西南财经大学工商管理学院,成都 611130
Measurement and spatial econometrics analysis of provincial industrial ecological efficiency in China
LUYanqun, YUANPeng通讯作者:
收稿日期:2016-09-20
修回日期:2017-01-5
网络出版日期:2017-07-20
版权声明:2017《资源科学》编辑部《资源科学》编辑部
基金资助:
作者简介:
-->
展开
摘要
关键词:
Abstract
Keywords:
-->0
PDF (824KB)元数据多维度评价相关文章收藏文章
本文引用格式导出EndNoteRisBibtex收藏本文-->
1 引言
改革开放以来,中国工业经济规模不断攀升,工业增加值从1978年的1602亿元增长到2014年的72 165亿元(按1978年不变价格折算),成为推动中国经济飞速发展的引擎。总体而言,中国已经完成从建国初期的农业大国向工业体系较为完善的工业大国的历史性转变。然而,中国工业发展主要依赖高投入、高消耗和高污染排放的传统增长模式,资源过度消耗、环境污染和生态失衡等问题日益加剧,已成为制约中国工业进一步发展的重要因素。不转变这种粗放型的发展模式,中国将难以实现从工业大国向工业强国转变的目标。从包括中国在内的各国经验来看,在工业化初期,由于技术水平落后,经济资源总量有限,不得不以牺牲环境为代价来换取经济增长。但是,随着工业化的深入,经济系统的良性循环使得人类可以将更多的技术、资源用于改善和保护生态环境,而良好的生态环境使得资源的再生能力可以满足经济增长的需要,实现经济与生态环境的良性互动。当前,中国正处于工业转型升级的关键阶段,如何处理好工业发展与生态环境之间的关系,提高经济发展过程中的生态效率是亟需解决的重要问题。党的十八大报告对生态文明建设进行了专题论述,强调要把生态文明建设摆在总体布局的高度来对待。这就要求要把经济发展与环境割裂开来的传统增长模式彻底摒弃,在经济社会生产、消费、流通等各个环节以更小的资源环境消耗产生更大的经济效益,同时将更多的资源运用于环境治理,实现工业发展与生态环境承载能力相协调,切实提高工业生态效率。因此,研究中国工业的生态效率及其影响因素,对于制定污染减排政策,转变工业发展模式,促进工业与生态环境协调发展,实现建设生态文明的目标具有重要的现实意义。
2 文献回顾
生态效率的概念最早由Schaltegger等于1990年提出,用于衡量经济活动的环境绩效[1]。1992年,世界可持续发展工商业联合会(WBCSD)对其概念进行了推广界定,即“在提供有价格竞争优势的产品和服务以满足人的基本需求和提升生活质量的同时,在全生命周期内逐步减少产品的环境影响和资源的消耗强度,使之至少达到与估算的地球承载力相一致的水平”[2]。生态效率的概念强调资源与环境相协调的绿色发展,旨在创造价值的同时降低对环境造成的负面影响。国际经济合作与发展组织(OECD)将生态效率定义为“为符合人类需求而使用生态资源的效率”[3]。因此,可将生态效率视为经济产出与环境投入的比值,产出指所有满足人类需求的合意产出,而经济系统产生的污染物、对环境造成的压力即负面影响等非合意项即可视为环境投入。提升生态效率就是要提高资源利用效率,尽可能地降低环境投入而最大化经济产出,实现经济的可持续发展。****对环境问题关注已久,较为普遍的做法是构建一个考虑环境质量的绿色生产率的综合指标,这类研究基于生产理论将环境污染物作为非期望产出,纳入生产技术效率的评估模型中,对环境约束下资源的利用效率进行研究[4,5]。这类研究的主要特点是将环境投入与其他经济资源同时纳入环境全要素生产率的计算与研究中,不能将生态效率区分出来进行独立分析。而生态效率将环境要素作为投入指标,直接计算经济增长与环境投入之间的变化关系,能对环境问题进行更直接、更有针对性的分析。
生态效率的提出为研究经济增长和环境问题提供了科学的评判标准[6],引发了****的关注与研究。最早,生态效率在国外被用于衡量企业运营的生态环境绩效[7],但由于环境污染具有很强的外部性,如果仅从企业层面出发,生态环境问题难以得到有效解决。因此,生态效率的研究则更多地转向产业层面以及区域较为宏观的层面,国外研究也大部分集中于工业园区、城市、区域甚至国家等几个层面[8,9]。随着中国环境问题的加速恶化,中国的生态效率问题也吸引了大量研究。其中,大多数研究围绕生态效率的测算进行实证分析。这类研究所采用的技术方法大致分为两类:第一类是通过建立相应的指标体系,构建生态效率的综合指数[10,11],这类研究的关键问题是要对各项污染物指标进行科学赋权,难点在于指标权重的确定具有主观性和随意性;第二类是采用数据包络方法(DEA)对生态效率进行测算[12,13],这类研究通过内生化最优权重可以对非价格指标以及难以主观确定权重的指标进行分析,避免了主观赋权的随意性,但由于DEA模型的参数设置略有不同,所得结果也存在一定差异。
