删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中国西部地区历史草地面积重建的方法——以甘宁青新区为例

本站小编 Free考研考试/2021-12-29

杨帆1,2, 何凡能,1, 李美娇1,31. 中国科学院地理科学与资源研究所 陆地表层格局与模拟重点实验室,北京 100101
2. 中国科学院大学,北京100049
3. 山西财经大学资源环境学院,太原 030006

Methods for reconstructing historical grassland cover across western China: A case study in Gansu, Ningxia, Qinghai and Xinjiang

YANG Fan1,2, HE Fanneng,1, LI Meijiao1,31. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. College of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan 030006, China

通讯作者: 何凡能(1963-),男,福建仙游人,研究员,博士生导师,研究方向为历史地理与环境变迁。E-mail: hefn@igsnrr.ac.cn

收稿日期:2019-07-11修回日期:2019-12-11网络出版日期:2020-07-20
基金资助:国家自然科学基金项目.41671149
国家重点研发计划.2017YFA0603304
中国科学院战略性先导科技专项.XDA19040101


Received:2019-07-11Revised:2019-12-11Online:2020-07-20
作者简介 About authors
杨帆(1991-),男,山西武乡人,博士研究生,研究方向为历史土地利用与土地覆被变化E-mail:yangf.17b@igsnrr.ac.cn。





摘要
历史草地面积重建作为历史土地利用与土地覆被变化研究的重要组成部分,可为区域乃至全球环境变化研究提供重要的基础数据。但受研究客体特性与重建资料多寡的制约,目前无论是数量估算上还是空间格局重建上均非常薄弱。本文试图在客观把握中国西部地区历史草地变化趋势与特征的基础上,利用现代遥感土地利用数据和潜在植被数据,确定土地垦殖前草地植被潜在分布范围;并结合历史耕地网格数据,构建以间接扣减为核心的草地面积重建方法;重建甘肃、宁夏、青海和新疆等省区过去300年的草地网格数据。结果表明:土地垦殖前,案例区草地覆被率高达40.87%。受土地垦殖的影响,在过去300年草地面积呈持续减少的态势。草地面积由1661年的1.11亿 hm2下降到1980年的1.03亿 hm2,并经历了1661—1724年的急剧减少、1724—1873年的缓慢减少和1873—1980年的快速减少三个时段,草地年均减少量分别为4.76万 hm2、0.75万 hm2和3.38万 hm2。在空间上,研究时段内草地垦殖区呈现出由甘肃、宁夏向青海、新疆转移的特点。以历史文献资料和1980年遥感草地网格数据为基础,对重建的草地数据开展了可靠性评估。评估显示,重建结果能够较好的再现草地变迁过程。本文构建的重建方法可被用于中国西部地区长时段的草地面积重建。
关键词: 土地利用/覆被变化;草地覆被;面积重建;土地垦殖;中国西部;历史时期

Abstract
Spatially explicit reconstruction of historical grassland cover can provide significant data for studies on the global and regional environmental change. However, being subject to the attribute of study objective and materials for reconstruction, progresses were rarely made both in the estimates of grassland area and the reconstruction of spatial patterns. Based on a good understanding of the grassland change history across western China, we attempted to determine the potential distribution extent of grassland cover without land reclamation using remote sensing-derived land use data and potential vegetation data. Then by overlaying Chinese historical cropland data over a map of the potential distribution extent of grassland vegetation, we proposed a reconstruction method of historical grassland cover across western China. Subsequently, as a case study, grassland cover maps in Gansu, Ningxia, Qinghai, and Xinjiang provinces during AD 1661 to AD 1980 were complied using this approach. The results show that: (1) the grassland coverage across the case area was 40.87% without land reclamation. However, due to the expansion of land reclamation, the amount of grassland decreased continuously, especially over the past 300 years. (2) The total area of grassland across this region decreased from 110.86 million ha in 1661 to 103.14 million ha in 1980. And changes in grassland area went through three phases over this study period, including a sharp decrease between 1661 and 1724, a slow decrease between 1724 and 1873, and a rapid decrease between 1873 and 1980. The average annual losses of grassland area in the three stages were 47.6 thousand ha, 7.5 thousand ha, and 33.8 thousand ha, respectively. Spatially, the main areas of grassland reclamation gradually transferred from Gansu and Ningxia to Qinghai and Xinjiang during the study period. (3) Based on historical archives and remote sensing-derived grassland data in 1980, we evaluated the reliability of the reconstructed grassland cover. Evaluations suggest that the reconstruction results captured the amounts and spatial distribution patterns of historical grassland cover well. Our methods can be used for the long-term reconstruction of grassland cover across western China.
Keywords:land use and land cover change;grassland cover;area estimation;land reclamation;western China;historical period


PDF (7931KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
杨帆, 何凡能, 李美娇. 中国西部地区历史草地面积重建的方法——以甘宁青新区为例. 地理研究[J], 2020, 39(7): 1667-1679 doi:10.11821/dlyj020190588
YANG Fan, HE Fanneng, LI Meijiao. Methods for reconstructing historical grassland cover across western China: A case study in Gansu, Ningxia, Qinghai and Xinjiang. Geographical Research[J], 2020, 39(7): 1667-1679 doi:10.11821/dlyj020190588


1 引言

历史土地利用/土地覆被变化(Land Use and Land Cover Change,LUCC)重建是全球变化研究的重要组成部分,因其可为气候变化模拟和生态环境效应研究提供重要的基础数据,而受到国内外学术界的广泛关注[1,2]。草地作为陆表重要的土地覆被类型,其动态过程也是历史LUCC研究关注的重点内容。

国际上有关历史草地数据的重建研究已取得显著进展。其中,在区域尺度上有:Cousins[3]利用瑞典东南部地区的历史图件和近现代航空照片,采用校正、重采样等方式来获得各时点的土地覆被信息,建立了各覆被类型之间的转移矩阵,获得了17—20世纪该区域的草地覆被变化数据;Steyaert等[4]以美国东部地区县域人口、土壤等数据以及历史LUCC资料,并结合潜在植被与现代遥感土地覆被,采用地理空间信息叠加分析的方式,重建了1650—1992年草地覆被数据;Leite等[5]通过将遥感LUCC数据与历史调查统计数据相融合的方式,重建了1940—1995年巴西的牧草地数据;Tian等[6]根据印度历史土地利用资料和现代遥感数据,设计了一套多源数据校正模型,重建了印度1880—2010年的牧草地数据,等等。

除此而外,草地也是全球历史LUCC数据集重建的主要类型。如,Ramankutty等[7]基于当代全球LUCC格局,利用线性回溯的方式建立了全球AD 1700—AD 1992年的耕地网格数据,进而借助潜在植被扣减耕地的方法,重建了过去300年全球各个国家和地区的草地面积变化序列,简称SAGE 1999;之后,Ramankutty[8]新增了牧草地类型,其重建思路为假定牧草地空间格局不变的情况下,通过人口数量来反映牧草地面积,并将该数据扩展至AD 1700—AD 2007年,简称SAGE 2012;Klein Goldewijk等[9,10,11]构建了全球人口密度分布图,并以此为权重来分配历史耕地、牧草地空间格局,最新版本为HYDE 3.2;Pongratz等[12]在SAGE、HYDE数据集的基础上,假定1700年以前耕地和牧草地分布格局保持不变,以人口数据为代用资料,重建了全球AD 800—AD 1992年的耕地、牧草地数据,并采用潜在植被扣减农业用地的方式,重建了同时段的草地覆被数据,简称PJ数据集。尽管SAGE、HYDE和PJ等全球数据集为中国历史草地覆被重建提供了重要的方法借鉴,但其所反映的该区域历史草地数据存在较大的不确定性,不能客观体现其变化特征[13,14]。因此,基于中国本土草地分布与变迁方面的相关资料,重建其历史草地面积具有重要的意义。

