Assessing the delivery of soil erosion control benefits at the watershed level following the WATEM/SEDEM concept
LIUYu1,, TENGJiakun1,2 1. Key Laboratory of Ecosystem Network Observation and Modeling,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,100101 Beijing,China2. School of Environment and Resource,Southwest University of Science and Technology,Mianyang 621010,China 收稿日期:2016-10-24 修回日期:2017-02-5 网络出版日期:2017-05-20 版权声明:2017《资源科学》编辑部《资源科学》编辑部 基金资助:国家自然科学基金青年基金项目(41301032)国家自然科学基金面上项目(41671186) 作者简介: -->作者简介:刘宇,男,贵州盘县人,博士,研究方向为景观格局与生态过程、生态系统评估。E-mail: liuyu@igsnrr.ac.cn
关键词:土壤侵蚀;泥沙传输;土壤保持;WATEM/SEDEM模型;黄土高原 Abstract Soil erosion and sediment delivery occurs widely in terrestrial environments. It has on-site and off-site environmental and social-economic effects. Soil erosion control provides various benefits for human beings,such as prevention of soil productivity loss,and reducing impoundment of reservoirs. For a land plot,the off-site benefits of soil erosion control is equal to the reduction of sediment export. Previously,assessments of off-site benefits of soil erosion control mostly rely on estimation of on-site soil retention,which is equal to the difference between estimated actual soil erosion and soil erosion without any prevention measures,and an invariant sediment delivery ratio (SDR). The scale effect of SDR and its correlation with the spatial and temporal variation of watershed characteristics and driven factors,such as spatial variation of rainfall regime,are often ignored. Consequently,quantitative and spatially explicit evaluations of soil erosion control benefits (SECB)and delivery across space are missing. For these reasons,an approach following the framework of WATEM/SEDEM model combining soil erosion and sediment delivery was developed to assess SECB provision and delivery over watershed. This approach integrates the on-site soil erosion prevention and reduction of sediment delivery. A case study was conducted in the Nianzhuang Watershed on the Loess Plateau. The SECB balance and spatial pattern in this loess watershed in the Hilly and Gully Area of the Loess Plateau was assessed. Based on the grid-cell-based modelling,the SECB import and export for each land use type were quantified and mapped. This approach identifies SECB supply areas and external beneficiary areas. In addition,it has potential to link SECB supply areas with beneficiary areas of SECB in a quantitative and spatially explicit way. Thanks to its spatial explicit feature,this approach is capable of serving the location-specific payments for ecosystem services provision.