由于不同的时间截面生产技术存在很大差异,仅从空间位置的维度对生态效率进行静态评估并不能反映其动态变化。为此,杨文举将生态效率的测算从静态分析推广到了动态分析层面,认为生态效率变化主要来自于希克斯中性技术进步与相对生态效率恶化[14]。张子龙等则通过对工业生态效率的动态变化进行研究,发现工业生态效率在不同的地理位置上存在很大的差异性,且空间差异存在“收敛效应”[15]。随着空间统计学的广泛应用,成金华等采用空间探索分析方法对生态效率的区域差异和空间关联模式进行了分析[16]。
综上所述,针对中国生态效率的研究已较为丰富。然而,已有研究普遍存在的局限在于没有考虑生态效率及其影响因素的空间效应问题。虽然成金华等对生态效率的空间效应进行了探索性统计分析,但尚未有文献建立空间面板计量模型对其影响因素进行检验[16]。Anselin、Cliff等认为经济现象存在高度的区域互动性,空间效应的存在使得某一区域的工业生态效率不仅受自身经济变量的影响,还会受到相邻区域的经济变量影响,因此,工业生态效率在地理空间上可能并不服从独立随机分布,忽略空间效应的传统计量模型对影响因素的检验将会出现偏差[17,18]。
鉴于此,本文首先利用规模报酬可变的数据包络分析法构建工业生态效率评价模型,对2005-2014期间中国省域工业生态效率进行测算。在此基础上,为避免传统计量模型处理空间效应的局限性,采用空间计量模型对工业生态效率的影响因素进行了检验。
3 工业生态效率测算
3.1 生态效率的测算方法
根据WBCSD和OECD对生态效率的定义,生态效率度量了某一企业、产业或区域创造单位经济价值时对环境或生态系统造成破坏与影响的大小,表示如下[2]:式中
式中
Kuosmanen等提出了应用DEA模型对生态效率进行测算的思路[19]。因此,本文在DEA框架下采用规模报酬可变的DEA模型(以下简称VRS_DEA)对生态效率进行测算[20]。假设有n个决策单元(DMU),每个决策单元产生的经济价值为
式中
式中
3.2 数据来源与处理
本文选取工业增加值作为工业经济活动产生的经济价值指标,以工业废水、废气排放总量及固体废弃物的产生量作为生态压力指标,数据来源于2006-2015年间的《中国工业统计年鉴》[21]和《中国统计年鉴》[22]。为便于比较分析,选取了2005-2014年期间中国大陆30个省级地区作为研究样本(不包括港澳台数据,西藏数据缺失较多,也不包括在样本中)。为消除价格水平波动的干扰,以2005年为基期对工业增加值进行平减。以上4项指标的描述性统计见表1。Table 1
表1
表1指标描述性统计
Table 1Descriptive statistics
变量 | 最大值 | 最小值 | 均值 | 标准差 |
---|---|---|---|---|
工业增加值/亿元 | 79 121 | 860 | 16 734 | 13 464 |
工业废水排放量/万t | 296 318 | 5 782 | 76 744 | 65 374 |
工业废气排放量/亿m3 | 45 625 | 127 | 8 047 | 7 528 |
固体废弃物产生量/万t | 24 224 | 156 | 5 108 | 4 793 |
新窗口打开
3.3 测度结果分析
基于VRS_DEA测算模型,在测算过程中,采用了DEA-Windows模型处理面板数据的思路,将所有时期的样本汇总形成总的参考集进行效率测算,使效率值更具可比性[4],结果见表2。2005-2014年期间,大部分地区的工业生态效率呈现出波动向上的趋势。在2005年,全国工业生态效率均值为0.475,0.70以上的仅有海南、广东、青海等3个省市;到2014年,全国工业生态效率均值增加到0.553,0.70以上的省市增至包括广东、北京、天津、上海、山东、青海、江苏、海南等在内的8个省市,这反映中国工业生态效率整体上正在逐步改善。从工业生态效率的年均值来看,排名前五位的地区依次广东、海南、北京、天津、青海,均超过了0.70,其中,除青海以外全部位于东部区域;排名后五位的地区为广西、山西、云南、安徽、新疆,均位于中西部地区,工业生态效率年均值低于0.230(见表2)。Table 2
