between the agglomeration and CO2 emissions of China’s tourism industry[J]. RESOURCES SCIENCE, 2019, 41(2): 362-371 https://doi.org/10.18402/resci.2019.02.14
3.1.1 旅游产业集聚度 由图1可知,研究期内各省区旅游产业集聚水平逐步提高。旅游产业集聚水平较高的地区主要分布在经济发达的东部地区。2016年旅游产业集聚度大于2的仅有北京、天津、上海和贵州4省区。北京的旅游产业集聚度一直稳居全国前列,2016年其产业集聚水平高达2.607,位居全国第一。旅游产业集聚水平次之的省份主要分布在江西、河南、湖南和山西等中部省区;西部地区的甘肃、青海、宁夏、内蒙古以及新疆5省区的旅游产业集聚水平相对偏低,如宁夏旅游产业集聚水平一直处于全国最低水平,研究期内其旅游产业集聚水平尚未超过0.4。旅游产业集聚映射出我国旅游经济的稳健发展和较高的空间集聚性特征,在空间上表现为东重部高、西部地区相对较低的区域分异特征,这与高俊[39]等的研究结论基本一致。 显示原图|下载原图ZIP|生成PPT 图12001—2016年中国各省区旅游产业集聚水平及旅游业碳排放强度 注:因篇幅所限,仅列出部分年限的旅游产业集聚度和旅游业碳排放强度。 -->Figure 1The agglomeration and the carbon emissions intensity of tourism industry in 30 provinces in China from 2001 to 2016 -->
运用重心轨迹分析得出,旅游产业集聚重心分布在河南省驻马店市与南阳市及其交界地带,旅游业碳排放强度重心分布在陕西省商洛市、安康市以及湖北省的十堰市(图2)。2001—2016年,旅游产业集聚重心轨迹整体向西北小幅移动,大约移动112.362 km。旅游业碳排放强度重心轨迹整体呈向南略偏东的态势,研究期内移动距离大约为256.734 km。整体而言,两重心轨迹变化相对稳定,并未发生大幅偏转,说明我国各省区旅游业发展局部不平衡,但整体演化趋势相对稳定。 显示原图|下载原图ZIP|生成PPT 图22001—2016年中国旅游产业集聚与碳排放强度的重心变化轨迹 -->Figure 2Variation tracks of agglomeration and carbon emissions intensity of China’s tourism industry from 2001 to 2016 -->
3.3 旅游产业集聚对旅游业碳排放的影响分析
分别对模型和指标进行必要的检验,以保证回归结果的可靠性: (1)为减弱序列的共线性、异方差对回归结果的影响,确保样本数据的平稳性,将模型部分指标值取对数。 (2)以Hausman检验来判定模型是固定效应模型或是随机效应模型,若P值小于0.1,则选择固定效应模型;反之,则选择随机效应模型[41]。基于模型检验结果,依次对全国、东部、中部以及西部不同区域上旅游产业集聚与旅游业碳排放强度的关系进行回归分析。 由表2可知,在全国尺度上,旅游产业集聚对旅游业碳排放强度的系数显著为负,反映出旅游产业集聚程度的提升会明显降低旅游业碳排放强度,旅游产业集聚度每增加1个单位,旅游业碳排放强度下降0.042%。这与Han[20]和Denke[21]等关于工农业领域产业集聚有效推进碳减排的结论大体一致。从局域尺度看,旅游产业集聚对东部、中部和西部的旅游业碳排放强度的作用均为负值,且均通过显著性检验,西部的回归系数最大,中部次之,东部最小,说明虽然旅游产业集聚会降低各个地区的碳排放强度,但对西部的影响效应要高于东部和中部。这是由于东部地区旅游发展起步较早,旅游经济发展水平相对较高,劳动、资本以及技术等要素相对富集,节能减排技术先进,能源利用效率高,产业集聚水平高,集聚所产生的正外部性作用正趋于减弱。相比较而言,中、西部地区发展滞后,不具备上述优势条件,旅游产业集聚水平低,且内部差异大,集聚的外部性相对较大。 Table 2 表2 表22001—2016年中国旅游产业集聚对旅游业碳排放强度影响的回归分析结果 Table 2The regression results of the relationship between agglomeration and carbon emissions intensity of tourism industry in China from 2001 to 2016