本研究选择位于黄土丘陵沟壑区的碾庄沟流域(36°37′N-36°45′N,109°26′E-109°37′E)为研究区。该流域位于陕西省延安市宝塔区李渠镇,为延河中游一级支沟,在延安市宝塔区李渠镇汇入延河。碾庄沟流域总面积54.2 km2,地处半干旱区向半湿润区过渡带,多年平均降水量527mm。海拔926~1278m。流域内地形破碎,梁峁、沟谷占总面积的90%以上,沟壑密度达到2.74km/km2 [9],是典型的黄土丘陵沟壑小流域。土壤主要为可侵蚀性高的黄绵土,土层深厚,结构疏松。流域土壤平均砂粒含量为20%,粉粒含量为55%,黏粒含量为25%[10]。碾庄沟是宝塔区小流域综合治理试点流域,淤地坝建设和植被恢复并重[11,12]。近年来,随着经济的发展,居民点、工矿交通等建设用地逐渐向流域内部扩张,成为流域内土地利用变化最主要的特征和土壤侵蚀的重要影响因素。在流域综合治理的推动下,至2012年,碾庄沟流域形成了以林地、草地为主的土地利用格局(图1a)。人工乔木林是流域森林恢复的主要形式。森林覆盖率达23.2%,灌木林覆盖率为34.4%,草地占19.1%,以生态保护为主的林草植被共占流域总面积的76.5%。耕地占流域总面积的14.8%,其中坝地和梯田共占50.9%(图1b)。建设用地主要呈狭长的带状分布在沟谷中,占流域总面积的5.3%。 显示原图|下载原图ZIP|生成PPT 图1碾庄沟流域土地利用分布及各类土地利用类型面积分布 -->Figure 1Land use pattern and acreage of land use types in Nianzhuang Watershed -->
受城市扩张的影响,流域出口附近建设用地连片分布。沟谷中的土地利用以库塘、坝地和居住地为主,而森林、灌丛、草地等植被建设区占据了沟坡、峁坡和梁峁的绝大部分区域 (图1a)。梁峁、峁坡是流域内面积占优势的两个地貌部位,也是各土地利用类型主要的分布区(图2)。平均坡度以植被建设区最高,裸土区随后,农田和建设用地区域较缓,库塘多地处沟底(表1)。从土地利用类型的平均坡长(到坡顶的水流路径距离,即相对于坡顶的分布位置)来看,整个流域库塘平均坡长最长,建设用地次之,随后为农田、裸土和植被建设区(表1)。 显示原图|下载原图ZIP|生成PPT 图2土地利用类型在各地貌部位的面积分布 -->Figure 2Acreage distribution of land use types on topographical positions -->
Table 1 表1 表1土地利用类型区平均坡度、坡长 Table 1Mean slope gradient and slope length of each land use type
本研究中侵蚀产沙和泥沙在流域中的传输和再分配借鉴WATEM/SEDEM模型[7]框架,基于栅格估算。土壤侵蚀量模拟、泥沙传输能力估算和泥沙传输模拟为WATEM/SEDEM的三大组成部分。产沙和泥沙传输模拟的时间尺度为年。本研究利用Arc/Info 8.3脚本编程语言编程实现模型模拟。土壤侵蚀量采用修正通用土壤流失方程(RUSLE)[15]计算: (1) 式中E为年土壤侵蚀强度(t/(hm2·a));R为降雨侵蚀力因子(MJ·mm/(hm2·h·a)),采用Arnoldus[16]改进的基于月降雨和年降雨的傅立叶指数;K为土壤可蚀性因子(t·h/(MJ·mm)),利用Williams等提出的方法基于土壤有机碳含量和土壤质地(粘粒Cl、粉粒Si、砂粒Sd含量)计算[17];L、S分别为坡长、坡度因子,二者合称地形因子,采用Desmet等提出的基于二维景观的方法计算[18];C为植被覆盖管理因子;P为土壤保持措施。 C、P因子参考Fu等[19]和刘宝元等[20]在该区域的研究结果(表2)。 Table 2 表2 表2各土地利用类型C、P因子赋值 Table 2C and P factors for land use types
土地利用数据解译自2012年生长季资源3号卫星多光谱和全色影像(中国资源卫星应用中心,http://www.cresda.com/CN/index.shtml),分辨率分别为5.8m和2.1m。在Erdas 8.0中进行影像正射纠正,然后进行分辨率融合。结合土地利用方式和地表覆被类型,将流域土地利用划分为森林、灌丛、草地、果园、坡耕地、梯田、坝地、建设用地、库塘、河流和裸土11类。在eCognition8.7软件支持下,采用面向对象分类方法进行分类。通过目视和实地调查获取了272个验证点,对分类结果精度进行了评价(表3)。土地利用分类精度的Kappa系数为0.89。在这一地区,一些裸土斑块与窑洞等建设用地在覆被特征上较为相似,而梯田则往往图斑狭长,导致其精度相对较低。其它各类精度较高,生产精度和用户精度都在80%以上。 Table 3 表 3 表 3土地利用分类精度评价 Table 3Accuracy of land use classification data