表2
表22005-2014年中国大陆30省市工业生态效率水平
Table 2Industrial ecological efficiency of China's 30 provincial regions from 2005 to 2014
区域 | 省(市、区) | 2005年 | 2006年 | 2007年 | 2008年 | 2009年 | 2010年 | 2011年 | 2012年 | 2013年 | 2014年 | 年均值 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
东北地区 | 辽宁 | 0.206 | 0.193 | 0.259 | 0.220 | 0.334 | 0.423 | 0.430 | 0.499 | 0.630 | 0.556 | 0.375 |
吉林 | 0.412 | 0.429 | 0.466 | 0.494 | 0.474 | 0.494 | 0.451 | 0.521 | 0.590 | 0.653 | 0.498 | |
黑龙江 | 0.647 | 0.629 | 0.550 | 0.580 | 0.448 | 0.535 | 0.583 | 0.541 | 0.537 | 0.461 | 0.551 | |
东部地区 | 北京 | 0.676 | 0.743 | 0.840 | 0.925 | 0.906 | 1.000 | 0.980 | 1.000 | 0.952 | 1.000 | 0.902 |
天津 | 0.577 | 0.545 | 0.635 | 0.702 | 0.737 | 0.685 | 0.775 | 0.852 | 1.000 | 1.000 | 0.751 | |
河北 | 0.218 | 0.183 | 0.180 | 0.254 | 0.260 | 0.325 | 0.397 | 0.434 | 0.541 | 0.578 | 0.337 | |
上海 | 0.622 | 0.634 | 0.675 | 0.671 | 0.661 | 0.672 | 0.689 | 0.757 | 0.825 | 0.871 | 0.708 | |
江苏 | 0.527 | 0.514 | 0.610 | 0.631 | 0.646 | 0.629 | 0.488 | 0.557 | 0.651 | 0.735 | 0.599 | |
浙江 | 0.636 | 0.605 | 0.591 | 0.628 | 0.614 | 0.629 | 0.630 | 0.659 | 0.723 | 0.294 | 0.601 | |
福建 | 0.568 | 0.586 | 0.497 | 0.561 | 0.518 | 0.480 | 0.479 | 0.560 | 0.571 | 0.556 | 0.538 | |
山东 | 0.488 | 0.532 | 0.499 | 0.526 | 0.542 | 0.522 | 0.642 | 0.711 | 0.779 | 0.830 | 0.607 | |
广东 | 0.907 | 1.000 | 0.944 | 0.888 | 0.876 | 0.949 | 0.837 | 0.982 | 0.997 | 1.000 | 0.938 | |
海南 | 1.000 | 1.000 | 1.000 | 0.972 | 0.845 | 1.000 | 0.855 | 0.782 | 0.868 | 0.732 | 0.905 | |
西部地区 | 内蒙古 | 0.284 | 0.263 | 0.315 | 0.298 | 0.320 | 0.297 | 0.339 | 0.457 | 0.462 | 0.448 | 0.348 |
广西 | 0.232 | 0.245 | 0.201 | 0.248 | 0.240 | 0.263 | 0.155 | 0.175 | 0.245 | 0.297 | 0.230 | |
重庆 | 0.462 | 0.283 | 0.290 | 0.341 | 0.303 | 0.380 | 0.521 | 0.602 | 0.573 | 0.560 | 0.432 | |
四川 | 0.396 | 0.357 | 0.191 | 0.385 | 0.440 | 0.375 | 0.423 | 0.515 | 0.661 | 0.659 | 0.440 | |
