Sensitivity of vegetation responses to drought in Mongolia
LV Zhentao,1,2,3,5, LI Shengyu,1,2,3,5, PENG Zhongmin2,5, FAN Jinglong1,2,4,5, LIU Guojun1,2,3,5, WANG Haifeng1,2,3,5, MENG Xiaoyu1,2,3,51. National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Xinjiang Institute of Ecology and Geography, CAS, Urumqi 830011, China 2. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, CAS, Urumqi 830011, China 3. Mosuowan Desert Research Station, Xinjiang Institute of Ecology and Geography, CAS, Shihezi 832000, Xinjiang, China 4. Taklimakan Desert Research Station, Xinjiang Institute of Ecology and Geography, CAS, Korla 841000, Xinjiang, China 5. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract The lack of precipitation can affect vegetation growth, human’s lives and the economic and social development. In arid areas, drought is one of the natural conditions that affect the eco-environment and socio-economy. Based on the correlation between Standardized Precipitation Evapotranspiration Index (SPEI) and the vegetation indexes, the sensitivity of vegetation in different regions and land cover types to drought in Mongolia was studied, and the causes were discussed. The results show that (1) Although there had been three drought events in Mongolia from 2001 to 2019, the overall drought degree showed a slight decreasing trend, and SPEI slightly increased, with an overall growth rate of 0.001%/a. Vegetation growth improved, and vegetation index also showed an upward trend, with an overall growth rate of 0.15%/a. (2) In most parts of Mongolia, the vegetation indexes were significantly positively correlated with SPEI. However, in the regions with abundant precipitation such as the north of the Khangai Mountains and Kent Mountains and the regions with very little precipitation such as the south of the Altay Mountains, the correlation between vegetation indexes and SPEI was small. This means that drought has less impact on vegetation in these areas. (3) The sensitivity of different vegetations to drought is also different. And the sensitivity of grassland was the strongest, while that of forest was the weakest. In terms of season, steppe and desert-steppe transition zone are most sensitive to spring and autumn drought, meadow steppe and mid-latitude forest are most sensitive to summer drought, and high-latitude forest is most sensitive to spring and winter drought. (4) In essence, the sensitivity of vegetation to drought represents the regional water balance. The higher the annual mean temperature or the lower the precipitation, the sensitivity and response of vegetation to drought, and vice versa. Water balance is the key condition that affects the sensitivity of vegetation to drought response. Annual mean temperature has positive effects on on the sensitivity of vegetation to drought response, while precipitation has negative ones. Vegetation types have different sensitivity to drought at different time scales and in different months. The results have an important reference value for desertification control in Mongolia according to local conditions. Keywords:SPEI;drought;change of vegetation;multi-time scale;Mongolia
PDF (5813KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 吕振涛, 李生宇, 彭中敏, 范敬龙, 刘国军, 王海峰, 孟晓于. 蒙古国植被对干旱响应的敏感性研究[J]. 地理研究, 2021, 40(11): 3016-3028 doi:10.11821/dlyj020210105 LV Zhentao, LI Shengyu, PENG Zhongmin, FAN Jinglong, LIU Guojun, WANG Haifeng, MENG Xiaoyu. Sensitivity of vegetation responses to drought in Mongolia[J]. Geographical Research, 2021, 40(11): 3016-3028 doi:10.11821/dlyj020210105