参照WATEM/SEDEM模型框架,模拟了流域潜在和现实的土壤侵蚀强度、潜在和现实的泥沙输入量和输出量。植被建设区(包括森林、灌木林地、草地)主要位于梁峁、峁坡、沟坡等部位,具有最高的潜在侵蚀量(图3a)和仅次于裸土的潜在侵蚀强度(图3b),分别为136.83万t和312.4t/(hm2·a)。农田区和建设用地区的平均潜在侵蚀强度分别为223.9t/(hm2·a)和212.7t/(hm2·a),潜在侵蚀量分别为14.2万t和7.3万t。植被建设区现实侵蚀量为10.3万t,现实侵蚀强度为23.3t/(hm2·a)。裸土是侵蚀强度最高的土地类型,主要分布在道路、居民点等建设用地邻近区域,以沟底、坡下部为主要分布区,多为人为形成,少数分布在陡峭的沟坡,由重力侵蚀造成。农田、建设用地和裸土侵蚀强度分别为38.3t/(hm2·a)、196.1t/(hm2·a)、和319.4t/(hm2·a),它们的土壤侵蚀总量分别为2.4万t、6.7万t和2.3万t。植被建设区主要为潜在侵蚀强度较高的区域,有效地降低了流域土壤侵蚀总量和强度。尽管非植被建设区仅占流域面积的23.5%,却贡献了流域现实侵蚀量的52.5%,是侵蚀的主要发生区。 显示原图|下载原图ZIP|生成PPT 图3各土地利用类型区土壤侵蚀量和平均侵蚀强度 -->Figure 3Gross soil erosion and soil erosion intensity of land use types -->
通过泥沙传输模拟,获得了流域内每个栅格潜在和现实泥沙输入(图4a、图4b)和输出强度(图4c、图4d)。每个栅格泥沙的输入量受上游生态系统侵蚀产沙抑制能力和泥沙拦蓄能力调节。潜在泥沙输入和现实泥沙输入之间的差别表征了每个栅格上坡生态系统的泥沙输入削减量。每个栅格泥沙的输出一方面受本栅格侵蚀产沙抑制能力和泥沙拦蓄能力的调节,另一方面,还取决于坡生态系统调节径流输入的量级、流速和含沙量能力。因此,潜在和现实泥沙输出量的差别反映了当前位置及其上游生态系统通过调节泥沙通量对下游产生的影响。在泥沙传输通道上一些拦沙能力较强的位置往往发挥“开关”的作用,决定着任意两个位置之间的泥沙通道的连通度[26]。根据Liu等的研究,任何景观位置与下游之间的泥沙连通度随距离的增加而降低[12],因为较长的传输路径意味着更多的泥沙拦蓄机会[27,28],更有可能存在拦沙能力更强的“开关”点。如图4a所示,峁坡、沟坡具有较强的潜在泥沙输入强度。梁峁、峁坡和坝地现实泥沙输入强度较低,沟坡总体上最高(图4b)。 显示原图|下载原图ZIP|生成PPT 图 4流域潜在泥沙输入、输出和现实泥沙输入、输出的空间格局 -->Figure 4Spatial patterns of the potential and actual sediment inflow and export -->
从土地利用类型区泥沙输入、输出总量的差异来看,植被建设区是潜在泥沙输入、输出总量最大的区域,其后依次为农田、建设用地、裸土和库塘(图5a)。泥沙输移不仅仅受立地条件的制约。各土地利用类型的现实泥沙输入和输出总量都低于潜在的泥沙输入和输出总量(图5a)。从泥沙输入和输出强度来看,植被建设区远低于裸土、农田和建设用地,平均潜在泥沙输入强度和输出强度都只有裸土的1/13左右,甚至泥沙输入强度还低于库塘(图5b)。土地利用类型的空间分布格局是形成泥沙传输强度格局的主控因素。植被建设区大多位于梁峁、峁坡(图2),往往具有相对较小的汇水面积,但坡度大(表1)。裸土主要位于沟坡,建设用地主要位于沟坡下部坝地与沟坡交接带,既有较大的汇水面积,植被覆盖较差,同时坡度也较大(表1),因而泥沙的输入和输出强度都较高(图5b)。 显示原图|下载原图ZIP|生成PPT 图 5各土地利用类型区潜在和现实泥沙传输总量和强度 -->Figure 5Potential and actual gross sediment flux and sediment delivery intensity of land use types -->
4.2 流域土壤保持效益供给及其传输
生态系统通过调节侵蚀产沙和输沙而给人类社会带来益处[6]。人类社会通过土地利用单元来获取这种益处。这种益处可用当地土壤侵蚀减少量(当地土壤保持量,图6a,见866页)、泥沙输入削减(图6b)、泥沙输出削减(图6c)来表示。当地土壤保持量为任一地点潜在侵蚀量与现实侵蚀量之差。泥沙输入削减则是因上游生态系统的土壤侵蚀调节作用而提供给当前位置的土壤保持效益。泥沙输出调控则反映了当前位置和上坡生态系统泥沙传输调控的综合效应。土壤保持效益收支盈余指收到的上游生态系统提供的土壤保持效益与对下游提供的土壤保持效益之间的差值,反映了一个位置是土壤保持效益的净输出区还是净输入区。差值为正表示其为净输出区,为负则表示净输入区。从空间分布格局看(图6a,见866页),当地土壤保持量总体上以沟坡、峁坡较大,梁、峁、沟谷坝地较小。泥沙输入削减和泥沙输出削减也表现出类似的格局(图6b、图6c)。如图6d所示,碾庄沟流域除沟谷内坝地、库塘以外的区域都是泥沙的净输出区。这表明在增强流域土壤保持功能的植被建设格局设计或土地利用格局调整中,针对不同的地貌部位配置土地利用单元具有重要的意义。 显示原图|下载原图ZIP|生成PPT 图6流域土壤保持空间分布格局 -->Figure 6Spatial patterns of soil erosion control services in Nianzhuang Watershed -->
