The current situation and development trend of scientific data sharing services for climate change in China in the era of big data
LIU Guifang,1,2,3, ZHU Yunqiang4, GUAN Ruimin1, FENG Yafei1, LIU Qing1, XIA Menglin1, ZHANG Yaxing1, LU Heli,1,2,31. College of Environment and Planning/ Collaborative Innovation Center on Yellow River Civilization & Key Research Institute of Yellow River Civilization and Sustainable Development, Henan University, Kaifeng 475004, China 2. Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education/National Demonstration Center for Environment and Planning, Henan University, Kaifeng 475004, China 3. Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng 475004, China 4. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
Abstract With the further development of climate change research, China has accumulated and released more and more data on climate change, which provides valuable data sources for in-depth systematic scientific and technological innovation. Relevant data stocks are getting larger and larger, and storage types are becoming richer and richer, which has pushed us into an unprecedented era of big data. The era of big data is inseparable from the openness and sharing of data. In this paper we first summarized the current status of the five major categories of data sharing services: scientific data on climate change drivers, scientific data on climate change facts, scientific data on climate change impacts and adaptation, scientific data on future climate change forecasts, and economic and social data related to climate change. A systematic analysis of the characteristics of data quality and data applications was also carried out. On this basis, future development trends of China's climate change scientific data sharing services in the context of big data, such as service management, market oriented operations, commercial services, public services, data publishing, blockchain technology, artificial intelligence, data mining, and machines learning, dynamic data sharing based on model computing, etc. were prospected. Finally, we summarized the challenges faced by China's climate change scientific data sharing services in the era of big data. Keywords:big data;China;scientific data on climate change;sharing services;development trend
PDF (1127KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 刘桂芳, 诸云强, 关瑞敏, 冯亚飞, 刘情, 夏梦琳, 张亚星, 卢鹤立. 大数据时代中国气候变化科学数据共享服务的发展现状与趋势分析. 地理研究[J], 2021, 40(2): 571-582 doi:10.11821/dlyj020200278 LIU Guifang, ZHU Yunqiang, GUAN Ruimin, FENG Yafei, LIU Qing, XIA Menglin, ZHANG Yaxing, LU Heli. The current situation and development trend of scientific data sharing services for climate change in China in the era of big data. Geographical Research[J], 2021, 40(2): 571-582 doi:10.11821/dlyj020200278
[ WuJinjia, QuJiansheng, LiHengji, et al. The practice of multi-disciplinary coordination mechanism in climate change Ecological Economy, 2018,34(1):128-133.] DOI: cnki:%20SUN:%20STJJ.0.2018-01-026. [本文引用: 1]
[ ChenJie, LiuYujie, PanTao, et al. Spatiotemporal variation of precipitation in China and itsimpacton surface drywet conditions during 1961-2010 Journal of Natural Resources, 2019,34(11):2440-2453.] DOI: 10.31497/zrzyxb.20191115. [本文引用: 1]