由表3可知,旅游产业集聚与旅游业碳排放强度的全局Moran’s I指数小于0,并且均通过了10%显著性检验,显示二者存在显著空间负相关关系。 Table 3 表3 表32001—2016年中国旅游产业集聚和旅游业碳排放强度的空间相关指数 Table 3Spatial correlation indexes of agglomeration and carbon emissions intensity of China’s tourism industry from 2001 to 2016
旅游业碳排放强度
年份
Moran’s I
P
2001
-0.179
0.002
2002
-0.178
0.018
2003
-0.174
0.009
2004
-0.171
0.032
2005
-0.169
0.018
2006
-0.167
0.034
2007
-0.148
0.052
2008
-0.121
0.067
2009
-0.128
0.076
2010
-0.187
0.086
2011
-0.124
0.084
2012
-0.117
0.090
2013
-0.112
0.092
2014
-0.125
0.094
2015
-0.114
0.097
2016
-0.128
0.098
新窗口打开 2001年和2016年中国旅游产业集聚和旅游业碳排放强度分布情况如表4所示。由表4可以看出: Table 4 表4 表4中国旅游产业集聚和旅游业碳排放强度分布情况 Table 4Agglomeration and carbon emissions intensity distribution of China’s tourism industry
(1)制定差异化的区域旅游业碳减排措施。东部地区需放大旅游产业集聚的规模经济效应,发挥资金、技术以及人才等要素优势,强化其在我国旅游低碳化发展中的示范引领作用;中西部地区应推动旅游产业结构转型升级,加快提高产业集聚水平,充分激发旅游产业集聚的正向外部效应。同时,应建立区域旅游联动机制,促进旅游人才、资金和技术等要素流动,形成区域统筹协调、产业融合互补和资源共建共享的格局,进一步缩小旅游业省际差异,推动旅游产业在空间上合理集聚和区域间均衡发展。 (2)在我国旅游产业发展中,需重点关注低集聚-高排放类型的省区,相对于东部沿海省区而言,该类型省区旅游经济发展水平和产业集聚程度偏低,节能减排技术落后,能源利用效率较低。应通过优化产业结构,进一步提高旅游业集聚水平,充分发挥产业集聚的减排效应;引进东部沿海高集聚-低排放类型区的能源利用技术和学习节能减排先进经验,着力提高能源使用效率,不断降低旅游业碳排放强度。此外,通过合理引导区域旅游业集聚为产业节能减排创造良好的外部环境;还应转变旅游经济粗放型增长方式,加大环境规制和对外开放力度,以促进我国旅游业集约化和低碳化发展。 (3)由于旅游企业数量、旅游从业人数等相关数据难以获取,在实际测算时,本文甄选旅游总收入与国民经济总产值之比来测度旅游产业集聚度,未能考虑其他相关指标;同时,由于影响旅游业碳排放的因素较多,而本文仅遴选了旅游经济增长水平、对外开放水平、环境规制水平等变量。后续研究需进一步挖掘和分析数据,选用更为全面的参数值测度我国旅游产业集聚度;同时还应进一步丰富和完善旅游业碳排放的驱动因子体系,从而更加准确深入分析。 The authors have declared that no competing interests exist.