土地利用类型区土壤保持统计结果图7显示,植被建设区对外输出的土壤保持效益(5.9 万 t)高于输入的土壤保持效益(4.3万t),表明从调节泥沙通量的角度,植被建设区是净土壤保持效益供给区。其他土地利用类型区都是土壤保持效益净输入区。裸土区域具有最强的单位面积土壤保持效益输入量和输出量,分别为156.1t/(hm2·a)、88.1t/(hm2·a),单位面积土壤保持效益输入是输出的近2倍。此外,库塘、建设用地和农田也是单位面积土壤保持效益输入高于输出的土地利用类型(图8)。库塘单位面积土壤保持效益输入为34.6t/(hm2·a),输出则为4.6t/(hm2·a)。在建设用地区,土壤保持效益输入为62.5t/(hm2·a),输出则为33.9t/(hm2·a)。农田的土壤保持效益输入略高于输出,分别为57.9t/(hm2·a)和56.0t/(hm2·a)。植被建设区是五大类型区中唯一的土壤保持效益输出高于输入的类型,土壤保持效益输入强度为9.8t/(hm2·a),而输出强度则为13.7t/(hm2·a)。 显示原图|下载原图ZIP|生成PPT 图7各土地利用类型区土壤保持效益输入(ESin)和输出总量(ESout) -->Figure 7Soil erosion control benefit import(ESin) and export (ESout)for land use types -->
显示原图|下载原图ZIP|生成PPT 图8各土地利用类型区单位面积土壤保持效益输入(ESin)和输出(ESout) -->Figure 8Area-specific soil erosion control benefit import ESin)and export (ESout) for land use types -->
基于WATEM/SEDEM模型框架,结合立地侵蚀产沙和流域泥沙传输,建立了以物质量的形式、从当地和异地影响两个方面量化小流域土壤保持效益及其输送的方法,定量分析了碾庄沟流域不同土地利用类型区土壤保持效益的输入和输出。结果表明:植被建设区对外输出的土壤保持量(5.9万t)高于土壤保持输入量(4.3万t),净输出1.7万t,是流域土壤保持效益的净输出区;农田、库塘、建设用地区、裸土区土壤保持效益净输入分别为0.12万 t、0.11万t、0.98万t 和0.49万t,是流域土壤保持效益的净输入区。因所处的地形位置和覆被状况,裸土区是流域内单位面积土壤保持效益输入和输出最大的土地利用类型,分别为156.1t/(hm2·a)、88.1t/(hm2·a),单位面积土壤保持效益输入是输出的近2倍。库塘单位面积土壤保持效益输入为34.6t/(hm2·a),输出为4.6t/(hm2·a);建设用地土壤保持效益输入为62.5t/(hm2·a),输出为33.9t/(hm2·a);农田的土壤保持效益输入略高于输出,分别为57.9t/(hm2·a)和56.0t/(hm2·a)。植被建设区土壤保持效益输入为9.8t/(hm2·a),而输出为13.7t/(hm2·a)。 本研究提出的方法框架为模拟土壤保持效益供给区和受益区之间的联系提供了一个途径,为制定空间位置明确、具有定量依据的生态补偿标准提供了一个思路。 The authors have declared that no competing interests exist.
[Fu BJ,Lv YH,Gao GY.Major research progresses on the ecosystem service and ecological safety of main terrestrial eco-systems in China [J]. ,2012,34(5):261-272.] [本文引用: 1]
[3]
FuB,LiuY,Lv YH,et al.Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China [J]. ,2011,8(4):284-293. [本文引用: 1]
[4]
ZhangH,LiuS,YuanW,et al.Inclusion of soil carbon lateral movement alters terrestrial carbon budget in China [J]. ,2014,4:7247-7247. [本文引用: 2]
[5]
LalR.Soil conservation and ecosystem services [J]. ,2014,2(3):36-47. [本文引用: 1]
[6]
Guerra CA,Pinto-CorreiaT,Metzger MJ.Mapping soil erosion prevention using an ecosystem service modeling framework for integrated land management and policy [J]. ,2014,17(5):878-889. [本文引用: 3]
