Spatiotemporal variation in NO2 concentrations and socioeconomic driving forces in Chinese cities
YAOYao1,2,, LIJiangfeng1,2,, HUTao3, YANGYuanyuan4, DINGLei5 1. School of Public Administration,China University of Geosciences,Wuhan 430074,China2. Key Laboratory of Legal Assessment Project,Ministry of Land and Resources,Wuhan 430074,China3. Faculty of Engineering,China University of Geosciences,Wuhan 430074,China4. School of Economics and Management,North China University of Water Resources and Electric Power,Zhengzhou 450046,China5. School of Industrial and Commercial,Ningbo Polytechnic, Ningbo 315800,China 通讯作者:通讯作者:李江风,E-mail:jfli0524@163.com 收稿日期:2017-01-9 修回日期:2017-05-5 网络出版日期:2017-07-20 版权声明:2017《资源科学》编辑部《资源科学》编辑部 基金资助:国土资源公益性行业科研专项(201511004-4) 作者简介: -->作者简介:姚尧,男,贵州榕江人,博士生,主要研究方向为土地利用转型与环境经济。E-mail:yyy@cug.edu.cn
关键词:NO2浓度;时空演化;社会经济;驱动力;空间计量模型;城市;中国 Abstract With China's socioeconomic development and transition,a significant goal of improving urban air quality remains. Using monitoring data for cities at the prefecture level and above from 2004 to 2013,we analyzed temporal and spatial characteristics of NO2 quality concentration. A dynamical mechanism of socioeconomic influencers on urban NO2 pollution was constructed based on a Spatial Econometric Model. We found that annual average values in NO2 concentration varied along a U curve during 10 years in urban areas. P-values changed from 78.1%(214 cities)in 2004 to the lowest at 73.0%(200 cities)in 2013. The control of NO2 pollution was unstable. The total spatial distribution of NO2 pollution presented certain change during study period, and there were significant changes in some local zones. The economically developed eastern cities such as Beijing-Tianjin-Hebei,Shandong Peninsula and Yangtze River Delta were the main pollutant regions for NO2 in China,and there was a significant spatial positive correlation. The socioeconomic driving forces of NO2 concentration distribution change were analyzed. In the past 10 years,urban economic growth was the main factor affecting NO2 concentration and variation,and it was characterized by a U curve. The population urbanization level,proportion of secondary production and number of motor vehicles were important factors that increased urban NO2 concentrations. The spatial autoregressive coefficient is 0.236 659,indicating that the NO2 concentration in a city depends not only on its own concentration but also on the pollution of neighboring cities. In the future,we need to strengthen the control of NOX emission reduction and pay attention to prevention and control between cities during the NO2 governance process.
