Spatio-temporal dynamics of soil organic carbon in coastal saline soil of Dongtai City
SUNYan1,, ZHENGGuanghui2,, JIAOCaixia2, LVLigang1, ZHANGYunpeng3 1. School of Public Administration,Nanjing University of Finance & Economics,Nanjing 210046,China2. School of Geography and Remote Sensing,Nanjing University of Information Science& Technology,Nanjing 210044,China3. College of Geomatics Science and Technology,Nanjing Tech University,Nanjing 211800,China 通讯作者:通讯作者:郑光辉,E-mail:zgh@nuist.edu.cn 收稿日期:2017-04-7 修回日期:2017-06-18 网络出版日期:2017-10-20 版权声明:2017《资源科学》编辑部《资源科学》编辑部 基金资助:国家自然科学基金项目(41201215;41401629)江苏高校优势学科建设工程资助项目 作者简介: -->作者简介:孙燕,女,山东淄博人,博士,讲师,主要从事土地资源利用与生态环境方面的研究。E-mail:nj_sunyan@163.com
关键词:海岸滩涂;滨海盐土;土壤有机碳;时空变化;东台市 Abstract Coastal saline soil is a special type of land use, which has a low content of organic matter and a high capacity of carbon sequestration. The study on the spatio-temporal variation of organic carbon in coastal saline soil has practical significance in understanding the transformation of soil carbon source and sink and regulating climate change. This study was carried out using geo-statistics and geographical information system (GIS)technologies to explore the spatio-temporal variability of soil organic carbon content in different soil layers(0~5,5~10,10~20,20~30,30~40,40~60,60~80,80~100, 0~100cm)in Dongtai City since 4000 BC. We found 2.01~10.16 g·kg-1 in the study area,and that different variation(strong,moderate or constant)was determined by the variation coefficient. According to geo-statistical analysis,strong spatial correlation was found in different layers of organic carbon and the value of the nugget effect varied from 0.01~0.51. The results of the ordinary Kriging demonstrated that soil organic carbon in the West Dike varied from 5.75~16.87 g·kg-1,while the value in the East Dike varied from 1.12~4.70g·kg-1. The soil organic carbon of Dongtai showed an increasing trend from beach to inland in whole soil layers. However,along with the increase in soil depth,soil organic carbon showed a banded decreasing trend with local characteristics and patches. Soil organic carbon content has a close relationship with soil depth,reclamation and fixed number of years,and land use. The average annual change in soil organic carbon content was 0.0017 g·kg-1 at the Millennium scale,0.0055g·kg-1 at the centennial scale,and 0.0048g·kg-1 at the ten-year scale. This study indicates that there is spatio-temporal variation of coastal soil organic carbon content,which decreased with reclamation time and soil depth.
表1、图2为研究区各土层有机碳含量的统计结果。从图中可以看出,研究区0~100cm土壤有机碳平均含量介于(2.01~10.16)g/kg,随着剖面深度的增加逐渐降低(图2)。其中,0~5cm表层的有机碳含量最高,介于(3.16~28.63)g/kg之间;80~100cm的有机碳含量最低,介于(1.05~11.20)g/kg之间。变异系数可以有效揭示随机变量的离散程度,一般认为,CV<10%为弱变异性,10%<CV<100%为中等变异性,CV>10%为强变异性[12]。从变异系数来看,研究区土壤有机碳含量基本属于中等变异,80~100cm深度为强变异。对不同土层深度的土壤有机碳数据进行了K-S分布检验,结果表明在0.05的显著性水平下土壤有机碳服从正态分布,可以直接进行地统计学分析。 Table 1 表1 表12014年东台市不同土层深度土壤有机碳含量统计结果 Table 1Statistic results of soil organic carbon in different soil layers in Dongtai City in 2014
土层深度 /cm
最大值/ (g/kg)
最小值/ (g/kg)
均值/ g/kg)
标准差 SD
偏度
峰度
变异系数CV/%
P值
0~5
28.63
3.16
10.16
5.69
1.79
4.46
55.99
0.28
5~10
30.34
0.80
8.89
6.16
2.06
6.50
69.27