近年来,中国****基于本土草地面积变迁史料和近现代草地统计数据,在历史草地重建方面开展了诸多有益的尝试。如,葛全胜等[15]在整理与校准各种土地利用资料的基础上,揭示出过去百年中国草地面积不断缩减的变化特征;Ye等[16]和吴致蕾等[17]基于历史文献分析、原始潜在植被恢复等方法,分别重建了过去300年东北地区、河湟谷地的草地面积。但总体而言,相比历史耕地[18,19,20,21,22,23]、森林[24,25]重建方面,国内历史草地面积定量研究尚处于起步阶段,且现有研究主要集中在史料相对丰富的时段或地区,这对我们深入了解中国区域历史草地变迁过程及其生态环境效应十分不利[26]。因此,如何构建一套适用于大时空尺度的历史草地面积重建方法,进而合理重现草地变迁历史过程是目前亟待解决的学术问题。

中国是草地资源大国,草地面积约占国土面积的41%,自西向东大体可划分为北方温带草地区、青藏高原高寒草地区以及南方和东部次生草地区[27]。其中,北方温带草地区和青藏高原高寒草地区合称为西部草地区,其面积约占全国草地面积的79%,是当今中国草地的主体。本文拟通过对中国西部地区草地变迁的有关文献记载开展系统研究,在把握该地区草地面积变化特征及主要驱动因素的基础上,构建一套适用于中国西部的历史草地数量重建方法,并选取案例区对方法的可行性进行检验,希冀研究结果可为长时段草地面积重建提供方法参考。

2 草地概念界定

由上述文献综述可知,有些****所重建类型是草地,有些则为牧草地。这两个概念在内涵上存在一定的差异,故本文在此作简要说明。目前,在重建全球或区域历史草地数据时,为便于与现今调查统计数据或遥感监测数据相衔接,多以当代的草地概念为基准[13]。然而,在不同学科领域中,当代“草地”内涵是不统一的,如农学和资源学中,草地是各类放牧地的统称,除天然草地和人工草地之外,还包含了用于放牧用途的荒漠、灌丛和疏林等[28,29],又称牧草地;而植物地理学中,草地包括以草本植物为主的所有天然植被类型,以及除农作物外的所有以草本植物为主的栽培群落[30]

已有研究中,SAGE、HYDE和PJ等全球数据集中草地概念均按照联合国粮农组织(FAO)的草地定义,包括草本植物群落,也包含了荒漠、灌丛和疏林等,属农学领域的牧草地[31]。但该牧草地的定义对于拥有众多草地类型的国家和区域来说是不够准确和全面的[32],尤其是中国区域[13,14]。因此,同现代中国LUCC分类体系相一致,本研究采用植物地理学中的草地定义,仅包含天然草地和人工草地,并不含盖荒漠、灌丛等群落。

3 研究思路

纵观已有研究,由于历史时期草地资料阙载,学界草地面积重建方法主要有两种,直接估算法和间接扣减法。其中,直接估算法主要用来重建牧草地(土地利用)数据,如HYDE和SAGE 2012数据集,其核心思想是认为:人口的增长推动着畜牧业的发展,从而促进了牧草地面积的扩大;该方法的建立是基于欧美地区长期以来畜牧业占比较高的这样一种土地利用范式,其所体现的是草地面积随人口增长而不断增加的变化趋势。而间接扣减法主要用来重建草地(土地覆被)数据,如SAGE 1999和PJ数据集,其核心思想是认为:人口的增长促进了农业的发展,使得耕地面积持续扩大,草地面积日趋减少;该方法是对土地垦殖扩张导致包括草地在内的自然植被减少的土地利用范式的体现,适用于以耕地农业发展为主的国家和地区。

中国是传统农业国家,虽草地资源丰富,但长期以来形成的是以耕地农业为主、草地农业为辅的发展特征[13]。西部地区作为全国草地主要分布区,其草地类型与格局是由区域的水热组合状况所决定的,具有明显的地域分布特征,这在历史上同样如此。诸多基于历史文献记载的研究表明:尽管历史上西部地区为中国重要的游牧民族分布区,但长期以来游牧性质的经营方式并未对草地植被造成较大的影响[33];反倒是随着社会的发展,历代中原王朝在经略西部、稳定边疆的过程中,在西部地区大力发展农业,将草原地区大面积的草地开垦为农田,给草地植被带来严重影响,尤其是秦汉、隋唐、明清乃至20世纪中叶等时期的大规模移民垦殖[34,35]。可见,历史上西部地区农业民族的迁入及土地垦殖的扩张是导致草地植被日趋减少的主要驱动因素。有鉴于这种土地利用范式的变化,本文试图利用间接扣减法对西部地区历史草地面积进行重建。

而该方法是不同于以往中国区域历史耕地面积重建所采用的方法。中国区域耕地面积重建通常是以史料为依据,通过订正或者直接估算来建立其面积变化序列,进而构建网格分配模型来再现它的空间分布格局[26,36]。这是因为中国历史文献中留有丰富的“田亩数据”可资利用,而史籍中有关草地分布与变迁的记载相对较少,且多以定性描述为主。因此,像耕地重建那样,基于史料直接估算中国历史草地面积是十分困难的。

综合前述分析,本文重建历史时期中国西部地区草地面积的思路是:① 在客观把握西部地区草地变化趋势以减少为主,辨析其主要驱动因素为土地垦殖扩张的基础上,首先确定土地垦殖的起点,即确定原生草地的空间分布格局。考虑到能够用于大时空尺度上原生草地重建的自然和人文证据较为有限,直接复原原生草地范围是十分困难的,故本文利用草地潜在分布范围作替代。即综合利用现代遥感LUCC数据和潜在植被分布图,构建土地垦殖前草地潜在分布范围。② 考虑到土地垦殖是本区域影响草地面积盈缩最主要的方式,本文以西部地区草地潜在分布范围为草地覆被遭受人为干扰的起点,扣减各时间断面上的耕地空间分布数据,以此来获得相应时段的草地面积变化及其空间分布(图1)。

图1

新窗口打开|下载原图ZIP|生成PPT
图1中国西部历史草地面积重建思路

Fig. 1Scheme for reconstructing historical grassland cover across western China



4 重建方法

4.1 草地潜在分布范围的确定

已有研究认为,中国西部地区现代遥感监测到的草地分布区,在历史上其自然植被类型多为草地,也有少部分为森林;而遥感监测到的非草地分布区,尤其是人类活动用地,如耕地、建设用地,在历史上可能曾是草地的分布区。基于这一认识,在重建草地植被潜在范围时需遵循的原则为:在扣除可能为潜在森林的部分以后,剩余的现代遥感草地分布区,在历史上同样为草地分布区;而现代遥感监测为非草地分布区,在历史时期也可能有部分为草地分布,但其空间范围不应超出潜在植被所反映的草地分布范围。

据此,本文确定土地垦殖前草地潜在分布范围的方法是:首先从1980—2015年多期遥感LUCC数据中[37,38],分别提取草地网格数据和现代耕地、建设用地网格数据,从潜在植被中分别提取潜在草地空间格局和潜在森林空间格局;其次,从现代草地网格数据中扣除掉可能为森林的部分(即潜在森林),剩余草地网格数据,作为当今气候条件和人类活动影响下历史时期草地的分布范围,即“现代草地区历史草地空间格局”;然后,针对耕地、建设用地等土地利用网格,如果在潜在植被中对应为草地,则利用潜在植被将该网格替换为草地,得到“现代非草地区的历史草地潜在分布范围”;最后,将“现代草地区历史草地空间分布格局”与“现代非草地区历史草地潜在分布范围”进行叠加,从而获得“土地垦殖前草地植被潜在分布范围”(图2)。

图2

新窗口打开|下载原图ZIP|生成PPT
图2土地垦殖前草地潜在分布范围确定流程

Fig. 2Flow chart for establishing the potential distribution extent of grassland vegetation without land reclamation



4.2 耕、草地临界比例的确定

众多人类活动用地当中,耕地是其中最主要的用地类型。在此我们把除耕地以外的人类活动用地统称为其他人类活动用地。通常从总量来看,相比各种类型的土地覆被,其他人类活动用地的占比是很低的,常被忽略不计。但在网格尺度上,耕地分布相对集中的网格往往其他人类活动用地(如建设用地)也集中分布且占有一定比例。故在网格单元上,受其他人类活动用地的影响,草地潜在分布范围内的耕地与草地数量之间并不是非此即彼的关系。