贵州 | 0.430 | 0.447 | 0.520 | 0.546 | 0.475 | 0.463 | 0.331 | 0.297 | 0.308 | 0.231 | 0.405 | |
云南 | 0.340 | 0.307 | 0.276 | 0.290 | 0.264 | 0.270 | 0.179 | 0.220 | 0.221 | 0.227 | 0.259 | |
陕西 | 0.454 | 0.481 | 0.461 | 0.353 | 0.333 | 0.329 | 0.359 | 0.443 | 0.469 | 0.482 | 0.416 | |
甘肃 | 0.380 | 0.390 | 0.411 | 0.406 | 0.405 | 0.451 | 0.342 | 0.356 | 0.350 | 0.360 | 0.385 | |
青海 | 0.798 | 0.807 | 0.790 | 0.818 | 0.695 | 0.654 | 0.690 | 0.677 | 0.724 | 0.739 | 0.739 | |
宁夏 | 0.327 | 0.343 | 0.291 | 0.292 | 0.279 | 0.267 | 0.307 | 0.360 | 0.382 | 0.397 | 0.325 | |
新疆 | 0.375 | 0.376 | 0.357 | 0.363 | 0.314 | 0.300 | 0.275 | 0.262 | 0.229 | 0.239 | 0.309 | |
中部地区 | 山西 | 0.249 | 0.194 | 0.218 | 0.231 | 0.227 | 0.202 | 0.257 | 0.246 | 0.251 | 0.243 | 0.232 |
安徽 | 0.359 | 0.328 | 0.247 | 0.242 | 0.286 | 0.307 | 0.242 | 0.287 | 0.332 | 0.385 | 0.301 | |
江西 | 0.486 | 0.468 | 0.444 | 0.404 | 0.419 | 0.425 | 0.302 | 0.354 | 0.371 | 0.396 | 0.407 | |
河南 | 0.381 | 0.426 | 0.447 | 0.497 | 0.484 | 0.540 | 0.463 | 0.524 | 0.604 | 0.610 | 0.498 | |
湖北 | 0.333 | 0.326 | 0.376 | 0.388 | 1.000 | 0.467 | 0.342 | 0.448 | 0.484 | 0.474 | 0.464 | |
湖南 | 0.479 | 0.553 | 0.433 | 0.474 | 0.447 | 0.415 | 0.433 | 0.507 | 0.512 | 0.589 | 0.484 | |
全国平均 | 0.475 | 0.473 | 0.467 | 0.488 | 0.493 | 0.492 | 0.473 | 0.520 | 0.561 | 0.553 | 0.499 |
新窗口打开
进一步地,本文按照《中国统计年鉴》[22]将全国分为东部、中部、西部和东北四大区域,分析工业生态效率的区域差异及变化趋势,见图1。东部地区省市的工业生态效率高于全国平均水平,在波动变化中呈现逐步上升的趋势;中、西部地区省市的工业生态效率值相差不大,呈现上下交替变化发展趋势,整体水平偏低;东北地区省份的工业生态效率总体上呈现上升趋势。2009年以后,东部、东北地区省份与中部和西部省份之间的工业生态效率发展差距较为稳定,而中部和西部省份工业生态效率基本处于相同水平。综上,中国工业生态效率的省域差异明显,呈现出自西向东逐渐加强的空间发展格局,这说明省域工业生态效率可能与地理位置之间存在显著的空间效应。因此,如果忽视地区之间的空间效应,可能导致影响因素的参数估计出现偏差,从而得出错误的结论。
显示原图|下载原图ZIP|生成PPT
图12005-2014年工业生态效率平均值的变化趋势
-->Figure 1Changes in average value of regional industrial efficiency from 2005 to 2014
-->
4 影响因素设定与模型设定
4.1 影响因素设定
空间效应的存在使得研究样本不再满足高斯-马尔科夫经典假设,传统计量模型不再适用[17]。本文参考相关文献,选取设定7项适用于空间面板计量模型的影响因素:工业发展水平、环境规制、对外开放、科技创新、财政分权、产业集聚与工业结构。(1)工业发展水平(IS)。环境EKC理论认为,工业发展水平较低时,更多的资源被用于维持经济发展,但当发展到一定阶段时,可以将更多资源用于维持和保护生态环境[23]。