[ ZhangWei, JiRan. Analysis of spatio-temporal variation and factors influencing surface temperature in Liaoning province Acta Ecologica Sinica.2019,39(18):6772-6784.] DOI: 10.5846/stxb201806211352. [本文引用: 1]
[ JiaJunhe, LiuHuiyu, LinZhenshan. Multi-time scale changes of vegetation NPP in six provincesof northwest China and their responses to climate change Acta Ecologica Sinica.2019,39(14):5058-5069.] DOI: 10.5846/stxb201808241810. [本文引用: 1]
[ WangZhiying, ZangShuying, ZhouDaowei, et al. Temporal and spatial variation of agricultural threshold temperature from 1957 to 2016 Scientia Geographica Sinica.2020,40(1):137-148.] DOI: 10.13249/j.cnki.sgs.2020.01.017. [本文引用: 1]
[ XiongQiaoli, HeYunling, DengFuying, et al. Assessment of alpine mean response to climate change in Southwest China based on MaxEnt Model Acta Ecologica Sinica, 2019,39(24):9033-9043.] DOI: 10.5846/stxb201809262085 [本文引用: 1]
[ ZhangXian, ZhuQiuan, YangBin, et al. Evaluating patterns of wetland methane emissions in Qinghai-Tibet plateau based on process model Acta Ecologica Sinica, 2020,40(9):1-12.] DOI: 10.5846/stxb201904240838. [本文引用: 1]
[ ZhuYunqiang, ZhaoXiaohong, FengZhuo, et al. Big Date Analysis and Innovative Service on Environmental Impact Assessment Environment Impact Assessment, 2016,38(1):5-9.] DOI: 10.14068/j.ceia.2016.01.002. [本文引用: 1]
[ MaZhiyun, LiuYun. Spatio-temporal patterns of key climate technology innovation differences: A case of countries along “the Belt and Road” Population Resources And Environment, 2017,27(9):102-111.] DOI: 10.12062/cpre.20170454. [本文引用: 1]
[ QuJiansheng, LiuLina, ZengJingjing, et al. Household CO2 emissions: An assessment based a large sample survey in China Science Bulletin, 2018,63(5-6):547-557.] DOI: 10.1360/N972017-00765. [本文引用: 1]
朱红根, 周曙东. 南方稻区农户适应气候变化行为实证分析: 基于江西省36县(市)346份农户调查数据 自然资源学报, 2011,26(7):1119-1128. DOI:10.11849/zrzyxb.2011.07.004URL [本文引用: 1] 利用江西省36县346个农户调查数据,运用Heckman Probit选择模型实证分析了影响农户气候变化感知及其适应行为决策的因素,结果表明,户主年龄、文化程度、与村民交流频率、来往亲戚数、赶集频率、看电视频率、距离市场远近及气象信息服务等因素能显著影响农户对气候变化的感知;而户主性别、年龄、文化程度、可借款人数、来往亲戚数、赶集频率、看电视频率及气象信息服务等因素对农户气候变化适应行为决策有显著影响。最后,根据实证分析结果,提出了促进农户采用气候变化适应行为的政策建议。 [ ZhuHonggen, ZhouShudong. Factors influencing southern rice farmers adapting to climate change behavior: Based on 346 households survey date of 36 counties in Jiangxi province Journal of Natural Resources, 2011,26(7):1119-1128.] DOI: 10.11849/zrzyxb.2011.07.004. [本文引用: 1]
王卷乐, 胡振鹏, 冉盈盈, 等. 鄱阳湖湿地烧荒遥感监测及其影响分析 自然资源学报, 2013,28(4):656-667. DOI:10.11849/zrzyxb.2013.04.012URL [本文引用: 1] 2,烧荒面积最大的斑块面积1293hm2,烧荒区主要分布在永修县吴城镇鄱阳湖国家级自然保护区和新建县南矶山湿地自然保护区;②火烧后薹草萌发与生长的数量要显著提高,前期地表生物量与盖度也高于未火烧区,但生长后期地表生物量与盖度要低于未火烧区;在萌发与生长的全过程,火烧后薹草的高度均显著低于未火烧区;在生长后期,火烧后薹草群落物种丰富度与生物多样性要明显低于未火烧区;③烧荒地缓冲区分析表明受烧荒影响最大的土地覆盖类型仍是干涸的湖底和邻近农田,随着缓冲区范围的扩大,受影响的森林和农村聚落类型比重加大,应引起足够重视。基于以上三个方面的分析,提出了相关的鄱阳湖区湿地资源保护和烧荒地管理的建议。]]> [ WangJuanle, HuZhenpeng, RanYingying, et al. Study on moorburn remote sensing monitoring on Poyang Lake wetland area ang its influence Journal of Natural Resources, 2013,28(4):656-667.] DOI: 10.11849/zrzyxb.2013.04.012. [本文引用: 1]