0.16
10~20
21.95
0.89
6.39
4.26
2.32
8.33
66.69
0.21
20~30
18.82
0.84
4.17
3.84
2.88
10.28
92.18
0.12
30~40
7.93
1.13
3.12
1.94
1.09
0.25
62.06
0.28
40~60
11.50
1.03
2.97
2.75
1.98
3.64
92.71
0.08
60~80
7.21
0.83
2.01
1.67
2.33
4.66
82.88
0.13
80~100
11.20
1.05
2.36
2.67
2.95
7.81
113.12
0.06
0~100
16.90
1.49
5.01
3.29
2.42
7.86
65.68
0.22
新窗口打开 显示原图|下载原图ZIP|生成PPT 图22014年东台市不同土层深度的土壤有机碳含量统计结果注:每个土层区间内的所有采样点构成一个该土层区间的有机碳含量分布小提琴图,当某土层区间的有机碳含量分布越集中,小提琴图在相应集中的有机碳含量位置表现越宽,如60~80cm土层的样点有机碳含量表现最为集中,主要聚集在(1~2)g/kg之间。 -->Figure 2Statistic results of soil organic carbon in different soil layers in Dongtai City in 2014 -->
3.2 不同土层土壤有机碳含量特征
对各剖面深度的数据应用GS+9.0软件进行半方差分析,根据决定系数(R2)和残差(RSS)等判断函数的最优拟合模型。地统计分析结果(表2)表明,0~100cm土层拟合程度相对较差,R2仅为0.45,其他土层拟合程度相对较好,介于0.54~0.92之间。0~5cm、5~10cm、10~20cm、30~40cm土层土壤有机碳含量最优半方差模型为指数模型,20~30cm最优半方差模型为高斯模型,其余土层最优半方差模型均为线性模型。各土层块金值(C0)介于0.01~0.51之间。0~5cm、10~20cm、20~30cm土层块金效应值均 25%,表明土壤有机碳具有强烈的空间自相关性。5~10cm土层块金效应值约25.34%,表明该土层土壤有机碳具有中等强度的空间变异性。40cm以下土层及0~100cm块金效应值等于100%,表明该土层土壤有机碳在整个尺度上具有恒定的变异。变程是指变异函数在有限步长上达到基台值时对应的步长,也叫做自相关距离,因为变程是空间自相关性的最大距离,在该值上自相关性为0,大于该距离的区域化变量不存在空间自相关性。根据计算结果,0~5cm、5~10cm两个土层变程较大且相等,为213km,说明0~10cm土壤表层有机碳含量在较大空间范围内具有自相关性;10cm以下土层变程降至12.51~36.87km,说明可能是由于受到土地利用方式变化、土壤植物根系生长深度变化等原因,土壤有机碳含量的空间变异范围缩小。 Table 2 表2 表2东台市不同土层深度土壤有机碳含量变异函数理论模型及其相关参数 Table 2Variogram theory models of soil organic carbon content and their corresponding parameters in different soil layes in Dongtai City
土壤有机碳含量普通克里金空间插值结果如图3所示。插值精度(表3)显示,各土层插值决定系数均在0.9以上,插值精度较高。从空间分布形态来看,0~100cm土壤有机碳密度总体表现出沿海岸线随土壤年代的更新而递减的条带状变化特征,但条带并未平行于各时期海岸线,且出现头灶镇、东台镇等地区局部含量偏高的特点。西南角的溱东镇、石堰镇最高,靠近现代海岸线的东台农场、省琼港农场密度最低。以范公堤(1027AD海岸线)为界,堤西地区的水稻土有机碳含量明显偏高,介于(5.75~16.87)g/kg,主要分布在溱东镇、石堰镇两镇、五烈镇、梁垛镇四镇。堤东地区的潮盐土有机碳含量随围垦年代的减少而逐渐降低,介于(1.12~4.70)g/kg之间。1929年以来(1929AD年海岸线)有机碳含量逐渐均匀,介于(1.12~2.23)g/kg之间。 显示原图|下载原图ZIP|生成PPT 图32014年东台市不同土层深度土壤有机碳含量分布 -->Figure 3Spatial distribution of soil organic carbon content in different soil layers in Dongtai City in 2014 -->
Table 3 表3 表3东台市土壤有机碳含量普通克里金插值精度评价决定系数 Table 3Precision evaluation indices of ordinary Krigjing of soil organic carbon content in Dongtai City
根据时间尺度分析方法,计算出不同年代各土层土壤有机碳的平均含量和年均变化值(图4和图5)。 显示原图|下载原图ZIP|生成PPT 图4东台市各时期不同土层深度的土壤有机碳含量 -->Figure 4Variability of soil organic carbon in different soil layers in different periods in Dongtai City -->
显示原图|下载原图ZIP|生成PPT 图5东台市不同时间尺度下的土壤有机碳含量年均变化值 -->Figure 5Average annual change value of soil organic carbon in different time scales in Dongtai City -->
结合地统计学和GIS技术对江苏省东台市海岸滩涂土壤有机碳含量的时空变化特征进行了分析,得到了以下结论: (1)东台市海岸滩涂0~100cm土壤有机碳平均含量介于(2.01~10.16)g/kg。在垂直方向上,土壤有机碳主要分布在0~20cm土层,且随剖面深度的增大逐渐减小。在水平方向上,随着围垦年限的减少自内陆向沿海逐渐降低。就变异系数来看,研究区各土层土壤有机碳属于中等程度变异且变异系数较高,可能是由于研究区围垦年限较长,尤其是范公堤以西地区,人类改造利用土地方式剧烈,对土壤的干扰较强所致。 (2)土壤的异质性是由结构性因素和随机因素共同作用的结果。从研究结果来看,研究区各土层土壤有机碳块金值介于0.01~0.51之间,表现为强烈的空间自相关和中等强度的自相关。40cm以下土层及0~100cm块金效应值等于100%,表明该土层土壤有机碳在整个尺度上具有恒定的变异。 (3)普通克里金插值结果表明,研究区各剖面深度土层土壤有机碳含量呈现随成土年代的更新而递减的条带状变化特征,并伴有局部化、斑块化等特征。 (4)根据不同时间尺度下的各土层土壤有机碳的平均含量和年均变化值,千年尺度下,土壤有机碳含量年均变化比较平稳,各土层变化不大,年均变化值约为0.0017g/kg;百年尺度下,土壤有机碳含量年均变化呈现剧烈下降态势,变化比较均一,年均变化值约为0.0055g/kg;十年尺度下,土壤有机碳含量年均变化呈现出剧烈震荡态势,年均变化值约为0.0048g/kg。不同时间尺度下土壤有机碳含量变化与土层深度、围垦年限、植物根系生长深度以及土地利用方式存在密切关系。 The authors have declared that no competing interests exist.