然而,历史上对于其他人类活动用地记载十分有限,导致量化重建较为困难,因而目前尚无可靠数据可资利用。本文通过提取1980—2015年多期遥感土地利用数据同一网格单元中的耕地、草地数据,尝试去分析了现代土地利用数据中两者之间的比例关系,即不同耕地占比情况下对应的草地覆盖率。统计结果显示,草地覆盖率随着耕地面积的增加而减少,当网格中耕地占比达到或超过90%时,对应的草地覆盖率≤ 1.00%,且几乎不存在耕地比例为90%而草地占比为10%的网格。因此在草地变化重建过程中,考虑到其他历史人类活动用地定量信息的缺失,本文将耕地比例到达或超过90%的网格作为草地分配的临界下限,即耕地比例≥90%的网格草地覆盖率设为0%。

4.3 扣减方法的构建

在上述假设的前提下,笔者将生成的土地垦殖前草地植被潜在分布网格的空间分辨率统一到10 km×10 km,与已有历史耕地网格数据相匹配;然后将草地潜在分布图与各时期耕地空间分布图作地理空间叠加分析,在网格层面上计算对应时期被开垦的草地面积。具体方法为:用草地植被潜在分布范围减去对应年份网格中耕地开垦的部分,根据潜在草地网格被占用的比例,绘制出历史草地覆被空间分布图,并统计草地面积随时间的变化情况。

5 案例研究

5.1 案例区选取

本文选取甘肃、宁夏、青海和新疆(简称甘宁青新区)作为案例区。甘宁青新区地处中国西北,是西部草地区的重要组成部分,也是草地资源较为集中的区域。该区在过去数百年里,移民人口呈爆发式增长,军、民垦殖形势空前高涨。尤其是19世纪中期以来,在清政府“移民实边”“借地养民”等政策的推动下,大批移民涌入西北地区。随着土地垦殖的扩张,草地植被遭到较为严重破坏,草地面积缩减明显。因此,选取该地区来开展历史时期,尤其是清代中后期草地覆被变化重建具有较好的代表性。

5.2 数据来源

历史耕地数据获取自Li等[19]重建的过去300年中国耕地网格数据(简称CHCD)。该数据是利用历史文献资料和近代土地调查统计资料,估算了中国过去300年的耕地面积变化,然后以现代耕地空间分布格局为基础,通过量化与耕地空间分布相关的地形(海拔和坡度)、气候生产潜力等因子,重建了1661年以来中国耕地空间网格数据,空间分辨率为10 km×10 km。

现代LUCC数据源自1980—2015年多期1 km网格的中国土地利用现状遥感监测数据集[37,38]。该数据集以各期Landsat TM/ETM遥感影像为主要数据源,通过人工目视解译生成。数据获取自中国科学院资源环境科学数据中心(http://www.resdc.cn)。

潜在植被引自Ramankutty等[7]的全球潜在植被数据。该数据是利用植被-环境关系模拟的自然植被取代DISCover土地覆被数据中的人类土地利用地,如耕地、城镇等,从而获得包含15种植被类型的潜在植被图,空间分辨率5′。张学珍等[39]利用由历史文献复原的东北原生自然植被图对该潜在植被作了区域评估,发现二者的植被分布空间格局基本一致。因此,本研究选用该潜在植被中的草地来替换人类活动用地。

5.3 重建结果

本研究提取了甘宁青新区现代遥感草地、耕地和建设用地数据与潜在植被数据,利用上述草地的潜在格局复原方法,获得了该案例区土地垦殖前草地植被潜在分布范围(图3a)。然后,从CHCD数据集中提取了甘宁青新区1661年、1724年、1784年、1820年、1873年、1933年和1980年等7个时间断面上的耕地网格数据,以图3a中草地潜在分布格局为基础,采用扣减的方式重建了相应时点的草地网格数据(图3b~图3h)。结果显示,在土地垦殖前,甘宁青新区草地覆盖率高达40.87%;受土地垦殖活动的影响,草地覆盖率随时间不断减少。

图3

新窗口打开|下载原图ZIP|生成PPT
图3甘宁青新区10 km×10 km草地空间格局

注:此图基于国家测绘地理信息局标准地图(审图号:GS(2019)1825号)绘制,底图无修改。
Fig. 3Grassland cover of Gansu, Ningxia, Qinghai and Xinjiang at a 10-km resolution



案例区过去300年的草地面积变化序列见图4。整体来看,1661—1980年甘宁青新区草地数量呈持续减小的态势,面积由1661年的1.11亿 hm2下降到1980年的1.03亿 hm2,年均损失2.42万 hm2。根据变化趋势大致可划分为三个时段:① 1661—1724年为草地面积急剧减少期。该时段正值清政府用兵准噶尔部,为解决“路途遥远,米粮焉能接济”的军粮供应问题,政府大力开展垦殖活动。草地面积从1661年的1.11亿 hm2急剧减少到1724年的1.08亿 hm2,年均损失4.76万 hm2。② 1724—1873年为草地面积缓慢减少期。该时段内随着新疆地区正式纳入清政府中央政权的控制范围,政治局势趋于平稳,以军屯为主的屯垦规模随之下降。到1873年时草地面积为1.07亿 hm2,期间年均损失0.75万 hm2。③ 1873—1980年为草地面积快速减少期。该时期随着大量内地人口移民西北,使得该地区经济发展模式由原来清政府主导的“以边养边”转变为自发性移民为主导的“农业大开发”[40]。自此,拉开了清末、民国以及新中国初期这百余年的西北垦殖热潮,大量新的垦殖点被开辟,大面积草地被开垦。到1980年时草地数量降到最低,为1.03亿 hm2,年均减少3.38万 hm2

图4

新窗口打开|下载原图ZIP|生成PPT
图41661—1980年甘宁青新区草地面积变化

Fig. 4Changes in grassland area of Gansu, Ningxia, Qinghai and Xinjiang from 1661 to 1980



5.4 可靠性评估

5.4.1 基于历史文献资料的定性评估 本文在系统收集、整理案例区有关草地变迁的历史文献资料,如草地植被破坏、土地制度、农业政策、人口数据等,和相关研究成果的基础上,结合本研究绘制的不同时段草地覆盖变化图(图5),对研究区过去300年草地面积变化趋势及空间变化特征作了较为详细的分析。

图5

新窗口打开|下载原图ZIP|生成PPT
图51661—1980年甘宁青新区草地覆盖率变化

注:此图基于国家测绘地理信息局标准地图(审图号:GS(2019)1825号)绘制,底图无修改。
Fig. 5Net changes of grassland cover in Gansu, Ningxia, Qinghai and Xinjiang from 1661 to 1980



清初期,甘宁地区草地被大规模开垦。该时期甘宁区作为清政府对准噶尔部用兵的大本营,为供给军需以及巩固后方,清政府大力恢复该地区的农业经济。在康熙、雍正时期,政府多次蠲免赋税,“凡正供以外,一切加派,……尽引蠲免”[41]。随着“三饷”的废除,甘宁中、东部的黄土高原区土地复垦及开垦迅速,山坡、河滩和沼泽等地皆为开垦对象,并呈现出“田之荒者复辟垦者三倍之”的景象[42],致使残留荒地和牧场被大面积开垦。如此程度的土地垦殖导致大面积的草地转为农田(图5a)。

清中期,全区草地开垦规模减少。由于清初期时适于耕种的土地已被大量开垦,此时甘宁地区的土地垦殖开始向“山头地角,欹斜逼窄,沙碛居多”的土地延伸[43],相比清初,该时段草地开垦的规模大幅减少。而此时的新疆地区,农业虽有了较大的发展,但主要实行“以边养边”的军屯,军民结合的屯垦方式[40],规模有限,对草地数量的影响较小(图5b)。

