Redetermine the region and boundaries of Tibetan Plateau
ZHANG Yili,1,2,3, LI Bingyuan1, LIU Linshan1, ZHENG Du11. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China 2. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China 3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract With the advances in research of the Tibetan Plateau (TP) and the deep understanding of multi-disciplinary research, coupled with the progress of geographic big-data, earth observation science and technology, this research systematically discussed the principles, methods and basis for determining the boundaries of the TP. It analyzed the macro landform structures (plateau surface, low basin and deep-cut valley lowland on the edge of the TP) within the TP and the fundamental characteristics of the geographic units' composition in TP's surrounding areas. Based on the high resolution remote sensing images, DEM data and geomorphologic maps etc., the boundary of TP with a 1:1000000 scale is defined through a comparative study of geomorphological features with the support of Arcmap 10.5. The results show that the Tibetan Plateau stretches from the foot of the Himalayas in the south to the foot of the Kunlun Mountains and the Qilian Mountains in the north, with a total length of 1560 km. While it spans about 3360 km from the Hindu Kush Mountains and the Pamir Plateau in the west, to the eastern foot of Hengduan Mountains in the east. The TP, lying between 25°59′30″N-40°1′0″N and 67°40′37″E-104°40′57″E, covers a total area of 3083.44 × 103 km2, with an average altitude of 4320 m. Geographically, the TP is located in Southwest China and eight other countries including India, Pakistan, Tajikistan, Afghanistan, Nepal, Bhutan, Myanmar and Kyrgyzstan. The TP in Chinese section has an area of 2580.90 × 10 3 km2, accounting for around 83.7% of the total area, with an average altitude of 4400 m. In China's part, the TP spans in six provincial-level regions: Tibet Autonomous Region (TAR), Qinghai province, Gansu province, Sichuan province, Yunnan province and Xinjiang Uygur Autonomous Region. Among them, the main parts of TAR and Qinghai are the major section of the TP, which accounted for 60.6% of the total area of the plateau. Keywords:Tibetan Plateau;principles for determining the boundary;method basis;boundary;plateau characteristic data
PDF (20481KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 张镱锂, 李炳元, 刘林山, 郑度. 再论青藏高原范围[J]. 地理研究, 2021, 40(6): 1543-1553 doi:10.11821/dlyj020210138 ZHANG Yili, LI Bingyuan, LIU Linshan, ZHENG Du. Redetermine the region and boundaries of Tibetan Plateau[J]. Geographical Research, 2021, 40(6): 1543-1553 doi:10.11821/dlyj020210138
注:2002版范围数据来源于张镱锂等[40];2021版高原范围四方向端点的经纬度:最北为40°1′0″N、96°49′25″E,最南为25°59′30″N、98°41′55″E,最西为34°58′8″N、67°40′37″E,最东为33°13′36″N、104°40′57″E。 Fig. 3Scope of Tibetan Plateau (version-2021) and its comparison with the version-2002
[XuJinzhi. Natural Geographical Data of Qinghai-Xizang: Geography Part , 1960.] [本文引用: 3]
孙鸿烈, 郑度, 姚檀栋, 等. 青藏高原国家生态安全屏障保护与建设 , 2012, 67(1): 3-12. DOI:10.11821/xb201201001 [本文引用: 3] 青藏高原对我国乃至亚洲生态安全具有重要的屏障作用。在全球变化和人类活动的综合影响下,青藏高原呈现出生态系统稳定性降低、资源环境压力增大等问题,突出表现为:冰川退缩显著、土地退化形势严峻、水土流失加剧、生物多样性威胁加大与珍稀生物资源减少、自然灾害增多等。这些问题严重影响了青藏高原区域生态安全屏障功能的发挥。针对当前高原生态安全状况,在总结相关研究成果和生态建设实践经验的基础上,提出了加强青藏高原国家生态安全屏障保护与建设的对策建议:加强气候变化对青藏高原生态屏障作用影响及区域生态安全调控作用的基础研究;系统开展高原生态安全屏障保护和建设关键技术研究与示范推广;部署建设生态屏障功能动态监测体系,加强生态安全屏障保护与建设成效评估,构建评估体系和标准,并凝练经验,以系统提升国家生态安全屏障的总体功能,在应对全球变化中占据主动地位。 [SunHonglie, ZhengDu, YaoTandong, et al. Protection and construction of the national ecological security shelter zone on Tibetan Plateau Acta Geographica Sinica, 2012, 67(1): 3-12.] [本文引用: 3]
ChenF, WelkerF, ShenCC, et al. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau , 2019, 569: 409-412. DOI:10.1038/s41586-019-1139-xURL [本文引用: 1]
[SunHonglie. Land types and its assessment principal on agricultural utilization on Qinghai-Xizang Plateau Resources Science, 1980, (2): 10-24.] [本文引用: 2]
[ChenYiyu, ChenYifeng, LiuHuanzhang, et al. Studies on the position of the Qinghai-Xizang plateau region in zoogeographic divisions and its eastern demarcation line Acta Hydrobiologica Sinica, 1996, 20(2): 97-103.]