[ ZhaoGuining, ZhangZhengyong, LiuLin, et al. Changes of glacier mass balance in Manas river basin based on multisource remote sensing date Acta Geographica Sinica, 2020,75(1):98-112.] DOI: 10.11821/dlxb202001008. [本文引用: 1]
[ HanWeixiao, HuangChunlin, WangYunchen, et al. Study on the area variation of Qinghai Lake based on long-term 5/8 multi-band band remote sensing imagery Advances in Earth Science, 2019,34(4):346-355.] DOI: 10.11867/j.issn.1001-8166.2019.04.0346. [本文引用: 1]
裴亮, 刘阳, 陈晨. 大凌河流域土地利用/覆被变化及其对气候变化的响应研究 地理科学, 2017,37(9):1403-1410. DOI:10.13249/j.cnki.sgs.2017.09.013URL [本文引用: 1] ① 近30 a大凌河流域土地利用/覆被变化情况表现为:建设用地和农林用地的大幅度扩张,面积分别增加了322.30 km2和1 504.94 km2,并伴随着水域和旱地及其他未利用地面积的显著减少,面积分别减少了102.42 km2和1 724.61 km2;② 大凌河流域近30 a来土地利用变化导致流域平均年降水量、平均相对湿度及平均风速小幅度下降,分别减少了14.94 mm、0.2%和0.04 m/s,平均气温缓慢上升,增长了0.1℃;③ 退耕还林还草及成立凌河保护区等工作能提高流域植被覆盖面积、使流域水域面积得以回升,从而可以缓解城市热岛效应带来的温度升高,提高流域生态环境质量。]]> [ PeiLiang, LiuYang, ChenChen. Land use/cover change and its impact on climate change response in the Daling River Basin Geography Science, 2017,37(9):1403-1410.] DOI: 10.13249/j.cnki.sgs.2017.09.013. [本文引用: 1]
[ HanYunhuan, ZhengZiyan, XiaoYu, et al. Characteristics of land use/cover change over China based on China statistical yearbook and MODIS date Climatic and Environmental Research, 2017,22(6):733-746.] DOI: 10.3878/j.issn.1006-9585.2017.16214. [本文引用: 1]
[ SunJiulin, RenBo, et al. Studies of environmental date management in representative developed countries and suggestions to date sharing and usage in environmental unites of China Chinese Journal of Environmental Management, 2016,8(4):9-14.] DOI: 10.16868/j.cnki.1674-6252.2016.04.009. [本文引用: 1]
[ LiuChuang, ZhangYinghua. Methodology and practice on quantifying the impact of global change & earth system science date in 2019 Journal of Global Change Data & Discovery, 2019,3(3):207-226] DOI: 10.3974/geodp.2019.03.01. [本文引用: 1]
[ FangZihang, HeChunyang, LiuZhifeng, et al. Climate change and future trends in the argo-pastoral transitional zone in Northern China: The comprehensive analysis with the historical observation and the modal simulation Journal of Natural Resources, 2020,35(2):358-370.] DOI: 10.31497/zrzyxb.20200209. [本文引用: 1]
熊伟, 杨婕, 吴文斌, 等. 中国水稻生产对历史气候变化的敏感性和脆弱性 生态学报, 2013,33(2):509-518. DOI:10.5846/stxb201111091698URL [本文引用: 1] 有效的适应措施需要了解两类基础信息,一是农业生产所面临的各种气候变异风险,二是作物产量对潜在气候变异风险的反应及其机制。评价作物生产对历史气候变化的敏感性和脆弱性,可以在时间上和空间上揭示气候变化的趋势及作物产量对其的反应,从而为适应行动的全面开展提供基础信息。通过分析1981-2007年水稻生育期3个气候因子(平均温度、日较差、辐射)的变化对水稻产量的影响,评估我国水稻生产对这3个气候因子变化的敏感性和脆弱性及其区域分布状况。结果表明,1981-2007年间我国大部分水稻产区生育期内3个气候因子均发生了明显变化,存在着气候变异风险,其中以最高温的变化最普遍和明显,导致水稻生产中高温热害风险增加。部分区域水稻产量变化与单一气象因子的变化存在着显著的线性相关,这些地区气候因子的变化可以一定程度地解释水稻产量变化趋势,其中产量变化对辐射变化最敏感。当水稻生育期内平均温度上升1℃、日较差升高1℃、辐射下降10%时,我国部分地区水稻产量随之发生了相应的变化,其中辐射降低导致我国水稻生产的脆弱面积最大,其次为日较差。受3种气象因子变化趋势的综合影响,约有30%的水稻产区对1981-2007年的气候变化趋势敏感,少部分地区表现为脆弱,但水稻主产区受到的影响不大,且在东北地区还集中表现出产量增加的趋势,为我国水稻发展提供了契机。 [ XiongWei, YangJie, WuWenbin, et al. Sensitivity and vulnerability of China's rice production to observed climate change Acta Ecologica Sinica, 2013,33(2):509-518.] DOI: 10.5846/stxb201111091698. [本文引用: 1]
BryantJ, SutoriusE, Bunclark PS. Astronomy, data and the problem of large file transfers. Astronomical data analysis software and system XVII 17th Annual Conference on Astronomical Data Analysis Software and Systems, 2008, (394):727. [本文引用: 1]