注:该图基于自然资源部地图技术审查中心标准地图(审图号为 GS(2020)4395号)制作,底图无修改。 Fig. 2Interannual variation and spatial distribution of NDVI average over the years from 2001 to 2019 in Mongolia
注:该图基于自然资源部地图技术审查中心标准地图(审图号为 GS(2020)4395号)制作,底图无修改。 Fig. 3Annual NDVI and SPEI-12 correlation coefficient and significance test spatial distribution in Mongolia from 2001 to 2019
Tab. 1 表1 表12001—2019年蒙古国各月份NDVI与6种时间尺度SPEI相关系数均值 Tab. 1The mean values of correlation coefficients between NDVI and SPEI of 6 timescales in Mongolia from 2001 to 2019
[ChenXi, HuRuji, JiangFengqing, et al. Physical Geography of Arid Land in China. Beijing: Science Press, 2010: 7-9.] [本文引用: 1]
BALDOCCHI DD, XUL, KIANGN J A, et al. How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland Agricultural and Forest Meteorology, 2004, 123(1-2): 13-39. DOI: 10.3390/rs12203410. URL [本文引用: 1]
FISCHER EM, SENEVIRATNE SI, VIDALE PL, et al. Soil moisture-atmosphere interactions during the 2003 European summer heat wave Journal of Climate, 2007, 20(20): 5081-5099. DOI: 10.1175/JCLI4288.1. URL [本文引用: 1]
HIRSCHIM, SENEVIRATNE SI, ALEXANDROVV, et al. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe Nature Geoscience, 2011, 4(1): 17-21. DOI: 10.1038/ngeo1032. URL [本文引用: 1]
[Zhoudan, ZhangBo, RenPeigui, et al. Analysis of drought characteristics in Shaanxi province in recent 50 years based on standardized precipitation evapotranspiration index Journal of Natural Resources, 2014, 29(4): 677-88.]. DOI: 10.11849/zrzyxb.2014.04.012. [本文引用: 1]
[WeiYuanjie, Zhen Lin. BATKHISHIGO, et al. Empirical study on consumption of ecosystem services and its spatial differences over the Mongolian Plateau Resources Science, 2009, 31(10): 1677-1684.]. DOI: 10.3321/j.issn:1007-7588.2009.10.008. [本文引用: 1]
[ZhenLin, LiuJiyuan, LiuXuelin. Structural change of agriculture-livestock system and affecting factors in Mongolian Plateau Journal of Arid Land Resources and Environment, 2008, 22(1): 144-151.]. DOI: 10.3969/j.issn.1003-7578.2008.01.029. [本文引用: 1]
[FangJingyun, TangYanhong, YOWHANS. Carbon cycling studies: Why are East Asian ecosystems important Scientia Sinica Vitae, 2010, 40(7): 561-565.]. DOI: 10.1360/zc2010-40-7-561. [本文引用: 1]
[MiaoLijuan, JiangChong, HeBin, et al. Responses of vegetation cover change to climate in the Mongolian Plateau in recent 10 years Acta Ecologica Sinica, 2014, 34(5): 1295-1301.]. DOI: 10.5846/stxb201304100659. [本文引用: 2]
[WangShigong, DongGuangrong, ChenHuizhong, et al. Advances in studying sand-dust storms of China Journal of Desert Research, 2000, (4): 5-12.]. DOI: 10.3321/j.issn:1000-694X.2000.04.002. [本文引用: 1]
[LiuHujun, LiuShujuan, LiuKailin, et al. Comparison of desertification causes between Xilingol League of Inner Mongolia and Sukhbaatar of Mongolia Inner Mongolia Science Technology & Economy, 2018, (24): 57-58+60.]. DOI: CNKI:SUN:NMKJ.0.2018-24-023. [本文引用: 1]
[LiYifan, WangJuanle, ZhuJunxiang. Landscape pattern analysis of Mongolia based on the geographical partitions Arid Land Geography, 2016, 39(4): 817-827.] DOI: 10.1109/JSTARS.2016.2529001. [本文引用: 1]
[ZhangXiaotong, TanQulin, TuTianqi, et al. Evaluation of ecological carrying capacity along “Grassland Road” in Mongolia using MODIS satellite data Geomatics & Spatial Information Technology, 2019, 42(9): 64-67.]. DOI: CNKI:SUN:DBCH.0.2019-09-019. [本文引用: 1]
[ChenFang, LiuHujun, LiuShujuan, et al. MODIS-based desertification dynamic monitoring in Mongolia from 2003 to 2017 Journal of Northwest Forestry University, 2019, 34(5): 167-171.]. DOI: 10.3969/j.issn.1001-7461.2019.05.26. [本文引用: 2]