清后期至20世纪80年代,新疆地区草地开垦规模不断扩大。在内地人口激增的背景下,清政府为缓解人口压力且巩固边防,大力推行“移民实边”政策,大量移民迁入西北。其中,新疆成为移民迁入的主要地区,其人口数量在1880年为139.2万,1910年达到216.9万,增长了55.82%,再到1953年人口跃升至476.2万,40余年间增长了119.55%[44,45]。伴随着人口的大量涌入,新疆地区已然成为西北农业开发的中心,并导致大面积草地被转化为农田(图5c)。天山北麓由原来“不尚田作,惟以畜牧为业”[46]的游牧经济,转变为“绿野青畴界限明,农夫有畔不须争”[47]的农耕经济;天山南麓作为传统绿洲农业区,清初时屯垦在原有基础上虽有所发展,但变化不大,直到道光年间南疆开禁,其传统绿洲农业才迎来大的发展期,垦殖面积不断扩大[48]

综上所述,通过对草地变迁相关的历史文献和前人研究成果的梳理发现,本文刻画的过去300年草地面积变化过程及特征与相关史实基本吻合。

5.4.2 基于遥感土地覆被数据的定量评估 本文以1980年的遥感草地数据为基准,从数量上和空间分布格局上对重建结果的合理性进行评估。具体方法如下:① 在数量上,以案例区政区边界为掩膜,分别统计全区和各省区1980年重建的草地以及同时点遥感草地的数量,从统计量上来判断草地数量是否接近。② 利用本研究重建的1980年草地网格空间图,与同期遥感草地分布图作对比分析,并计算二者网格数据之间的绝对差异,从而检验其分布的空间格局是否一致。

结果表明:① 在草地面积统计量上(表1),不论是全区草地数量亦或是分省区的草地数量,本文的重建结果与遥感草地之间的数量差异较小,表明重建结果在绝对数量上较为可靠。② 在空间分布格局上,本文重建的草地空间分布格局(图6a)与遥感监测的草地空间分布格局(图6b)基本一致。重建草地面积明显偏高的区域集中在陇中高原、河西走廊和宁夏平原,显著偏低的区域主要分布在陇东地区;新疆和青海二省区重建的草地网格中,正负差异较大的网格比较分散,在天山南北均有分布(图6c)。③ 在网格尺度上(表2),二者之间的差异较小。其中,绝对差异值为-10%~0%和0%~10%的网格占比最高,分别是43.47%和27.27%;而差异值较大的网格占比较小,如-100%~-60%之间的网格为4.17%,60%~100%的网格仅为2.28%;差异值与网格比例呈负相关关系,即差异值越大,所对应的网格在总网格中的占比越小。总之,对比研究表明,本文重建的1980年草地在数量、空间格局上与遥感监测的草地数据之间具有较好的一致性。因此,该重建方法具有较高的可行性。

Tab. 1
表1
表11980年重建草地与遥感草地全区、分省面积以及两者差异
Tab. 1The total and provincial amount of our reconstruction and remote sensing-derived grassland data in 1980 and the value of differences between them (亿 hm2)
本文重建遥感数据绝对差异值
全区103.14102.750.39
新疆48.3448.41-0.07
青海37.3037.53-0.23
甘宁17.5016.810.69

新窗口打开|下载CSV

Tab. 2
表2
表21980年重建草地数据与遥感数据差异值分级统计
Tab. 2Statistical classifications of differences of our reconstruction with remote sensing-derived grassland cover in 1980 (%)
绝对差异值-100~-90-90~-80-80~-70-70~-60-60~-50-50~-40-40~-30-30~-20-20~-10-10~0
网格占比1.011.021.041.111.311.512.012.563.9143.47
绝对差异值0~1010~2020~3030~4040~5050~6060~7070~8080~9090~100
网格占比27.274.362.871.941.420.910.720.550.510.50

新窗口打开|下载CSV

图6

新窗口打开|下载原图ZIP|生成PPT
图61980年重建草地与遥感草地的空间格局及其差异

注:此图基于国家测绘地理信息局标准地图(审图号:GS(2019)1825号)绘制,底图无修改。
Fig. 6The spatial patterns of our reconstruction, remote sensing-derived grassland cover in 1980, and the differences between them



6 结论与讨论

6.1 结论

本文在厘定草地概念,把握历史草地变化特点的基础上,针对北方温带草地区及青藏高原高寒草地区,以现代遥感LUCC数据、潜在植被数据为基础,重建了土地垦殖前草地植被潜在分布范围;并结合历史耕地网格数据,构建了一套中国西部地区历史时期草地面积重建方法;以甘宁青新区为案例,重建了该地区过去300年的草地面积变化序列及空间格局。结果显示:

(1)土地垦殖前,案例区草地覆盖率高达40.87%。随着垦殖活动的增强,过去300年草地数量呈持续减少的态势,面积由1661年的1.11亿 hm2下降到1980年的1.03亿 hm2。大致经历了三个时段:1661—1724年为急剧减少期,年均减少4.76万 hm2,草地被开垦主要集中在甘肃和宁夏地区;1724—1873年为缓慢减少期,年均减少0.75万 hm2,全区草地开垦趋缓;1873—1980年为快速减少期,年均减少3.38万 hm2,草地大规模开垦区转移至新疆地区。

(2)借助历史文献资料与现代遥感草地网格数据,评估了重建结果的可靠性。结果显示,本文复原的历史草地变迁过程与相关史实基本吻合;重建的1980年草地面积和空间分布格局与遥感监测的草地面积和空间分布格局基本一致;在网格尺度上,二者差异值在20%以内的网格占比79.01%,而差异值超过60%的网格仅占到6.45%。对比结果表明,在草地植被潜在分布范围内,通过扣减各时点的耕地数据所获得的草地数据,能够较好的体现历史时期草地面积变化及其空间分布格局。该重建方法具有较好的可行性,可用于长时段的历史草地面积重建研究。

6.2 讨论

重建方法的适用性。本研究基于中国西部地区土地开垦导致草地面积缩减这一土地利用范式,构建了以间接扣减为核心的历史草地面积重建方法。该方法并不适用于中国东部地区,这是因为不同于西部地区,东部地区的原生植被主要为地带性森林,现今的草地多是历史时期森林植被反复遭破坏以后,在砍伐迹地上植被通过次生演替而来。它所体现的是,随着人类活动强度的增加,次生草地面积不断增加的这样一种土地利用范式。因此,在重建中国东部地区草地数量的过程中,需要我们在把握其变化趋势与特征的基础上,综合历史上该地区的气候、植被、土壤和人类活动等各类自然与人文因素,来构建一套适用于中国东部的草地面积变化重建方法。

草地潜在分布范围的确定。本文草地潜在分布范围的确定是融合了现代遥感监测LUCC数据和气候模拟的潜在植被数据所得。有****在开展小区域的历史LUCC研究时,利用历史文献资料、孢粉和考古证据等代用资料来恢复其原生草地植被[16,17]。相比而言,后者所复原的原生草地植被更接近史实,因而在该原生草地植被的基础上衍生出的历史草地数据,应能更为客观的体现草地面积变化的趋势与特征。然而目前,该原生草地植被重建方法因受代用资料的多寡程度所限,多为小区域研究。在今后的研究过程中,如能利用代用资料重建大时空尺度上、可信度较高的原生草地植被分布范围,将是对我们所构建的间接扣减法的极大补充,可使重建结果更为客观。

草地面积变迁的影响因素。本研究采用从原生草地植被中扣除历史耕地来重建历史草地面积的方法,是对土地垦殖这一影响草地面积变化的主导因素的客观体现。然而在历史上,除大规模的土地开垦以外,城镇和居民点占地、战争破坏以及气候变化等诸多人文与自然因素,同样会对草地覆被变化产生影响。但有关这类历史信息的记载较为零星,在较大的时空尺度上不完整且难以量化,故文中未将上述影响因子纳入到研究范围,该问题有待在后续工作中去不断补充与完善。

致谢:

真诚感谢二位匿名评审专家在论文评审中所付出的时间和精力,评审专家对本文案例研究中可靠性评估方面的修改意见,使本文获益匪浅。


参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Brovkin V, Sitch S, Wvon B, et al. Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years
Global Change Biology, 2004,10(8):1253-1266.