FrankelF, ReidR. Big data: Distilling meaning from data Nature, 2008,455(7209):30. DOI: 10.1038/455030a. URL [本文引用: 1]
WangJiayao. Cartography in the age of spatio-temporal big data Acta Geodetica et Cartographica Sinica, 2017,46(10):1226-1237. DOI: 10.11947/j.AGCS.2017.20170308. [本文引用: 1]
Wigan MR, ClarkeR. Big data's big unintended consequences Computer, 2013,46(6):46-53. DOI: 10.1109/MC.2013.195. URL [本文引用: 1] Businesses and governments exploit big data without regard for issues of legality, data quality, disparate data meanings, and process quality. This often results in poor decisions, with individuals bearing the greatest risk. The threats harbored by big data extend far beyond the individual, however, and call for new legal structures, business processes, and concepts such as a Private Data Commons.
[ GuoHuadong. Big data, big science, big discovery: Review of CODATA Workshop on Big Data for International Scientific Programmes Bulletin of Chinese Academy of Sciences, 2014,29(4):500-506.] DOI: 10.3969/j.issn.1000-3045.2014.04.014. [本文引用: 1]
BuxtonB, HaywardV, PearsonI, et al. Big data: The next Google. Interview by Duncan Graham-Rowe Nature, 2008,455(7209):8-9. DOI: 10.1038/455008a. URLPMID:18769400 [本文引用: 1]
GinsbergJ, Mohebbi MH, Patel RS, et al. Detecting influenza epidemics using search engine query data Nature, 2009,457(7232):1012-1014. DOI: 10.1038/nature07634. URLPMID:19020500 [本文引用: 1] Seasonal influenza epidemics are a major public health concern, causing tens of millions of respiratory illnesses and 250,000 to 500,000 deaths worldwide each year. In addition to seasonal influenza, a new strain of influenza virus against which no previous immunity exists and that demonstrates human-to-human transmission could result in a pandemic with millions of fatalities. Early detection of disease activity, when followed by a rapid response, can reduce the impact of both seasonal and pandemic influenza. One way to improve early detection is to monitor health-seeking behaviour in the form of queries to online search engines, which are submitted by millions of users around the world each day. Here we present a method of analysing large numbers of Google search queries to track influenza-like illness in a population. Because the relative frequency of certain queries is highly correlated with the percentage of physician visits in which a patient presents with influenza-like symptoms, we can accurately estimate the current level of weekly influenza activity in each region of the United States, with a reporting lag of about one day. This approach may make it possible to use search queries to detect influenza epidemics in areas with a large population of web search users.
SilverD, HuangA, Maddison CJ, et al. Mastering the game of go with deep neural networks and tree search Nature, 2016,529(7587):484-489. DOI: 10.1038/nature16961. URLPMID:26819042 [本文引用: 1] The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses 'value networks' to evaluate board positions and 'policy networks' to select moves. These deep neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the full-sized game of Go, a feat previously thought to be at least a decade away.