LEEE-H, SOHNB-J. Recent increasing trend in dust frequency over Mongolia and Inner Mongolia regions and its association with climate and surface condition change Atmospheric Environment, 2011, 45(27): 4611-4616. DOI: 10.1016/j.atmosenv.2011.05.065. URL [本文引用: 1]
JOHNR, CHENJ, KIMY, et al. Differentiating anthropogenic modification and precipitation-driven change on vegetation productivity on the Mongolian Plateau Landscape Ecology, 2016, 31(3): 547-566. DOI: 10.1007/s10980-015-0261-x. URL [本文引用: 1]
包刚, 包玉海, 覃志豪, 等. 近10年蒙古高原植被覆盖变化及其对气候的季节响应 地理科学, 2013, 33(5): 613-621. DOI:10.13249/j.cnki.sgs.2013.05.613 [本文引用: 2] 利用2001~2010年间MODIS NDVI数据、同期气象数据和MODIS土地覆盖分类产品,探讨蒙古高原植被覆盖变化趋势及其对气温和降水量的季节响应特征。结果表明,10 a来,蒙古高原植被覆盖度呈增加趋势和呈下降趋势的面积基本持平;春季和夏季植被覆盖度呈下降趋势,而秋季呈上升趋势,降水量是最主要的影响因子;在秋季5种植被类型均呈增加趋势,而在春季和夏季不同植被类型的增减趋势因植被类型而异。 [BaoGang, BaoYuhai, QinZhihao, et al. Vegetation cover changes in Mongolian plateau and its response to seasonal climate changes in recent 10 years Scientia Geographica Sinica, 2013, 33(5): 613-621.]. DOI: 10.3969/j.issn.1001-7461.2019.05.26. [本文引用: 2]
[PUREVDORJTAMIR. Study on the response of grassland vegetation on climate change in the Eastern Mongolian Plateau Hohhot : Doctoral Dissertation of Inner Mongolia Agricultural University, 2017: 19-23.]. DOI: CNKI:CDMD:1.1018.960796. [本文引用: 1]
VICENTE-SERRANO SM, BEGUERíAS, LóPEZ-MORENO JI, et al. A new global 0.5° gridded dataset (1901-2006) of a multiscalar drought index: Comparison with current drought index datasets based on the palmer drought severity index Journal of Hydrometeorology, 2010, 11(4): 1033-1043. DOI: 10.1175/2010jhm1224.1. URL [本文引用: 1]
VICENTE-SERRANOS, GOUVEIAC, CAMAREROJ, et al. Response of vegetation to drought time-scales across global land biomes Proceedings of the National Academy of Sciences of the United States of America, 2012, 110(1): 52-57. DOI: 10.1073/pnas.1207068110. [本文引用: 1]
VICENTE-SERRANO SM, AZORIN-MOLINAC, PEA-GALLARDOM, et al. A high-resolution spatial assessment of the impacts of drought variability on vegetation activity in Spain from 1981 to 2015 Natural Hazards and Earth System Sciences, 2019, 19(6): 1189-1213. DOI: 10.5194/nhess-19-1189-2019. [本文引用: 1]
MIAOB, LIZ, LIANGC, et al. Temporal and spatial heterogeneity of drought impact on vegetation growth on the Inner Mongolian Plateau Rangeland Journal, 2018, 40(2): 113-128. DOI: 10.1071/RJ16097. URL [本文引用: 1]
[KongDongdong, ZhangQiang, GuXihui, et al. Vegetation responses to drought at different time scales in China Acta Ecologica Sinica. 2016, 36(24): 7908-7918.]. DOI: 10.5846/stxb201506111182. [本文引用: 1]
张华, 徐存刚, 王浩. 2001-2018年西北地区植被变化对气象干旱的响应 地理科学, 2020, 40(6): 1029-1038. DOI:10.13249/j.cnki.sgs.2020.06.019 [本文引用: 1] 基于2001?2018年逐月的MODIS NDVI数据,以归一化植被指数(Normalized Difference Vegetation Index, NDVI)和植被状态指数(Vegetation Condition Index, VCI)作为植被生长状况指标,结合2001?2018年的月降水和月均温数据计算的标准化降水蒸散指数值,分析西北地区植被状况和气象干旱指数的变化趋势及其空间分布特征,以及多时间尺度下植被对气象干旱的响应。结果表明:2001?2018年西北地区植被的生长状况整体呈好转趋势,但空间分布上差异明显,东部植被改善状况高于中西部地区。近18 a西北地区5种不同时间尺度标准化降水蒸散指数(Standardized Precipitation Evapotranspiration Index,SPEI)均值整体上均呈增加趋势,表明干旱程度降低;空间上,干旱化趋势整体上表现为中西部高,东部低。植被生长状况在大部分区域均与SPEI呈现不同程度的正相关,总体表现为,西北地区东部植被对气象干旱的响应程度最高,西部次之,中部最低;不同植被类型中,草地对SPEI-12的响应最强,耕地次之,而林地的响应最弱;各植被类型在生长季的多数月份中对SPEI-3和SPEI-12的响应普遍较高。 [ZhangHua, XuCungang, WangHao. Response of vegetation change to meteorological drought in Northwest China from 2001 to 2018 Scientia Geographica Sinica, 2020, 40(6): 1029-1038.]. DOI: 10.13249/j.cnki.sgs.2020.06.019. [本文引用: 1]
DorjsurenM, Liou YA, Cheng C H. Time series MODIS and in situ data analysis for Mongolia drought Remote Sensing, 2016, 6(8): 2072-4292. DOI: 10.3390/rs8060509. [本文引用: 1]