[XuY,Pu LJ.The variation of land use pattern in tidal flat reclamation zones in Jiangsu Coastal Area:a case study of Rudong County of Jiangsu Province [J]. ,2014,29(4):643-652.] [本文引用: 1]
[Hou XJ,Yang JS,Wang XP,et al.Effects of fertili-zation on soil organic carbon and distribution of SOC in aggre-gates in tidal flat polders [J]. ,2015,52(4):818-827.] [本文引用: 1]
[5]
Olsen MW,Frye RJ,Glenn EP.Effect of salinity and plant species on CO2 flux and leaching of dissolved organic carbon during decomposition of plant residue [J]. ,1996,179(2):183-188. [本文引用: 1]
[Yu JB,Wang YL,Dong HF,et al.Estimation of soil organic carbon Storage in coastal wetlands of modern yellow river delta based on landscape pattern [J]. ,2013,11(1):1-6.] [本文引用: 1]
[Mi YB,Yang JS,Yao RJ,et al.Effects of farming practice on soil respiration,ECe and organic carbon in coastal saline soil [J]. ,2016,53(3):612-620.] [本文引用: 2]
[Hou XJ,Yang JS,ZhaoM,et al.Effects of tillage on soil organic carbon and stability of soil aggregates in costal saline soil region [J]. ,2015,47(4):781-789.] [本文引用: 2]
[Jin WH,Yang JS,Wang XP.Spatial distribution of organic carbon in coastal saline soil and its correlation with reclamation age [J]. ,2013,29(5):89-94.] [本文引用: 5]
[XuZ,ZuoP,Wang JJ,et al.Effects of land use changes on the organic carbon storage of the soil in Yancheng coastal wetlands [J]. ,2014,(4):444-450.] [本文引用: 2]
[Shi LJ,Zheng LB,Mei XY,et al.Characteristics of soil carbon and nitrogen in Shanghai under different land utilization way [J]. ,2010,21(9):2279-2287.] [本文引用: 1]
[Zhang TY,Ge ZM,Zhang LQ,et al.Influence of saltmarsh vegetation and sedimentation on the distribution of soil carbon and nitrogen in the Chongming Dongtan wetlands [J]. ,2015,35(3):836-843.] [本文引用: 2]
[Li XM.Changes of spatial distribution of soil organic carbon storage and land use from 1979 to 2013 in Tianjin Binhai new area [J]. ,2016,36(3):136-140.] [本文引用: 1]
[Yu JB,Wang YL,Dong HF,et al.Estimation of soil organic carbon storage in coastal wetlands of modern Yellow River Delta based on landscape pattern [J]. ,2013,11(1):1-6.] [本文引用: 1]
[ Zhang ZD,Yang CH.Variations in soil organic carbon storage and the potential for carbon sequestration by topsoil over 25 years [J]. ,2013,35(4):809-815.] [本文引用: 1]
[Wu BC,Liu QX,HuJ,et al.Variation of characteristics of plant community in tidal flats during different reclamation periods in Dongtai City,Jiangsu Province [J]. ,2015,43(6):548-554.] [本文引用: 3]
[Cao LF,Zhong QC,LiuQ,et al.Effects of different plant arrangement modes on soil organic carbon storage and soil respiration in a reclaimed coastal wetland [J]. ,2014,23(5):668-675.]
[ZhuD,GaoS.The expansion of Spartina alterniflora marsh in response to tidal flat reclamation,central Jiangsu coast,eastern China [J]. ,2014,33(12):2382-2392.] [本文引用: 1]
[Li JG,Pu LJ,Xu CY,et al.The changes and dynamics of coastal wetlands and reclamation areas in central Jiangsu from 1977 to 2014 [J]. ,2015,70(1):17-28.] [本文引用: 1]
[Jia QW,Liu XF,Xiao PY,et al.Composition and distribution characteristics of organic matter in soil profiles of Yancheng flats [J]. ,2015,13(1):74-79.] [本文引用: 1]
[Wang HM,Xie YZ,WangK.Spatial heterogeneity of soil moisture in different artificial grasslands with finer scales [J]. ,2013,21(6):1052-1058.] [本文引用: 1]
[ Liu YF,Song YL,GuoL,et al.Geostatistical models of soil organic carbon density prediction based on soil hyperspectral reflectance [J]. ,2017,33(2):183-191.] [本文引用: 1]