AlamM, AmjadM. Weather forecasting using parallel and distributed analytics approaches on big data clouds Journal of Statistics & Management Systems, 2019,22(4):791-799. DOI: 10.1080/09720510.2019.1609559. [本文引用: 1]
[ YangYi. Explore a new model for joint prevention and control of regional air pollution in the era of big data Public Communication of Science & Technology, 2014,6(11):107-108.] DOI: cnki:%20SUN:%20KJCB.0.2014-11-100. [本文引用: 1]
AronovaE, Baker KS, OreskesN. Big science and big data in biology: From the international geophysical year through the international biological program to the long term ecological research (LTER) network, 19-57 present Historical Studies in the Natural Sciences, 2010,40(2):183-224. DOI: 10.1525/hsns.2010.40.2.183. URL [本文引用: 1]
[ HuangZhexue, CaoFuyuan, LiJunjie, et al. Developing sea cloud data system key technologies for large data analysis and mining Network New Media Technology, 2012,1(6):20-26.] DOI: cnki:%20SUN:%20WJSY.0.2012-06-006. [本文引用: 1]
[ ZhuYunqiang, SunJiulin, WangJuanle, et al. Study on earth data science and data sharing Land and Resources Informatization, 2015, (1):3-9.] DOI: 10.3969/j.issn.1674-3695.2015.01.001. [本文引用: 1]
[ GuoHuadong, ChenRunsheng, XuZhiwei, et al. Big data in natural sciences, humanities and social sciences: Review of the 6th Exploratory Round Table Conference Bulletin of Chinese Academy of Sciences, 2016,31(6):707-716.] DOI: 10.16418/j.issn.1000-3045.2016.06.014. [本文引用: 2]
陈军, 陈晋, 廖安平, 等. 全球30m地表覆盖遥感制图的总体技术 测绘学报, 2014,43(6):551-557. URL [本文引用: 1] 本文针对全球30米分辨率地表覆盖遥感制图这一世界性难题,提出了以多源影像最优化处理、参考资料服务化整合、覆盖类型精细化提取、产品质量多元化检核为主线的总体研究思路,研发了影像几何与辐射重建、异质异构服务化集成、对象化分层分类、知识化检核处理等主体技术方法;用于制定了相应数据产品规范、生产技术规范,研发了多项生产型软件,用于研制了2000和2010两个基准年的全球)30米地表覆盖数据产品,将空间分辨率提高了1个数量级。 [ ChenJun, ChenJin, LiaoAnping, et al. Concepts and key techniques for 30m global land cover mapping Science of Surveying and Mapping, 2014,43(6):551-557.] DOI: 10.13485/j.cnki.11-2089.2014.0089. [本文引用: 1]
[ General Office of the State Council. Notice of the General Office of the State Council on Issuing the Measures for the Management of Science Data. http://www.gov.cn/zhengce/cont-ent/2018-04/02/content_5279272.htm, 2018-04-02.] URL [本文引用: 1]
[ WangZhixiao. Astrategic study on Jiangsu's integration path of internet, big data, artificial intelligence and real economy Commercial, 2019, (23):188-189.] DOI: cnki:%20SUN:%20SYJW.0.2019-23-119. [本文引用: 1]
[ ZuoJianan, ChenYa. The analysis on sharing mode of scientific data in the environment of big data Journal of Intelligence, 2013,32(12):151-154.] DOI: 10.3969/j.issn.1002-1965.2013.12.028. [本文引用: 1]
[ ZhuYunqiang, PanPeng, ShiLei. et al. Progress and challenge of scientific big data integration and sharing China Science & Technology Resources Review, 2017,49(5):2-11.] DOI: 10.3772/j.issn.1674-1544.2017.05.001. [本文引用: 1]
Joris VRossum. Blockchain for research. Digital Science Report, http://figshare.com/articles/_/5607778. 2017-11-27. URL [本文引用: 1]
裴韬, 刘亚溪, 郭思慧, 等. 地理大数据挖掘的本质 地理学报, 2019,74(3):586-598. DOI:10.11821/dlxb201903014URL [本文引用: 1] 针对地理大数据的内在本质以及地理大数据挖掘对于地理学研究的意义,本文解释了地理大数据的含义,并在大数据“5V”特征的基础上提出了粒度、广度、密度、偏度和精度等“5度”的特征,揭示了地理大数据的本质特点。在此基础上,从地理大数据的表达方式、地理大数据挖掘的目标、地理模式的叠加与尺度性、地理大数据挖掘与地理学的关系等4个方面阐述了地理大数据挖掘的本质与作用,并从挖掘目标的角度对地理大数据挖掘方法进行分类。未来地理大数据挖掘的研究将面临地理大数据的聚合、挖掘结果的有效性评价以及发现有价值的知识而非常识等几方面的挑战。 [ PeiTao, LiuYaxi, Guosihui, et al. Principle of big geodata Mining Acta Geographica Sinica, 2019,74(3):586-598.] DOI: 10.11821/dlxb201903014. [本文引用: 1]