(2)环境规制(REGUL)。环境污染具有外部不经济性,而环境保护作为公众需求具有非竞争性和非排他性[24],依靠市场调节难以实现环境质量的持续改善,需要政府加以规范和调节。
(3)对外开放(FDI)。“污染避难所假说”认为污染密集型产业倾向于往环境规制标准较低的地区或国家转移,污染企业通过外资渠道会对东道主造成严重的环境污染[25],但也有研究发现对外开放会引入先进技术,降低资源消耗,改善生态环境[26,27]。
(4)科技创新(R&D)。创新可提高资源利用效率,减少污染物排放。魏艳旭等[28]证明通过降低单位GDP的能源消耗,间接降低了污染物的排放。
(5)财政分权(FP)。财政分权程度越高,地方政府处理经济事务的自主性越强,在晋升激励体制下,地方政府为实现经济增长可能会导致资源过度消耗和损害环境[29]。
(6)产业集聚(AGG)。一方面集聚可能具有环境正外部性,可以通过规模效应和绿色技术溢出等途径提高资源利用效率;但另一方面,集聚具有较强的环境负外部性,可能会加剧资源的消耗[30],造成环境污染问题。
(7)工业结构(HP)。产业结构的演化会引发环境质量的相应变化[31],经济的现实发展也表明,不同行业的资源利用率及污染物排放存在较大差异,因此,工业结构的差异可能会影响区域的生态效率。
4.2 空间计量模型设定
通常地,空间计量的基本模型包括空间滞后(Spatial Lag Model ,SLM)和空间误差模型(Spatial Error Model,SEM)两种[17]。Lesage等提出了较为一般化的空间杜宾模型(Spatial Durbin Model,SDM),同时包含因变量与自变量的空间滞后项[32]。实证研究中,可以通过Wald检验(Wald test_spatial lag、Wald test_spatial error)与LM检验(LM_spatial lag test,LM_spatial error test)判断应该采用何种模型。当Wald统计量显著时,选用SDM模型;Wald统计量不显著则依据LM统计量在SLM与SEM两种模型中选择;否则,应采用传统计量模型。考虑到特定情况下,SDM模型有可能退化为SLM或SEM模型。因此,首先构建了工业生态效率的SDM型,如下:式中
以上变量所需数据来自2006-2015年间的《中国环境统计年鉴》[36]、《中国工业统计年鉴》[21]、《中国统计年鉴》[22]以及《中国科技统计年鉴》[37],各变量的描述性统计见表3。
Table 3
表3
表3工业生态效率及解释变量描述性统计
Table 3Descriptive statistics of industrial eco-efficiency and explanatory variables
变量 | 符号 | 最大值 | 最小值 | 均值 | 标准差 |
---|---|---|---|---|---|
工业生态效率 | EP | 1.000 | 0.155 | 0.500 | 0.215 |
工业规模 | IS | 4.603 | 3.276 | 3.967 | 0.278 |
规制强度 | GRGUL | 0.028 | 0.000 | 0.004 | 0.004 |
研发投入 | R&D | 0.061 | 0.002 | 0.014 | 0.010 |
对外开放程度 | FDI | 0.064 | 0.000 | 0.010 | 0.009 |
财政分权 | FP | 0.936 | 0.635 | 0.815 | 0.069 |
工业集聚 | AGG | 2.512 | 0.404 | 1.613 | 0.414 |
工业结构 | HP | 0.482 | 0.003 | 0.259 | 0.075 |
新窗口打开
4.3 回归结果分析
首先,应用传统面板回归技术对工业生态效率的影响因素进行检验,并考察残差是否存在显著的空间效应。为便于比较,本文给出了传统混合回归、个体固定与时间固定效应模型的估计结果,见表4。通过F检验发行个体固定效应更佳,且拟合优度更高,因此,个体固定效应模型更为可靠。通过LM检验发现个体固定效应的LM_spatial lag test和LM_spatial error test 的值均显著,空间效应明显。进一步通过Wald检验发现SDM模型不能退化为SLM或SEM模型,同时,SDM模型的拟合优度最高。因此,在本研究中,SDM模型的估计结果最为可靠,后文的分析将采用其估计结果(见表4)。Table 4