郑度, 张荣祖, 杨勤业. 试论青藏高原的自然地带 , 1979, 34(1): 1-11. DOI:10.11821/xb197901001 [本文引用: 1] 雄伟壮丽、气势磅礴的青藏高原,以其自然历史发育的年青,自然地理景观的独特和对周围区域的巨大影响吸引着人们的密切注意,也是地学、生物学领域解决若干重大问题的关键地区。 [ZhengDu, ZhangRongzu, YangQinye. On the natural zonation in the Qinghai-Xizang Plateau Acta Geographica Sinica, 1979, 34(1): 1-11.] [本文引用: 1]
ZhengD. The system of physico-geographical regions of the Qinghai-Xizang (Tibet) Plateau , 1996, (4): 410-417. [本文引用: 1]
郑度, 李炳元. 青藏高原地理环境研究进展 , 1999, 19(4): 295-302.
[ZhengDu, LiBingyuan. Progress in studies on geographical environments of the Qinghai-Xizang Plateau Scientia Geographica Sinica, 1999, 19(4): 295-302.]
郑度, 姚檀栋. 青藏高原形成演化及其环境资源效应研究进展 , 2004, 2: 15-21.
[ZhengDu, YaoTandong. Progress in research on formation and evolution of Tibetan Plateau with its environment and resource effects China Basic Science, 2004, 2: 15-21.]
[LiuDongsheng. Studies on environment and resources of the Qinghai-Xizang Plateau: Retrospect and prospects China Society of the Qinghai-Xizang Plateau Research. , 1992: 1-13.]
ChenF, ChenS, ZhangX, et al. Asian dust-storm activity dominated by Chinese dynasty changes since 2000 BP , 2020, 11(1). DOI: 10.1038/s41467-020-14765-4. [本文引用: 1]
MyersN, Mittermeier RA, Mittermeier CG, et al. Biodiversity hotspots for conservation priorities , 2000, 403: 853-858. PMID:10706275 [本文引用: 1] Conservationists are far from able to assist all species under threat, if only for lack of funding. This places a premium on priorities: how can we support the most species at the least cost? One way is to identify 'biodiversity hotspots' where exceptional concentrations of endemic species are undergoing exceptional loss of habitat. As many as 44% of all species of vascular plants and 35% of all species in four vertebrate groups are confined to 25 hotspots comprising only 1.4% of the land surface of the Earth. This opens the way for a 'silver bullet' strategy on the part of conservation planners, focusing on these hotspots in proportion to their share of the world's species at risk.
[The State Council Information Office of the People's Republic of China. Ecological Progress on the Qinghai-Tibet Plateau. Beijing: Foreign Languages Press, 2018.] [本文引用: 3]
[ZhangYL, LiuLinshan, WangZhaofeng, et al. Spatial and temporal characteristics of land use and cover changes in the Tibetan Plateau Chin Sci Bull, 2019, 64(27): 2865-2875.] [本文引用: 2]
[Institute of Geography of Chinese Academy of Sciences. Geomorphological Regionalization of China (first draft). Beijing: Science Press, 1959.] [本文引用: 1]
[ZhangYili, LiBingyuan, ZhengDu. A discussion on the boundary and area of the Tibetan Plateau in China Geographical Research, 2002, 21(1): 1-8.] [本文引用: 7]
[ZhangYili, LiBingyuan, ZhengDu, Datasets of the boundary and area of the Tibetan Plateau , 2014. https://doi.org/10.3974/geodb.2014.01.12.V1.] URL [本文引用: 4]
[ZhangYili, LiuLinshan, LiBingyuan. Datasets of the boundary and region of Tibetan Plateau 2021 , 2021. https://doi.org/10.3974/geodb.2014.01.12.V2.] URL [本文引用: 2]
RGIConsortium. Randolph Glacier Inventory-A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space, Colorado, USA(Digital Media) , 2017. DOI: https://doi.org/10.7265/N5-RGI-60. [本文引用: 2]
MessagerML, LehnerB, GrillG, et al. Estimating the volume and age of water stored in global lakes using a geo-statistical approach , 2016: 13603. DOI: 10.1038/ncomms13603. [本文引用: 2]
JennessJ, DooleyJ, Aguilar-ManjarrezJ, et al. African Water Resource Database 2007: 167. [本文引用: 2]
JennessJ, DooleyJ, Aguilar-ManjarrezJ, et al. African Water Resource Database 2007: 308. [本文引用: 2]