DOI:10.1111/gcb.2004.10.issue-8URL [本文引用: 1]

Fuchs R, Schulp C J E, Hengeveld G M, et al. Assessing the influence of historic net and gross land changes on the carbon fluxes of Europe
Global Change Biology, 2016,22(7):2526-2539.

DOI:10.1111/gcb.13191URLPMID:26668087 [本文引用: 1]
Legacy effects of land cover/use on carbon fluxes require considering both present and past land cover/use change dynamics. To assess past land use dynamics, model-based reconstructions of historic land cover/use are needed. Most historic reconstructions consider only the net area difference between two time steps (net changes) instead of accounting for all area gains and losses (gross changes). Studies about the impact of gross and net land change accounting methods on the carbon balance are still lacking. In this study, we assessed historic changes in carbon in soils for five land cover/use types and of carbon in above-ground biomass of forests. The assessment focused on Europe for the period 1950 to 2010 with decadal time steps at 1-km spatial resolution using a bookkeeping approach. To assess the implications of gross land change data, we also used net land changes for comparison. Main contributors to carbon sequestration between 1950 and 2010 were afforestation and cropland abandonment leading to 14.6 PgC sequestered carbon (of which 7.6 PgC was in forest biomass). Sequestration was highest for old-growth forest areas. A sequestration dip was reached during the 1970s due to changes in forest management practices. Main contributors to carbon emissions were deforestation (1.7 PgC) and stable cropland areas on peaty soils (0.8 PgC). In total, net fluxes summed up to 203 TgC yr(-1) (98 TgC yr(-1) in forest biomass and 105 TgC yr(-1) in soils). For areas that were subject to land changes in both reconstructions (35% of total area), the differences in carbon fluxes were about 68%. Overall for Europe the difference between accounting for either gross or net land changes led to 7% difference (up to 11% per decade) in carbon fluxes with systematically higher fluxes for gross land change data.

Cousins S A O. Analysis of land-cover transitions based on 17th and 18th century cadastral maps and aerial photographs
Landscape Ecology, 2001,16(1):41-54.

DOI:10.1023/A:1008108704358URL [本文引用: 1]
This paper explores the possibility of using non-geometric cadastral maps from the 17th and 18th century together with aerial photographs from 1945 and 1981 to analyse land-cover change in south-east Sweden. Habitats rich in plant species in the European rural landscape seem to be correlated with a long continuity of management. Accurate spatial data from historical data sources are fundamental to understand patterns of vegetation and biodiversity in the present-day landscape. However, traditional methods for rectification of non-geometric maps using corresponding points from orthophotos or modern maps are not satisfying, as internal inaccuracies will remain in the maps. This study presents a method to rectify the maps by local warping, thereby eliminating geometrical irregularities. Further, the land-cover changes were calculated and presented as transition matrices. The extent of arable fields and grasslands were analysed in relation to soil characteristics and continuity of management. The results show a dynamic relation between grassland and arable field, albeit the overall proportions remained almost the same between 17th and 18th centuries: 60% grassland to 32% arable field. The most substantial changes in land-cover were prior to 1945. Today there is 18% grasslands left in the study area, while 56% of the land-cover is arable field. Approximately 8% of present-day land-cover is semi-natural grassland 300 years of age or more. Compared to 300 years ago there is only 1% grassland left on peat and 2% on clay. In contrast, grassland covers associated with bare bedrock have been fairly stable in size. All semi-natural grasslands with a long continuity of management were situated on shallow soils, less than 50 cm depth. The major conclusions from this study are that (i) correctly rectified, old maps are very useful to address questions of land-cover changes in historical time, (ii) general trends in land use over 300 years in this hemi-boreal landscape seem to underestimate the full dynamics of land use change, and (iii) only a small proportion of the semi-natural grassland area had a 300 year continuity of management.

Steyaert L T, Knox R G. Reconstructed historical land cover and biophysical parameters for studies of land-atmosphere interactions within the eastern United States
Journal of Geophysical Research-Atmospheres, 2007,113(D2):D02101.

[本文引用: 1]

Leite C C, Costa M H, Soares-Filho B S, et al. Historical land use change and associated carbon emissions in Brazil from 1940 to 1995
Global Biogeochemical Cycles, 2012,26(2):1-13.

[本文引用: 1]

Tian H Q, Banger K, Bo T, et al. History of land use in India during 1880-2010: Large-scale land transformations reconstructed from satellite data and historical archives
Global and Planetary Change, 2014,121:78-88.

DOI:10.1016/j.gloplacha.2014.07.005URL [本文引用: 1]
In India, human population has increased six-fold from 200 million to 1200 million that coupled with economic growth has resulted in significant land use and land cover (LULC) changes during 1880-2010. However, large discrepancies in the existing LULC datasets have hindered our efforts to better understand interactions among human activities, climate systems, and ecosystem in India. In this study, we incorporated high-resolution remote sensing datasets from Resourcesat-1 and historical archives at district (N = 590) and state (N = 30) levels to generate LULC datasets at 5 arc minute resolution during 1880-2010 in India. Results have shown that a significant loss of forests (from 89 million ha to 63 million ha) has occurred during the study period. Interestingly, the deforestation rate was relatively greater under the British rule (1880-1950s) and early decades after independence, and then decreased after the 1980s due to government policies to protect the forests. In contrast to forests, cropland area has increased from 92 million ha to 140.1 million ha during 1880-2010. Greater cropland expansion has occurred during the 1950-1980s that coincided with the period of farm mechanization, electrification, and introduction of high yielding crop varieties as a result of government policies to achieve self-sufficiency in food production. The rate of urbanization was slower during 1880-1940 but significantly increased after the 1950s probably due to rapid increase in population and economic growth in India. Our study provides the most reliable estimations of historical LULC at regional scale in India. This is the first attempt to incorporate newly developed high-resolution remote sensing datasets and inventory archives to reconstruct the time series of LULC records for such a long period in India. The spatial and temporal information on LULC derived from this study could be used by ecosystem, hydrological, and climate modeling as well as by policy makers for assessing the impacts of LULC on regional climate, water resources, and biogeochemical cycles in terrestrial ecosystems. (C) 2014 The Authors. Published by Elsevier B.V.

Ramankutty N, Foley J A. Estimating historical changes in global land cover: Croplands from 1700 to 1992
Global Biogeochemical Cycles, 1999,13(4):997-1027.

DOI:10.1029/1999GB900046URL [本文引用: 2]

Ramankutty N. Global Cropland and Pasture Data from 1700-2007. Montreal: McGill University Press, 2012.
[本文引用: 1]

Klein Goldewijk K. Estimating global land use change over the past 300 years: The HYDE Database
Global Biogeochemical Cycles, 2001,15(2):417-433.

DOI:10.1029/1999GB001232URL [本文引用: 1]

Klein Goldewijk K, Beusen A, Van Drecht G, et al. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12, 000 years
Global Ecology and Biogeography, 2011,20(1):73-86.

DOI:10.1111/geb.2011.20.issue-1URL [本文引用: 1]

Klein Goldewijk K, Beusen A, Doelman J, et al. Anthropogenic land use estimates for the Holocene - HYDE 3.2
Earth System Science Data, 2017,9(2):927-953.

DOI:10.5194/essd-9-927-2017URL [本文引用: 1]

Pongratz J, Reick C, Raddatz T, et al. A reconstruction of global agricultural areas and land cover for the last millennium
Global Biogeochemical Cycles, 2008, 22(3):GB3018.

[本文引用: 1]

He F N, Li S C, Yang F, et al. Evaluating the accuracy of Chinese pasture data in global historical land use datasets
Science China Earth Sciences, 2018,61(11):1685-1696.

DOI:10.1007/s11430-018-9256-1URL [本文引用: 4]

Li S C, He F N, Zhang X Z, et al. Evaluation of global historical land use scenarios based on regional datasets on the Qinghai-Tibet Area
Science of the Total Environment, 2019,657:1615-1628.