表4
表4传统面板模型与SDM模型的估计结果
Table 4Estimated results of traditional panel models and SDM
变量 | 传统混合回归模型 | 传统个体固定模型 | 传统时间固定模型 | 个体固定SDM模型 |
---|---|---|---|---|
ln(IS) | -0.028 (-0.107) | 0.913**** (2.924) | 0.131 (0.348) | 0.693* (1.519) |
ln2(IS) | 0.023 (0.707) | -0.001 (-0.043) | 0.012 (0.231) | -0.035 (-0.871) |
REGUL | -10.386**** (-3.302) | -6.069**** (-2.914) | -12.178**** (-3.695) | -4.873*** (-2.357) |
FDI | 4.649**** (3.842) | 0.002 (0.002) | 4.294**** (3.343) | -0.194 (-0.176) |
R&D | 3.602**** (2.735) | 14.552**** (5.051) | 2.111* (1.490) | 11.433**** (2.900) |
FP | 0.598*** (2.453) | -2.562**** (-8.678) | 0.496** (1.883) | -1.897**** (-5.158) |
AGG | -0.720**** (-4.880) | -0.017 -(0.180) | -1.082**** (-5.895) | 0.488**** (2.647) |
AGG2 | 0.190**** (4.025) | -0.020 (-0.686) | 0.291**** (5.116) | -0.115*** (-2.596) |
HP | -0.260** (-1.768) | -0.089 (-0.480) | -0.197* (-1.332) | 0.060 (0.342) |
W | - | - | - | -0.540 (-0.760) |
W | - | - | - | 0.113** (1.764) |
W | - | - | - | 1.517 (0.325) |
W | - | - | - | 8.514 (1.279) |
W | - | - | - | 3.264 (1.084) |
W | - | - | - | -1.085** (-1.648) |
W | - | - | - | -0.672**** (-3.332) |
W | - | - | - | 0.160**** (3.134) |
W | - | - | - | -0.453* (-1.476) |
W | - | - | - | 0.189*** (2.483) |
R2 | 0.439 | 0.883 | 0.474 | 0.894 |
Log likelihood | 122.207 | 357.062 | 131.830 | 369.560 |
固定效应F检验 | - | 34.727*** | 0.607 | - |
LM_spatial lag test | 12.633**** (p=0.000) | 12.335**** (p=0.000) | 1.677* (p=0.195) | - |
LM_spatial error test | 30.507 (p=0.868) | 6.589**** (p=0.010) | 3.232** (p=0.072) | - |
Wald test spatial lag | - | - | - | 20.377*** (p=0.016) |
Wald test spatial error | - | - | - | 23.038**** (p=0.006) |
新窗口打开
(1)
(2)REGUL系数显著为负。从理论上讲,市场具有盲目性、非理性以及为了追求利益最大化都会导致经济主体对环境问题的忽视,因此政府规制应该有利于改善环境。但从回归结果来看,工业生态效率并没有随着规制强度的加强而得以提升。通过对李胜兰等[24]、张红凤等[40]的研究文献进行分析,认为规制系数之所以为负可能在于政府环境规制的失灵,由政府驱动的工业污染治理措施和政策未能得到有效落实,不能有效纠正企业行为给生态环境带来的负外部性。其次,中国工业“先污染、后治理”的发展模式没有发生本质变化,与发达国家相比中国的环境规制强度仍处于较低水平[41]。REGUL的空间滞后项系数未通过显著性检验,空间效应不明显。