Keywords:NO2 concentration;spatiotemporal variations;social economy;driving forces;spatial economic model;city;China -->0 PDF (1868KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 姚尧, 李江风, 胡涛, 杨媛媛, 丁镭. 中国城市NO2浓度的时空分布及社会经济驱动力[J]. , 2017, 39(7): 1383-1393 https://doi.org/10.18402/resci.2017.07.15 YAOYao, LIJiangfeng, HUTao, YANGYuanyuan, DINGLei. Spatiotemporal variation in NO2 concentrations and socioeconomic driving forces in Chinese cities[J]. 资源科学, 2017, 39(7): 1383-1393 https://doi.org/10.18402/resci.2017.07.15
NO2城市年均浓度值与达标城市比例变化见图1。可以发现,2004年以来,全国274个地级及以上城市NO2浓度年均值整体呈现先波动下降再增加的“U”形曲线特征,具体年均浓度的平均值由2004年的32.13μg/m3下降到最低值2009年的28.84μg/m3,再上升到最高值2013年的34.01μg/m3,相较于2004年总体增幅为9.25%。总的来看,10年间NO2的年均浓度平均值皆低于2012年版新《环境空气质量标准》里所规定的二级标准限值(40μg/m3),高值污染区主要集中在数量相对较少的部分工业和城市化发展快速的发达区域。 显示原图|下载原图ZIP|生成PPT 图1城市NO2浓度年均值与达标城市比例变化 -->Figure 1The NO2 concentration and ratio of reaching standard cities at county level or above in China from 2004 to 2013 -->
基于ArcGIS软件的空间插值分析功能,选取274个城市2004年、2008年和2013年三个截面年份的NO2年均值数据,绘制出对应年份的NO2浓度的空间分布演化(见图2)。 显示原图|下载原图ZIP|生成PPT 图2主要年份中国NO2浓度的空间分布 -->Figure 2Spatial distribution of NO2 concentration in China in 2004,2008 and 2013 -->
根据全局Moran's I 指数的时段变化特征,利用GeoDa和ArcGIS软件,绘制2004年、2008年、2013年三个截面年份274个城市NO2浓度的Moran's I 散点分布图3(图3a、图3c、图3e为LISA集聚图,图3b、图3d、图3f为相应的Moran散点分布)。 显示原图|下载原图ZIP|生成PPT 图3274个城市NO2浓度分布的LISA集聚图和Moran散点分布 -->Figure 3Moran scatter plot of NO2 concentration in 2004,2008,and 2013. The right part shows quadrant distributions of NO2 concentration,and the left part shows the corresponding spatial patterns -->
从图中可以发现,①全局Moran's I 值均大于0,并在1%水平上显著,即NO2的浓度分布以集聚状态分布,有着显著的空间正相关关系,这亦表明可引入空间计量回归模型做检验;②从具体数值来看,2004年的Moran's I 值为0.236 659,降低到2008年的0.142 070,再上升至2013年的0.412 595,表明NO2浓度分布的空间集聚水平呈先弱化再增强的演变过程,2013年既是NO2污染加重的年份,也是NO2浓度集聚凸显的时期;③从LISA图的集聚结果来看,在通过显著性检验的城市当中,HH和LL型集聚是主要的空间集聚类型。结合图2,可以看出,2004年HH集聚区主要分布在京津冀都市圈的北京、天津、张家口、石家庄、保定,河南的郑州、洛阳,长三角的苏州、湖州、绍兴等21个城市,LL集聚区主要表现为零散分布的特征,包括甘肃的张掖、定西、平凉,广西的贵港、梧州、玉林等18个城市;到2008年,HH集聚区范围有一定程度缩小(传统的高污染地区华北大部城市基本消失,主要得益于北京奥运会期间对北京及其周边城市的空气污染排放控制与治理[36]),主要分布在河南的新乡、开封、郑州、许昌及长三角的上海市、湖州、绍兴等11个城市;LL集聚区范围基本维持稳定,并集中分布在甘肃、广东等6小块区域共20个城市。而在2013年,HH集聚区范围则又进一步扩大,主要集聚城市从华北地区扩散到山东半岛大部分城市,并依然涵盖了长三角的嘉兴、湖州等共35个城市,表现出一定的区域恶化蔓延趋势;LL集聚区的空间分布依然较为稳定、空间格局也基本保持一致,共有22个城市。未来,在重点控制HH集聚区的污染形成同时,可着力培育LL型的NO2低浓度值“空气集聚净区”,以阻隔连片HH集聚区的溢出蔓延。