LaiquanJin, JiquanZhang, RuoyuWang, et al. Analysis for spatio-temporal variation characteristics of droughts in different climatic regions of the Mongolian plateau based on SPEI Sustainability, 2019, 11(20): 57-67. DOI: 10.3390/su11205767. URL [本文引用: 1]
TroySternberg, NicholasMiddleton, DavidThomas. Pressurised pastoralism in South Gobi, Mongolia: What is the role of drought? Transactions of the Institute of British Geographers, 2009, 34(3): 364-377. DOI: 10.1111/j.1475-5661.2009.00348.x. URL [本文引用: 1]
JohnR, ChenJ, Ou-YangZ T, et al. Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010 Environmental Research Letters, 2013, 8(3): 035-033. DOI: 10.1088/1748-9326/8/3/035033. [本文引用: 1]
HersbachH., BellB, BerrisfordP, et al. ERA5 hourly data on single levels from 1979 to present https://cds.climate.copernicus.eu/cdsapp, 2020-11-08. DOI: 10.24381/cds.adbb2d47.2018. URL [本文引用: 1]
Kamel Didan. MOD13A1v006 terra vegetation indices 16-day global 500m https://lpdaac.usgs.gov/products/mod13a1v006/, 2020-11-08. DOI: 10.5067/MODIS/MOD13A1.006. URL [本文引用: 1]
BuchhornM, SmetsB, BertelsL, et al. Copernicus global land cover layers-collection 2 https://zenodo.org/record/3243509, 2020-11-10. DOI: 10.3390/rs12061044. URL [本文引用: 1]
MckeeT, DoeskenN, KleistJ. The relationship of drought frequency and duration to time scales. In Eighth Conference on Applied Climatology. California: Department of Atmospheric Science Colorado State University. 1993: 179-184. [本文引用: 1]
PalmerW C. Meteorological Drought. Washington DC: U.S. Department of Commerce, Office of Climatology, U.S. Weather Bureau, 1965, 30-35. [本文引用: 1]
Vicente-SerranoS, BegueriaS, Lopez-MorenoJ I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index Journal of Climate, 2010, 23(7): 1696-1718. DOI: 10.1175/2009JCLI2909.1. URL [本文引用: 1]
BEGUERíAS. A new global 0.5° gridded dataset (1901-2006) of a multiscalar drought index: Comparison with current drought index datasets based on the palmer drought severity index Journal of Hydrometeorology, 2010, 11(4): 1033-1043. DOI: 10.1175/2010JHM1224.1. URL [本文引用: 1]
HuaijunWang, YaningChen, YingpingPan. Characteristics of drought in the arid region of northwestern China Climate Research, 2015, 62(2): 99-113. DOI: 10.3354/cr01266. URL [本文引用: 1]
[YangSiyao, MengDan, LiXiaojuan, et al. Multiscale responses of vegetation changes relative to the SPEI meteorological drought index in North China in 2001-2014 Acta Ecologica Sinica, 2018, 38(3): 1028-1039.]. DOI: 10.5846/stxb201611242398. [本文引用: 1]
[LiJing, LiuHongbing, LiLong, et al. Vegetation dynamic changes in northwest China based on multi-source remote sensing datasets in recent 30 years Arid Land Geography, 2016, 39(2): 387-394.]. DOI: CNKI:SUN:GHDL.0.2016-02-021. [本文引用: 1]
Stephenson NL. Climatic control of vegetation distribution-the role of the water-balance American Naturalist, 1990, 135(5): 649-670. DOI: 10.1086/285067. URL [本文引用: 1]
WEBB WL, LAUENROTH WK, SZAREK SR, et al. Primary production and abiotic controls in forests, grasslands, and desert ecosystems in the United States Ecology, 1983, 64(1): 134-151. DOI: 10.2307/1937336. URL [本文引用: 1]
KNAPP AK, SMITH MD. Variation among biomes in temporal dynamics of aboveground primary production Science, 2001, 291(5503): 481-484. DOI: 10.1126/science.291.5503.481. URL [本文引用: 1]
VICENTE-SERRANO SM, GOUVEIAC, JULIO CAMAREROJ, et al. Response of vegetation to drought time-scales across global land biomes Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(1): 52-57. DOI: 10.1073/pnas.1207068110. [本文引用: 1]