(3)FDI对工业生态效率的影响并不显著。关于FDI对工业生态效率影响的研究结论存在较大差异。如贾军认为对外开放对环境的影响是消极的,不利于生态效率提高[42]。孟庆雷等则认为对外开放有利于学习外资企业先进的管理经验和利用其技术溢出效应,对工业生态效率的改善有促进作用[43]。计志英等则认为FDI与环境污染存在“倒U”型关系[44]。不难看出,FDI与工业生态效率的关系具有复杂性,在外资引进过程中要注意强化环境规制,才能实现对外开放与环境的协调发展。FDI的空间滞后项系数不显著,空间效应不明显。
(4)R&D的系数显著为正。科技创新能力增强有利于创新和推广先进生产技术、污染减排技术以及污染治理技术,在推动工业化过程中提高资源利用效率,降低环境污染物的排放和强化污染物治理效率,从而实现了工业生态效率的改善[28]。R&D空间滞后项系数未通过显著性检验,空间效应不明显。
(5)FP的系数显著为负。吴俊培等、陈宝东等的研究指出财政分权的提高会增加环境污染物排放[45,46]。这主要是因为中国财政体制不健全,对地方政府主要实行以经济增长为导向的考核机制,地方政府往往会以牺牲环境质量为代价而谋求经济增长,因此出现了地方财政自主权越大,环境污染越严重,越不利于工业生态效率提升的现象。FP的空间滞后项系数显著为负,不利于相邻区域的工业生态效率。
(6)AGG的系数显著为正,AGG2的系数显著为负,表明产业集聚与工业生态效率呈现“倒U”型关系。本文进一步验证了李勇刚等[34]的研究结论,他们认为产业集聚与环境污染物排放存在“正U”型曲线,产业集聚度不高时将显著减少环境污染物,对应于本文工业生态效率处于上升的发展阶段,而当产业集聚跨过拐点时污染物排放会显著增加,这与本文的研究发现是一致的。AGG空间滞后项系数显著为负,而AGG2的空间滞后项系数显著为正,表明工业生态效率与产业集聚的空间滞后项存在“正U”型关系。之所以出现这样的结果,可能是因为产业集聚具有“虹吸效应”,集聚地区会吸引其相邻地区的企业投资,降低相邻地区的集聚程度,削弱相邻地区的工业生态效率,但是当其产业集聚达到一定程度时,企业投资又会向相邻地区进行扩散,对相邻地区的工业生态效率产生正向促进作用[47]。
(7)HP的系数未通过显著性检验。直观地,高污染行业占比越高,污染物排放量应该越大,环境质量水平越低。可能的原因在于:高污染行业在引发污染物排放增加的同时也带来了经济价值的大幅增加[35],由于生态效率测算的是经济价值与生态环境的相对水平,仅从效率分析有可能会掩盖其带来的环境污染问题。值得注意的是,控制空间效应以后HP系数由正变负,而HP的空间滞后项系数则在20%水平上显著为负,这表明高污染行业不利于相邻区域的工业生态效率,这很有可能是因为高污染行业所造成的污染物排放在空间上的扩散效应大于对相邻地区在经济上的溢出效应。因此,应该注重通过优化区域的工业结构来提升生态效率水平,改善环境质量。
最后,EP的空间滞后项系数显著为正,表明区域工业生态效率的具有正向溢出效应。这种正向的空间交互作用可能来自于地方政府在环境规制、治理技术以及政策制定等方面存在明显的相互模仿与借鉴行为[24]。因此,地区之间应该积极合作和交流,共同探索改善工业生态效率的先进技术、经验和环境管理制度,形成地区之间的协同效应,以促进工业生态效率的全面提升。
5 结论与启示
本文采用VRS_DEA方法构建工业生态效率测算模型,考察了2005-2014年期间中国30个省市的工业生态效率动态变化及地区差异;在此基础上,构建了包含空间效应的SDM模型,实证检验了其影响因素。主要结论如下:(1)在研究期间,中国大部分省市的工业生态效率呈现出波动中上升的趋势。2005年工业生态效率超过0.70的省市仅有海南、广东、青海等3个,而2014年工业生态效率超过0.70的省市增至广东、北京、天津、上海、山东、青海、江苏、海南等8个。就工业生态效率均值而言,排名靠前的省市主要位于东部地区,而排名靠后的省市主要位于西部地区。
(2)从区域层面上来看,东部地区工业生态效率最高,高于全国平均水平,东北地区次之,中、西部地区工业生态效率存在交替变化,整体水平偏低。在2009年以后,东部、中部、西部地区与全国平均工业生态效率差距基本保持稳定,东北地区与全国平均工业生态效率水平基本一致。总体来看,中国工业生态效率的地区差异性明显,呈现出自西向东逐渐加强的空间变化趋势。