[7]
Rompaey A J J V,VerstraetenG,Oost KV,et al. Modelling mean annual sediment yield using a distributed approach [J]. ,2001,26(11):1221-1236. [本文引用: 3]
[8]
JettenV,GoversG,HesselR.Erosion models:Quality and spatial predictions [J]. ,2003,17(5):887-900. [本文引用: 1]
[Fu BJ,Chen LD,Ma KM.The effect of land use on the regional environment in the Yangjuangou catchment in the Loess Plateau of China [J]. ,1999,54(3):241-246.] [本文引用: 1]
[Bao YX.Study on soil physical and Chemical Properties of dam land and terrace in the Loess hilly region[D]. , 2005.] [本文引用: 1]
[12]
LiuY,FuB.Assessing sedimentological connectivity using WATEM/SEDEM model in a hilly and gully watershed of the Loess Plateau,China [J]. ,2016,66:259-268. [本文引用: 8]
[Yue DP,Dong MY.Investigation and estimation of soil erosion of rural settlements in abundant and coarse sediment area of north Shaanxi-an example in Nianzhuanggou River basin [J]. ,2010,25(1):59-62.] [本文引用: 1]
[14]
LiuY,FuB,LvY,et al.Hydrological responses and soil erosion potential of abandoned cropland in the Loess Plateau,China [J]. ,2012,138(1):404-414. [本文引用: 1]
[15]
Renard KG,Foster GR,Weesies GA,et al.Predicting Soil Erosion by Water:A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE) [M]. ,1997. [本文引用: 1]
[16]
Arnoldus H MJ,Boodt MD,GabrielsD. An Approximation of the Rainfall Factor in the Universal Soil Loss Equation [A]. Boodt M,Gabriels D. Assessment of Soil Erosion [M]. ,1980. [本文引用: 1]
[17]
Williams JR,Renard KG,Dyke PT.EPIC:A new method for assessing erosion's effect on soil productivity [J]. ,1983,38(5):381-383. [本文引用: 1]
[18]
Desmet P JJ,GoversG. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units [J]. ,1996,51(5):427-433. [本文引用: 1]
[19]
Fu BJ,Zhao WW,Chen LD,et al.Assessment of soil erosion at large watershed scale using RUSLE and GIS:A case study in the Loess Plateau of China [J]. ,2005,16(1):73-85. [本文引用: 2]
[Liu BY,XieY,Zhang KL.[M]. Beijing:Science and Technology of China Press,2001.] [本文引用: 2]
[21]
VerstraetenG.Regional scale modelling of hillslope sediment delivery with SRTM elevation data [J]. ,2006,81(1-2):128-140. [本文引用: 5]
[22]
Vente JD,PoesenJ,VerstraetenG,et al.Spatially distributed modelling of soil erosion and sediment yield at regional scales in Spain [J]. ,2007,60(3-4):393-415. [本文引用: 2]