AstridKalkbrenner. Climate change, big data revolution and data privacy rights Journal of Environmental Law and Practice, 2018,32:1-17. [本文引用: 1]
[ DongShaochun, QiHao, HuHuan, et al. Earth science big data and its development Science Technology and Engineering, 2019,19(20):1-11.] DOI: 10.3969/j.issn.1671-1815.2019.20.001. [本文引用: 1]
[ WangBin, HanJian, YuePeng, et al. Discussion on the construction framework of the national geological drilling information service system in the big data age China Mining Magazine, 2018,27(5):38-43, 49.] DOI: 10.12075/j.issn.1004-4051.2018.05.018. [本文引用: 1]
[ CaiYuxiang, FuTing, ZhangHui, et al. Mobile big data logical distribution method in cloud computing environment Science Technology and Engineering, 2018,18(25):194-199.] DOI: 10.3969/j.issn.1671-1815.2018.25.030. [本文引用: 1]
[ KangJie. Research on the development strategy of public library in the age of artificial intelligence Qinghai Education, 2019, (9):53-54.] DOI: cnki:%20SUN:%20QHJY.0.2019-09-041. [本文引用: 1]
[ ZhangXinxin, CaiJingbo. Artificial intelligence drives the development of social public service Information Recording Materials, 2019,20(5):164-165.] DOI: 10.16009/j.cnki.cn13-1295/tq.2019.05.104. [本文引用: 1]
Tolle KM, TansleyD S W, HeyA J G. The fourth paradigm: Data-intensive scientific discovery [Point of View] Proceedings of the IEEE, 2011,99(8):1334-1337. [本文引用: 1]
ZhuYunqiang. Geospatial semantics, ontology and knowledge graphs for big Earth data Big Earth Data, 2019,3(3):187-190. DOI: 10.1080/20964471.2019.1652003. [本文引用: 1]
ZhuA'xing, LuGuonian, LiuJing, et al. Spatial prediction based on Third Law of Geography Annals of GIS, 2018,24(4), 225-240. DOI: 10.1080/19475683.2018.1534890. [本文引用: 1]
ZhuYunqiang, PanPeng, FangShifeng, et al. The development and application of e-Geoscience in China Information Systems Frontiers, 2016,18(6):1217-1231. DOI: 10.1007/s10796-015-9571-4. [本文引用: 2]
ZhuYunqiang, ZhuA'xing, FengMin, et al. A similarity-based automatic data recommendation approach for geographic models International Journal of Geographical Information Science, 2017,31(7):1403-1424. DOI: 10.1080/13658816.2017.1300805. URL [本文引用: 1]
[ XiangNan, CuiManping. Research of earthquake data sharing service method based on Wechat official account platform Recent Developments in World Seismology, 2016, (9):8-15.] DOI: 10.3969/j.issn.0235-4975.2016.09.003. [本文引用: 1]
[ FuJing, YangFei. Research on intelligent water conservancy of public service Water Resources Informatization, 2020, (1):15-20.] DOI: 10.19364/j.1674-9405.2020.01.004. [本文引用: 1]
[ ZhaoHaifeng, LiRenqiang, ZhaoFeng, et al. Current status and development trends of eco-environmental big data Ecological Science, 2018,37(1):211-218.] DOI: 10.14108/j.cnki.1008-8873.2018.01.028. [本文引用: 1]
[ YangZongxi, TangJinrong, ZhouPing, et al. A new scientific view of the US Geological Survey in the age of big data Geological Bulletin of China, 2013,32(9):1337-1343.] DOI: cnki:%20SUN:%20ZQYD.0.2013-09-001. [本文引用: 1]