(3)实证结果表明,工业发展水平具有正向作用;科技创新有利于改善工业生态效率;环境规制、对外开放与财政分权的系数显著为负,没有达到改善生态效率的预期目标;产业集聚与工业生态效率呈现“倒U”型关系;工业结构影响不显著,可能是高污染行业所带来的污染与经济效应并存所致。此外,在空间交互作用方面,工业生态效率与工业发展水平二次项的空间滞后项系数显著为正;财政分权与工业结构具有显著负向的空间溢出效应;产业集聚的空间滞后项与工业生态效率呈现“正U”型关系。
根据实证分析的结论,本文提出以下政策建议:
(1)充分发掘科技创新改善工业生态效率的潜力。既然科技创新能够显著提高工业生态效率,那就意味应该继续坚持“科教兴国”战略,推进创新体系建设,加快科技成果转化,同时通过财税、政府采购等方面的政策鼓励企业加大研发投入,强化自主研发、技术引进以及技术改造投入力度,切实降低生产过程中的资源消耗,可以有效减少工业污染物的排放强度和总量,提升工业生态效率。
(2)转换环境污染的治理路径,强化政府环境监督管理制度,切实提升工业污染治理效率。主要是从产业源头上提高环保标准以及执行力度,促使企业技术创新,优化工业内部结构,转变经济发展方式,才能消除环境污染物排放过量的源头达到节能减排目的,而不是一味地采取先污染后治理的末端治理方式。
(3)从财政分权与环境污染的角度来看,首先要改变单一的GDP考核准则,完善地方政府的考核机制,设计包含科技、人才、环境等因素的多指标考核体系,激励政府在自身利益最大化中谋求经济增长与环境保护,扭转地方政府为实现经济增长而牺牲环境的恶性竞争局面;其次,完善财政预算体制,形成有利于环境改善的硬约束体制,保障地方政府在环境保护上的财力支出。
(4)客观、动态地看待产业集聚与工业生态效率的关系,针对不同地区制定差异性政策。产业集聚与自身工业生态效率呈现“倒U”型关系,与相邻地区工业生态效率呈现“正U”型关系,因此各个地区要合理地引导产业转移,防止集聚度过高引发的外部规模不经济对经济和环境产生负面影响,通过引导产业的适度集聚发挥集聚经济效应的同时,实现经济与环境协同发展的目标。
The authors have declared that no competing interests exist.
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[1] | [J]. , |
[2] | [R]. , |
[3] | [R]. , |
[4] | [J]. , [J]. , |
[5] | [J]. , [J]. , |
[6] | [J]. , |
[7] | [J]. , |
[8] | [J]. , |
[9] | [J]. , |
[10] | [J]. , |
[11] | [J]. , [J]. , |
[12] | [J]. , [J]. , |
[13] | [J]. , [J]. , |
[14] | [J]. , [J]. , |
[15] | [J]. , [J]. , |
[16] | [J]. , [J]. , |
[17] | [J]. , |
[18] | [M]. , |
[19] | [J]. , |
[20] | [J]. , |
[21] | |
[22] | |
[23] | [J]. , |
[24] | [J]. , [J]. , |
[25] | [D]. , |
[26] | [J]. , [J]. , |
[27] | [J]. , [J]. , |
[28] | [J]. , [J]. , |
[29] | [J]. , [J]. , |
[30] | [J]. , [J]. , |
[31] | [J]. , [J]. , |
[32] | [J]. , |
[33] | [J]. , [J]. , |
[34] | [J]. , [J]. , |
[35] | [J]. , [J]. , |
[36] | |
[37] | |
[38] | [J]. , [J]. , |
[39] | [J]. , [J]. , |
[40] | [J]. , [J]. , |
[41] | [J]. , [J]. , |
[42] | [J]. , [J]. , |
[43] | [J]. , [J]. , |
[44] | [J]. , [J]. , |
[45] | [J]. , [J]. , |
[46] | [J]. , [J]. , |
[47] | [J]. , [J]. , |