DOI:10.1016/j.scitotenv.2018.12.136URLPMID:30677926 [本文引用: 2]
Global historical land use scenarios are widely used to model human-induced climate change from the regional to global scales. It is necessary to conduct regional scale assessments of these global scenarios, identifying their uncertainties and pointing out directions for improvement. Based on the regional reconstruction Li-dataset, remotely sensed dataset, and grazing intensity dataset, the uncertainties of land use area and geographical distribution in HYDE3.1, HYDE3.2, and SAGE (a global land dataset from the Center for Sustainability and the Global Environment) scenarios for the Qinghai-Tibet Area (QTA) are evaluated. The comparisons show that the cropland areas on the QTA in HYDE3.2 for 1900-2000 are close to those of the Li-dataset, whereas HYDE3.1 underestimated and SAGE overestimated the cropland areas significantly. Spatially, HYDE3.1, HYDE3.2, and SAGE have large uncertainties, which cannot reflect the distribution of cropland on the QTA and its changes for 1900-2000 well, and too much cropland is allocated to southeastern Tibet. HYDE3.1 and HYDE3.2 overestimated the pasture area and its distribution on the QTA significantly. The distribution of pasture in SAGE showed overall an agreement with the spatial pattern for grazing intensity, but changes in grazing intensity for 2000-2010 was not reflected in SAGE. The FAO pasture definition and estimates and the method of using population as a proxy for pasture area are not appropriate for the QTA. Methodology which uses the pasture inventory data to calibrate satellite-based grassland maps to obtain the current pasture maps may also not be appropriate because of the lacking differentiation between natural and anthropogenic grasslands in remotely sensed data. More regional level land use estimates with concise definitions, define the land use more clearly, and stratification reconstruction based on differences in agro-climatic conditions and resource endowments may be used to improve global maps.

葛全胜, 赵名茶, 郑景云. 20世纪中国土地利用变化研究
地理学报, 2000,55(6):698-706.

[本文引用: 1]

[ Ge Quansheng, Zhao Mingcha, Zheng Jingyun. Land use change of China during the 20th century
Acta Geographica Sinica, 2000,55(6):698-706.]

[本文引用: 1]

Ye Y, Fang X Q. Spatial pattern of land cover changes across Northeast China over the past 300 years
Journal of Historical Geography, 2011,37(4):408-417.

DOI:10.1016/j.jhg.2011.08.018URL [本文引用: 2]

吴致蕾, 刘峰贵, 张镱锂, . 清代青藏高原东北部河湟谷地林草地覆盖变化
地理科学进展, 2016,35(6):768-778.

DOI:10.18306/dlkxjz.2016.06.010URL [本文引用: 2]
河湟谷地是青藏高原东北缘典型的农牧交错区,清代以来耕地的扩张导致林草地覆盖发生明显变化。本文在现代植被图的基础上,选取土壤、地形因素,并依据历史文献数据,重建河湟谷地潜在林地草地格局,在此基础上结合清代耕地变化的重建结果,推算出清代河湟谷地林草地覆盖的变化状况。结果显示:①清代耕地扩张之前,其林、草地分布与现今各类植被类型的空间分布格局基本一致,林地分布范围比现代略大,灌木林地在空间上连续性更强,草地分布区域更广;②估算出河湟谷地潜在林地、灌木林地、草地面积分别约为0.28×104、0.93×104、2.1618×104 km2,由于耕地开垦,至清代末期,河湟谷地草地、灌木林地、林地面积分别累计减少5180.41、1330.35、441.31 km2,其中草地被垦殖占用的面积最大,程度最深,减少的区域主要集中在湟水谷地中游的乐都盆地、西宁盆地以及黄河谷地的尖扎盆地、化隆盆地等;③清代河湟谷地中人类垦殖原始覆盖类型的差异性不仅受自然环境的限制,同样受到社会政策因素的影响。
[ Wu Zhilei, Liu Fenggui, Zhang Yili, et al. Forest and grassland coverage change in the Yellow River-Huangshui River Valley in northeast Qinghai-Tibet Plateau during the Qing Dynasty
Progress in Geography, 2016,35(6):768-778.]

DOI:10.18306/dlkxjz.2016.06.010URL [本文引用: 2]
河湟谷地是青藏高原东北缘典型的农牧交错区,清代以来耕地的扩张导致林草地覆盖发生明显变化。本文在现代植被图的基础上,选取土壤、地形因素,并依据历史文献数据,重建河湟谷地潜在林地草地格局,在此基础上结合清代耕地变化的重建结果,推算出清代河湟谷地林草地覆盖的变化状况。结果显示:①清代耕地扩张之前,其林、草地分布与现今各类植被类型的空间分布格局基本一致,林地分布范围比现代略大,灌木林地在空间上连续性更强,草地分布区域更广;②估算出河湟谷地潜在林地、灌木林地、草地面积分别约为0.28×104、0.93×104、2.1618×104 km2,由于耕地开垦,至清代末期,河湟谷地草地、灌木林地、林地面积分别累计减少5180.41、1330.35、441.31 km2,其中草地被垦殖占用的面积最大,程度最深,减少的区域主要集中在湟水谷地中游的乐都盆地、西宁盆地以及黄河谷地的尖扎盆地、化隆盆地等;③清代河湟谷地中人类垦殖原始覆盖类型的差异性不仅受自然环境的限制,同样受到社会政策因素的影响。

Li M J, He F N, Li S C, et al. Reconstruction of the cropland cover changes in eastern China between the 10th century and 13th century using historical documents
Scientific Reports, 2018,8:13552.

DOI:10.1038/s41598-018-31807-6URLPMID:30202010 [本文引用: 1]
To evaluate and improve datasets of anthropogenic land cover change used in local and global climate models, great efforts were made to reconstruct historical land use, including the LandCover 6k project which dedicated to reconstructing human land use over the past 10,000 years. In this study, we utilized historical records, including taxed-cropland and cropland measurement areas, and data on the number of households in eastern China between the 10(th) century and 13(th) century in concert with coefficient calibration, model allocation, and per capita cropland estimation to reconstruct areas of provincial cropland for 22 provinces over five time periods. Our reconstructions indicate that total cropland areas of eastern China for AD 1000, 1066, 1078, 1162, and 1215 are 34.74 x 10(6) ha, 49.42 x 10(6) ha, 51.62 x 10(6) ha, 35.21 x 10(6) ha, and 51.21 x 10(6) ha, respectively. And the cropland area fluctuated because of dynasty shift and went through three phases. Cropland expansion and contraction mainly occurred in the middle and lower reaches of the Yangtze and Yellow Rivers as well as the Huaihe River Basin, while in some regions far away from battlefields, including northeastern and southern China, cropland area expanded continuously throughout the study period.

Li S C, He F N, Zhang X Z. A spatially explicit reconstruction of cropland cover in China from 1661 to 1996
Regional Environmental Change, 2016,16(2):417-428.

DOI:10.1007/s10113-014-0751-4URL [本文引用: 2]

李美娇, 何凡能, 刘浩龙. 北宋中期路域耕地面积的再估算
地理研究, 2016,35(12):2322-2332.

[本文引用: 1]

[ Li Meijiao, He Fanneng, Liu Haolong. A re-estimation of cropland area at Lu scale in the mid-Northern Song Dynasty
Geographical Research, 2016,35(12):2322-2332.]

[本文引用: 1]

龙瀛, 金晓斌, 李苗裔, . 利用约束性CA重建历史时期耕地空间格局: 以江苏省为例
地理研究, 2014,33(12):2239-2250.

DOI:10.11821/dlyj201412003URL [本文引用: 1]
历史时期耕地空间格局重建是土地利用/土地覆被变化研究(LUCC)的重要组成部分,受到了国内外学术界的广泛关注。已有研究多采用基于总量进行空间分配的方法。考虑到耕地连续性分布及相关空间约束特点,基于约束性元胞自动机提出重建历史时期空间格局的方法,给出了模型建立、参数识别和结果验证的方法,结合数据可获得性,以江苏省为例进行了模型应用。通过与空间分配方法进行对比,结果表明该方法能较为客观地反映历史时期耕地空间格局的演变过程,可为历史耕地研究提供新的方法借鉴。
[ Long Ying, Jin Xiaobin, Li Miaoyi, et al. A constrained cellular automata model for reconstructing historical arable land in Jiangsu province
Geographical Research, 2014,33(12):2239-2250.]