根据前文的NO2浓度分布的空间格局与影响因素解析,城市NO2污染与排放格局的形成机制见图4,并提出相关污染防控措施和治理建议。从模型实证结果来看,经济增长依然是影响NO2浓度和变化的主要原因,并处于加剧NO2污染过程。因而,转变传统高能耗的经济增长方式,实现城市的绿色发展势在必行,以期早日迎来NO2浓度的改善拐点。从城市化水平角度来看,较高的人口规模集聚水平是影响城市空气质量变化的一个重要因素[36]。因而,未来需要科学厘清城市化水平和空气污染阈值关系,着手建立城市人口规模与空气质量数据的动态关联监测系统,稳妥推进人口迁移和流动,积极培育中小城镇和特色小镇,合理控制大城市人口规模。同时,从整个区域的角度来看,NO2分布存在显著的空间效应,环境政策制定过程中不应只关注地方省份或单一城市的减排,还要考虑对其周边城市的影响,以实现区域的联合防控。如参照京津冀大气污染防治联防机制,积极推进长三角区域、山东半岛大气污染防治协作,完善区域间应急响应、数据共享、技术协作、联合执法的长效合作。 显示原图|下载原图ZIP|生成PPT 图4中国城市NO2浓度分布的社会经济驱动形成机制 -->Figure 4Formation mechanism of distribution of NO2 concentration in China -->
城市空气污染物浓度的定量分析和时空分布格局研究是认识区域环境污染问题的基础。通过分析中国274个地级城市2004-2013年以来的NO2年浓度监测数据的时空特征,并在传统面板模型的基础上考虑空间效应的影响,分析了中国城市NO2浓度分布的社会经济驱动因素,主要结论如下: (1)2004-2013年,中国城市NO2浓度年均值整体呈现先波动下降再增加的“U”形曲线特征,NO2浓度年浓度由31.13μg/m3升至2013年最高的34.01μg/m3;达标城市则由78.1%(214个)降至2013年最低值73.0%(200个),NO2污染的控制总体不稳定。 (2)10年间,城市NO2浓度分布格局总体发生一定变化,并在局部区域有显著改变。京津冀都市圈、山东半岛、长三角等东部经济发达城市(群)是主要NO2高污染区,西部新疆部分城市出现污染加重局面,同时东北大部分城市呈现了污染好转的趋势。全局Moran's I 值检验表明城市NO2的浓度分布存在着显著的空间正相关关系,且空间集聚水平呈现先弱化再增强的特征。 (3)解析了城市NO2浓度分布变化的社会经济驱动力。10年间,城市经济增长依然是影响NO2浓度和变化的主要原因,并呈“U”型曲线规律;人口城市化水平、二产比重和机动车数量激增是恶化城市NO2浓度的重要因素。空间自回归系数检验结果表明一个城市的NO2浓度除受自身影响外,还受相邻城市的溢出扩散影响,未来氮氧化物减排和NO2治理过程中,需注重城市间的联合防控。
5.2 讨论
(1)NOx减排控制的加强。社会经济发展是驱动城市空气质量变化的关键因素,而雾霾依然是困扰中国当前城市环境质量改善和生态文明建设的一大顽疾。考虑到大气污染复合性和危害性,城市尤其是特大城市在NO2质量改善上需持之以恒,并与细颗粒物的治理有机结合、综合防治。同时,依据贺克斌等研究,大气细颗粒物吸附的水分中NO2与SO2的化学反应是现阶段雾霾期间硫酸盐的主要形成途径,当前应优先加大NOx减排力度[40]。因而,目前环境政策在保持对SO2实施有效减排的同时,须格外重视对NOx、氨气等污染物减排控制,在“十二五”对NOx总量减排基础上,优先加强NOx减排控制(“十三五”已明确到2020年NOx排放总量控制在1574万t以内),尤其对重点行业、重点区域和重点城市的控制,以实现NO2的持续污染减缓和质量达标改善。 (2)NO2治理的区域协作。围绕NO2主要污染区域,参照京津冀大气污染防治联防机制,积极推进东部发达地区的长三角城市群、山东半岛城市群大气污染防治协作,完善区域间应急响应、数据共享、技术协作的长效合作;发挥城市群间协作机制平台作用,推进政策协同,严格环境联合执法,大力实施重点行业的减排治理任务,不断完善区域协作机制。 The authors have declared that no competing interests exist.
YinK,Wang RS,An QX,et al.Using eco-efficiency as an indicator for sustainable urban development:a case study of Chinese provincial capital cities [J]. ,2014,36(2):665-671. [本文引用: 3]
[2]
Fang CL,Ma HT,WangJ.A regional categorization for “new-type urbanization” in China [J]. ,2015,10(8):e0134253. [本文引用: 1]
[Diao BD,Zeng KF,Su PD,et al.Temporal-spatial distribution characteristics of provincial industrial NOx emissions and driving factors in China from 2006 to 2013 [J]. ,2016,38(9):1768-1779.] [本文引用: 4]
[4]
Sachin DG,VanderA,BeigG.Satellite derived trends in NO2 over the major global hotspot regions during the past decade and their inter-comparison [J]. ,2009,157(3):1873-1878. [本文引用: 1]
[Zhang XY,ZhangP,ZhangY,et al.The tropospheric NO2 trends,the temporal and spatial distribution characteristics and source apportionment for nearly 10 years in China [J]. ,2007,37(10):1409-1416.] [本文引用: 1]
[10]
Jvd AR,PetersD,EskesH,et al.Detection of the trend and seasonal variation in tropospheric NO2 over China [J]. ,2006,111(D12):1-10.