[GaoP, Xi JC.Tourism industry agglomeration and mechanisms for rural settlements of Gouge Village in Yesanpo, Hebei Province [J]. , 2017, 39(8): 1535-1544. ] [本文引用: 1]
[Liu SH, Liang MZ.Development path of tourism agglomeration in recreational belt around urban agglomeration of the greater pearl river delta-A case study of tourism section for coastal region and mountain area in Guangdong Province [J]. , 2015, 35(6): 190-197. ] [本文引用: 1]
[LiuJ, Zhang JJ.The research of Chinese mainland coastal tourism industry cluster characteristics evolution and it’s influencing factors [J]. , 2014, 30(3): 73-78. ] [本文引用: 1]
[Wang EX.Study on spatial agglomeration and urbanization level evaluation of tourism industry in urbanization process [J]. , 2018, 15(4): 152-154. ] [本文引用: 2]
[13]
BeckenS.A review of tourism and climate change as an evolving knowledge domain [J]., 2013, 6: 53-62. [本文引用: 1]
[Yuan YJ.Tourism in China: Indirect energy consumption and carbon emissions [J]. , 2013, 28(10): 81-88. ] [本文引用: 1]
[15]
BeckenS, PattersonM.Measuring national carbon dioxide emissions from tourism as a key step towards achieving sustainable tourism [J]. , 2006, 14(4): 323-338. [本文引用: 1]
[WangK, Shao HQ, Zhou TT, et al. Analysis of impact factors of CO2 emissions from tourism in China based on STIRPAT model [J]. , 2017, 37(3): 1185-1192. ] [本文引用: 2]
[Zeng YX, Zhong LS, YuH.Evaluation of the tourism efficiency loss due to the influence of carbon emissions from tourism in China [J]. , 2017, 37(22): 7463-7473. ] [本文引用: 1]
[18]
TangC, ZhongL, JiangQ.Energy efficiency and carbon efficiency of tourism industry in destination [J]. , 2018, 11(3): 539-559. [本文引用: 1]
[19]
Reddy PS, Samsul AM, Chen CF.The effects of tourism on economic growth and CO2 emissions: A comparison between developed and developing economies [J]. , 2017, 56(6): 712-724. [本文引用: 1]
[20]
HanF, XieR, LuY, et al. The effects of urban agglomeration economies on carbon emissions: Evidence from Chinese cities [J]. , 2018, 172(1): 1096-1110. [本文引用: 2]
[21]
ChenD, ChenS, JinH.Industrial agglomeration and CO2 emissions: Evidence from 187 Chinese prefecture-level cities over 2005-2013 [J]. , 2018, 172(1): 993-1003. [本文引用: 2]
[HanF, XieR.Does the agglomeration of producer services reduce carbon emissions? Spatial econometric analysis of the urban panel data at and above the prefectural level in China [J]. , 2017, 34(3): 40-58. ] [本文引用: 1]
[GuoY, Zhong TY, AnY.The effects of agglomeration on the total factor productivity of China’s tourism industry: An empirical study based on China’s provincial panel data [J]. , 2015, 30(5): 14-22. ] [本文引用: 1]
[26]
BeckenS, Simmons DG, FramptonC.Energy use associated with different travel choices [J]. , 2003, 24(3): 267-277. [本文引用: 1]
[Wei YX, Sun GN, Ma LJ, et al. Estimating the carbon emissions and regional differences of tourism transport in China [J]. , 2012, 40(2): 76-84. ] [本文引用: 2]
[Hu ZQ, Miao JM, Miao CH.Spatial characteristics and econometric test of industrial agglomeration and pollutant emissions in China [J]. , 2018, 38(2): 168-176. ] [本文引用: 1]
[Pan ZQ, Liang BE.Research on space-time heterogeneity of tourism industry carbon emission intensity distribution and influencing factors: Analysis of panel data from 30 provinces(cities and districts) from 2005 to 2014 [J]. , 2016, 31(6): 152-158. ] [本文引用: 2]
[GaoJ, Zhang LL.Study on relationship of China’s tourism industry agglomeration, total factor productivity and tourism economy [J]. , 2017, 33(8): 1005-1010. ] [本文引用: 1]