DOI:10.11821/dlyj201412003URL [本文引用: 1]
历史时期耕地空间格局重建是土地利用/土地覆被变化研究(LUCC)的重要组成部分,受到了国内外学术界的广泛关注。已有研究多采用基于总量进行空间分配的方法。考虑到耕地连续性分布及相关空间约束特点,基于约束性元胞自动机提出重建历史时期空间格局的方法,给出了模型建立、参数识别和结果验证的方法,结合数据可获得性,以江苏省为例进行了模型应用。通过与空间分配方法进行对比,结果表明该方法能较为客观地反映历史时期耕地空间格局的演变过程,可为历史耕地研究提供新的方法借鉴。

罗静, 张镱锂, 刘峰贵, . 青藏高原东北部河湟谷地1726年耕地格局重建
地理研究, 2014,33(7):1285-1296.

DOI:10.11821/dlyj201407009URL [本文引用: 1]
整理、校正了1726 年(雍正四年)河湟谷地历史文献中的田亩数据,并在GIS技术的支持下建立了该区1726 年具有空间属性(2 km×2 km)的耕地分布格局。结果显示:1726 年河湟谷地耕地总面积为1.427×103 km2,其中番地占64.7%,屯科秋站垦地占35.3%。河湟谷地虽然面积较大,但受自然环境条件的限制,可耕之地较少,该区仅有47%的网格具有耕地分布,耕地集中分布在湟水河干流区及大通河中游地区和龙羊峡以下的黄河谷地。从耕地垦殖强度分析,受自然环境条件和政治格局的双重影响,1726 年该区整体垦殖率较低,全区仅有1.4%的耕地网格垦殖率在40%以上,而68.3%的耕地网格垦殖率在10%以下,正处在广泛的开荒垦殖阶段。垦殖强度在空间分布上也存在明显差异,其中西宁县整体垦殖率水平最高,其耕地网格平均垦殖率达到了13.5%。
[ Luo Jing, Zhang Yili, Liu Fenggui, et al. Reconstruction of cropland spatial patterns for 1726 on Yellow River-Huangshui River Valley in northeast Qinghai-Tibet Plateau
Geographical Research, 2014,33(7):1285-1296.]

DOI:10.11821/dlyj201407009URL [本文引用: 1]
整理、校正了1726 年(雍正四年)河湟谷地历史文献中的田亩数据,并在GIS技术的支持下建立了该区1726 年具有空间属性(2 km×2 km)的耕地分布格局。结果显示:1726 年河湟谷地耕地总面积为1.427×103 km2,其中番地占64.7%,屯科秋站垦地占35.3%。河湟谷地虽然面积较大,但受自然环境条件的限制,可耕之地较少,该区仅有47%的网格具有耕地分布,耕地集中分布在湟水河干流区及大通河中游地区和龙羊峡以下的黄河谷地。从耕地垦殖强度分析,受自然环境条件和政治格局的双重影响,1726 年该区整体垦殖率较低,全区仅有1.4%的耕地网格垦殖率在40%以上,而68.3%的耕地网格垦殖率在10%以下,正处在广泛的开荒垦殖阶段。垦殖强度在空间分布上也存在明显差异,其中西宁县整体垦殖率水平最高,其耕地网格平均垦殖率达到了13.5%。

Ye Y, Fang X Q, Ren Y Y, et al. Cropland cover change in Northeast China during the past 300 years
Science in China Series D: Earth Sciences, 2009,52(8):1172-1182.

[本文引用: 1]

He F N, Li S C, Zhang X Z. A spatially explicit reconstruction of forest cover in China over 1700-2000
Global and Planetary Change, 2015,131:73-81.

DOI:10.1016/j.gloplacha.2015.05.008URL [本文引用: 1]

Yang X H, Jin X B, Xiang X M, et al. Reconstructing the spatial pattern of historical forest land in China in the past 300?years
Global and Planetary Change, 2018,165:173-185.

DOI:10.1016/j.gloplacha.2018.03.015URL [本文引用: 1]

何凡能, 李美娇, 杨帆. 近70年来中国历史时期土地利用/覆被变化研究的主要进展
中国历史地理论丛, 2019,34(4):5-16.

[本文引用: 2]

[ He Fanneng, Li Meijiao, Yang Fan. Main progress in historical land use and land cover change in China during the past 70 years
Journal of Chinese Historical Geography, 2019,34(4):5-16.]

[本文引用: 2]

苏大学. 中国草地资源的区域分布与生产力结构
草地学报, 1994,2(1):71-77.

URL [本文引用: 1]
根据1980-1990年全国首次按统一规程进行的草地资源调查结果和1:100万中国草地资源图的面积量算结果,本文简要地阐述了(1)中国草地资源的区域分布结构和山地草地垂直带分布规律;(2)中国草地资源类型的组成结构;(3)中国各地天然草地的产草量及其在不同水热条件下的变化规律;(4)中国草地资源的载畜量及其结构;(5)中国草地资源等级综合评价结果。
[ Su Daxue. The regional distribution and productivity structure of the Chinese grassland resources
Acta Agrestia Sinica, 1994,2(1):71-77.]

URL [本文引用: 1]
根据1980-1990年全国首次按统一规程进行的草地资源调查结果和1:100万中国草地资源图的面积量算结果,本文简要地阐述了(1)中国草地资源的区域分布结构和山地草地垂直带分布规律;(2)中国草地资源类型的组成结构;(3)中国各地天然草地的产草量及其在不同水热条件下的变化规律;(4)中国草地资源的载畜量及其结构;(5)中国草地资源等级综合评价结果。

贾慎修. 草地学. 北京: 中国农业出版社, 1982: 2.
[本文引用: 1]

[ Jia Shenxiu. Grassland. Beijing: China Agricultural Press, 1982: 2.]
[本文引用: 1]

任继周, 张自和. 草地与人类文明
草原与草坪, 2000, (1):5-9.

[本文引用: 1]

[ Ren Jizhou, Zhang Zihe. Grassland and human civilization
Grassland Lawn, 2000, (1):5-9.]

[本文引用: 1]

杜占池. 关于牧地的概念及其类型划分的探讨
草业与畜牧, 1999, (2):15-18.

[本文引用: 1]

[ Du Zhanchi. Discussion on the concept of pastoral land and its classification
Prataculture & Animal Husbandry, 1999, (2):15-18.]

[本文引用: 1]

FAO. Food and Agriculture Organization of the United Nations
2015: Rome, Italy.http://www.fao.org.html.

URL [本文引用: 1]

Ramankutty N, Evan A T, Monfreda C, et al. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2020
Global Biogeochemical Cycles,2008, 22(1):GB1003.

[本文引用: 1]

陶炎, 高瑞平. 历史时期草原的变迁与牧业的兴衰
中国农史, 1992, (3):62-68.

[本文引用: 1]

[ Tao Yan, Gao Ruiping. The changes of grasslands and the animal husbandry vicissitude during the historical periods
Agricultural History of China, 1992, (3):62-68.]

[本文引用: 1]

赵冈. 中国历史上生态环境之变迁. 北京: 中国环境科学出版社, 1996: 39.
[本文引用: 1]

[ Zhao Gang. Environmental Changes in China's History. Beijing: China Environmental Science Press, 1996: 39.]
[本文引用: 1]

苗阳, 卢欣石. 历史时期中国草原垦殖原因初探
草业科学, 2008,25(4):124-129.

[本文引用: 1]

[ Miao Yang, Lu Xinshi. Primary study on the reasons of grassland reclamation of China during the historical period
Pratacultural Science, 2008,25(4):124-129.]

[本文引用: 1]

方修琦, 叶瑜, 张成鹏, . 中国历史耕地变化及其对自然环境的影响
古地理学报, 2019,21(1):160-174.