[23]
Feng XM,Wang YF,Chen LD,et al.Modeling soil erosion and its response to land-use change in hilly catchments of the Chinese Loess Plateau [J]. ,2010,118(3-4):239-248. [本文引用: 1]
[Bao YX.The Characteristics and Assessment on Soil Quality of Dam Land and Terrace in Loess Plateau[D]. ,2008.] [本文引用: 1]
[25]
LiangD,FuB,LvY,et al.Effects of retired steepland afforestation on soil properties:A case study in the Loess Plateau of China [J]. ,2012,62(6):547-555. [本文引用: 1]
[26]
Fryirs KA,Brierley GJ,Preston NJ,et al.Buffers,barriers and blankets:The (dis)connectivity of catchment-scale sediment cascades [J]. ,2007,70(1):49-67. [本文引用: 1]
[27]
Mayor ÁG,BautistaS,Small EE,et al.Measurement of the connectivity of runoff source areas as determined by vegetation pattern and topography:A tool for assessing potential water and soil losses in drylands [J]. ,2008,44(10):2183-2188. [本文引用: 1]
[28]
Imeson AC, Prinsen H A M. Vegetation patterns as biological indicators for identifying runoff and sediment source and sink areas for semi-arid landscapes in Spain [J]. ,2004,104(2):333-342. [本文引用: 1]
[29]
PimentelD,KounangN.Ecology of soil erosion in ecosystems [J]. ,1998,1(5):416-426. [本文引用: 1]
[30]
Telles TS, Dechen S C F,Souzalga D E, et al. Valuation and assessment of soil erosion costs [J]. ,2013,70(3):209-216. [本文引用: 1]
[XiaoH,Ouyang ZY,Zhao JZ,et al.The spatial distribution characteristics and eco-economic value of soil conservation service of ecosystems in Hainan Island by GIS [J]. ,2000,20(4):552-558.] [本文引用: 2]
[YangM,Li XZ,Yang ZP,et al.Effects of sun-watershed landscape patterns at the upper reaches of Minjiang River on soil erosion [J]. ,2007,18(11):2512-2519.] [本文引用: 1]
[LiuY,Wu BF,ZengY,et al.Assessment of the impacts of soil erosion on water environment based on the integration of soil erosion process and landscape pattern [J]. ,2013,24(9):2581-2589.] [本文引用: 1]
[38]
LiY,PoesenJ,Yang JC,et al.Evaluating gully erosion using 137Cs and 210Pb/137Cs ratio in a reservoir catchment [J]. ,2003,69(S1-2):107-115. [本文引用: 1]
[39]
ZhaoG,Kondolf GM,MuX,et al.Sediment yield reduction associated with land use changes and check dams in a catchment of the Loess Plateau,China [J]. ,2017,148:126-137. [本文引用: 1]