[LiL,Shi RH,Chen YY,et al.Spatio-temporal characteristics of NO2 in China and the anthropogenic influences analysis based on OMI data [J]. ,2013,15(5):688-694.] [本文引用: 3]
[Zheng XX,Li LJ,Zhao WJ,et al.Spatial and temporal characteristics of atmospheric NO2 in the Beijing-Tianjin-Hebei Region [J]. ,2014,23(12):1938-1945.] [本文引用: 1]
[WangY,Li LJ,LiuY.Characteristics of atmospheric NO2 in the Beijing-Tianjin-Hebei Region and the Yangtze River Delta analyzed by satellite and ground observations [J]. ,2012,33(11):3685-3692.] [本文引用: 1]
[DingL,LiuC,Huang YL,et al.Spatial and temporal characteristics of urban ambient air quality and its main influence factors in Hubei Province [J]. ,2016,36(3):170-178.] [本文引用: 1]
[17]
ShawD,PangA,Lin CC,et al.Economic growth and air quality in China [J]. ,2010,12(3):79-96. [本文引用: 2]
[Zhou CY,WangQ,LiQ,et al.Spatio-temporal change and influencing factors of tropospheric NO2 column density of Yangtze River Delta in the decade [J]. ,2016,36(7):1921-1930. ] [本文引用: 1]
[Zhou CY,LiQ,Wang ZT,et al.Spatio-temporal trend and changing factors of tropospheric NO2 column density in Beijing-Tianjin-Hebei Region from 2005 to 2014 [J]. ,2016,20(3):468-480.] [本文引用: 1]
[ZhouK,FanJ.Regional disparity of environmental pollution source and its socio-eco-nomic influencing factors:based on the cross-section data of 339 cities at prefecture level or above in China [J]. ,2016,71(11):1911-1925.] [本文引用: 1]
[Lin XQ,WangD.Spatio-temporal variations and socio-economic driving forces of air quality in Chinese cities [J]. ,2016,71(8):1357-1371.] [本文引用: 2]
[29]
Wang SJ,Fang CL,WangY.Spatiotemporal variations of energy-related CO2 emissions in China and its influencing factors:an empirical analysis based on provincial panel data [J]. ,2016,55:505-515. [本文引用: 3]
[DingL,Huang YL,Liu YL,et al.Spatio temporal variability of sudden environmental pollution incidents and influencing factors in China,1995-2012 [J]. ,2015,34(6):749-760.] [本文引用: 1]
[31]
ShiY,Xia YF,Lu BH,et al.Emission inventory and trends of NOx for China,2000-2020 [J]. ,2014,15(6):454-464. [本文引用: 1]
[32]
Kang YQ,ZhaoT,Yang YY.Environmental Kuznets curve for CO2 emissions in China:a spatial panel data approach [J]. ,2016,63:231-239. [本文引用: 1]
[33]
LeSage JP. An introduction to spatial econometrics [J]. ,2008,(3):19-44. [本文引用: 1]
[34]
Elhorst JP.Spatial Econometrics:From Cross-Sectional Data to Spatial Panels [M]. ,2014. [本文引用: 1]
[35]
WangT,NieW,GaoJ,et al.Air quality during the 2008 Beijing Olympics:secondary pollutants and regional impact [J]. ,2010,10(16):7603-7615. [本文引用: 1]
[36]
WangS,ZhaoM,XingJ,et al.Quantifying the air pollutants emission reduction during the 2008 Olympic Games in Beijing [J]. ,2010,44(7):2490-2496. [本文引用: 3]
[37]
Lamsal LN,Martin RV,Parrish DD,et al.Scaling relationship for NO2 pollution and urban population size:a satellite per-spective [J]. ,2013,47(14):7855-7861. [本文引用: 1]
[Minis-try of Environmental Protection of the People's Republic of China. Environmental Statistics Bulletin in China [EB/OL]. (2015-03-16)[2017-01-09]. .]URL [本文引用: 1]
[39]
DingL,LiuC,Chen KL,et al.Atmospheric pollution reduction effect and regional predicament:an empirical analysis based on the Chinese provincial NOx emissions [J]. ,2017,196:178-187. [本文引用: 1]
[40]
ChengY,ZhengG,WeiC,et al.Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China [J]. ,2016,2(12):e1601530. [本文引用: 1]