[本文引用: 1]

[ Fang Xiuqi, Ye Yu, Zhang Chengpeng, et al. Cropland cover change and its environmental impacts in the history of China
Journal of palaeogeography, 2019,21(1):160-174.]

[本文引用: 1]

Ning J, Liu J Y, Kuang W H, et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010-2015
Journal of Geographical Sciences, 2018,28(5):547-562.

DOI:10.1007/s11442-018-1490-0URL [本文引用: 2]
Land use/cover change is an important theme on the impacts of human activities on the earth systems and global environmental change. National land-use changes of China during 2010-2015 were acquired by the digital interpretation method using the high-resolution remotely sensed images, e.g. the Landsat 8 OLI, GF-2 remote sensing images. The spatiotemporal characteristics of land-use changes across China during 2010-2015 were revealed by the indexes of dynamic degree model, annual land-use changes ratio etc. The results indicated that the built-up land increased by 24.6×103 km2 while the cropland decreased by 4.9×103 km2, and the total area of woodland and grassland decreased by 16.4×103 km2. The spatial pattern of land-use changes in China during 2010-2015 was concordant with that of the period 2000-2010. Specially, new characteristics of land-use changes emerged in different regions of China in 2010-2015. The built-up land in eastern China expanded continually, and the total area of cropland decreased, both at decreasing rates. The rates of built-up land expansion and cropland shrinkage were accelerated in central China. The rates of built-up land expansion and cropland growth increased in western China, while the decreasing rate of woodland and grassland accelerated. In northeastern China, built-up land expansion slowed continually, and cropland area increased slightly accompanied by the conversions between paddy land and dry land. Besides, woodland and grassland area decreased in northeastern China. The characteristics of land-use changes in eastern China were essentially consistent with the spatial govern and control requirements of the optimal development zones and key development zones according to the Major Function-oriented Zones Planning implemented during the 12th Five-Year Plan (2011-2015). It was a serious challenge for the central government of China to effectively protect the reasonable layout of land use types dominated with the key ecological function zones and agricultural production zones in central and western China. Furthermore, the local governments should take effective measures to strengthen the management of territorial development in future.

Liu J Y, Kuang W H, Zhang Z X, et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980
Journal of Geographical Sciences, 2014,24(2):195-210.

DOI:10.1007/s11442-014-1082-6URL [本文引用: 2]
Land-use/land-cover changes (LUCCs) have links to both human and nature interactions. China's Land-Use/cover Datasets (CLUDs) were updated regularly at 5-year intervals from the late 1980s to 2010,with standard procedures based on Landsat TM\ETM+ images. A land-use dynamic regionalization method was proposed to analyze major land-use conversions. The spatiotemporal characteristics,differences,and causes of land-use changes at a national scale were then examined. The main findings are summarized as follows. Land-use changes (LUCs) across China indicated a significant variation in spatial and temporal characteristics in the last 20 years (1990-2010). The area of cropland change decreased in the south and increased in the north,but the total area remained almost unchanged. The reclaimed cropland was shifted from the northeast to the northwest. The built-up lands expanded rapidly,were mainly distributed in the east,and gradually spread out to central and western China. Woodland decreased first,and then increased,but desert area was the opposite. Grassland continued decreasing. Different spatial patterns of LUC in China were found between the late 20th century and the early 21st century. The original 13 LUC zones were replaced by 15 units with changes of boundaries in some zones. The main spatial characteristics of these changes included (1) an accelerated expansion of built-up land in the Huang-Huai-Hai region,the southeastern coastal areas,the midstream area of the Yangtze River,and the Sichuan Basin;(2) shifted land reclamation in the north from northeast China and eastern Inner Mongolia to the oasis agricultural areas in northwest China;(3) continuous transformation from rain-fed farmlands in northeast China to paddy fields;and (4) effectiveness of the "Grain for Green" project in the southern agricultural-pastoral ecotones of Inner Mongolia,the Loess Plateau,and southwestern mountainous areas. In the last two decades,although climate change in the north affected the change in cropland,policy regulation and economic driving forces were still the primary causes of LUC across China. During the first decade of the 21st century,the anthropogenic factors that drove variations in land-use patterns have shifted the emphasis from one-way land development to both development and conservation.The "dynamic regionalization method" was used to analyze changes in the spatial patterns of zoning boundaries,the internal characteristics of zones,and the growth and decrease of units. The results revealed "the pattern of the change process," namely the process of LUC and regional differences in characteristics at different stages. The growth and decrease of zones during this dynamic LUC zoning,variations in unit boundaries,and the characteristics of change intensities between the former and latter decades were examined. The patterns of alternative transformation between the "pattern" and "process" of land use and the causes for changes in different types and different regions of land use were explored.

张学珍, 王维强, 方修琦, . 中国东北地区17世纪后期的自然植被格局
地理科学, 2011,31(2):184-189.

[本文引用: 1]

[ Zhang Xuezhen, Wang Weiqiang, Fang Xiuqi, et al. Natural vegetation pattern over northeast China in late 17th century
Scientia Geographica Sinica, 2011,31(2):184-189.]

[本文引用: 1]

张晓莉. 清代新疆屯田布局对我国西北安全的影响
石河子大学学报(哲学社会科学版), 2011,25(3):14-18.

[本文引用: 2]

[ Zhang Xiaoli. The impact of the settlement layout of the Qing Dynasty on the security of the northwestern frontier
Journal of Shihezi University (Philosophy and Social Sciences), 2011,25(3):14-18.]

[本文引用: 2]

[清] 日讲起居注官. 清圣祖实录: 卷19
北京: 中华书局, 2008: 320.

[本文引用: 1]

[(Qing) The Recorder of the Emperor's Words and Acts. Veritable records of Shengzu Emperor of the Qing Dynasty: Vol.19
Beijing: Zhonghua Book Company, 2008: 320.]

[本文引用: 1]

(道光) 陈士桢. 兰州府志: 卷8. 台北: 成文出版社, 1976: 148.
[本文引用: 1]

[(Daoguang) Chen Shizhen. Lanzhou Fu Chronicle: Vol. 8. Taipei: Wencheng Press, 1976: 148.]
[本文引用: 1]

(清) 张廷玉. 清朝文献通考: 卷4. 杭州: 浙江古籍出版社, 1988: 48.
[本文引用: 1]

[(Qing) Zhang Tingyu. Wen Xian Tong Kao of Qing Dynasty: Vol. 4. Hangzhou: Zhejiang Classics Press, 1988: 48.]
[本文引用: 1]

曹树基. 中国人口史. 第五卷, 清时期. 上海: 复旦大学出版社, 2001.
[本文引用: 1]

[ Cao Shuji. Population History of China. Vol. 5, Qing Dynasty Period. Shanghai: Fudan University Press, 2001.]
[本文引用: 1]

侯杨方. 中国人口史. 第六卷, 1910-1953年. 上海: 复旦大学出版社, 2001.
[本文引用: 1]

[ Hou Yangfang. Population History of China. Vol. 6, 1910-1953. Shanghai: Fudan University Press, 2001.]
[本文引用: 1]

(乾隆) 傅恒. 钦定皇舆西域图志: 卷39
文渊阁四库全书本, 1781:419.

[本文引用: 1]

[(Qianlong) Fu Heng. the Western Regions Annals: Vol. 39
Si Ku Quan Shu of Wen Yuan Ge, 1781:419.]

[本文引用: 1]

郝浚, 华桂金, 陈效简. 乌鲁木齐杂诗注. 乌鲁木齐: 新疆人民出版社, 1991: 56.
[本文引用: 1]

[ Hao Jun, Hua Guijin, Chen Xiaojian. Notes for Random Poems of Urumqi. Urumqi: Xinjiang People's Press, 1991: 56.]
[本文引用: 1]

王希隆. 清代西北屯田研究. 乌鲁木齐: 新疆人民出版社, 2012.
[本文引用: 1]

[ Wang Xilong. Northwest Mita in Qing Dynasty. Urumqi: Xinjiang People's Press, 2012.]
[本文引用: 1]

相关话题/数据 空间 历史 土地 遥感