删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于等效介质理论的煤层气储层岩石物理建模与应用

本站小编 Free考研考试/2022-01-03

吴海波1,2,,
黄亚平3,,,
张平松1,2,
姬广忠1,2,
董守华3,
丁海4
1. 安徽理工大学 深部煤矿采动响应与灾害防控国家重点实验室, 安徽 淮南 232001
2. 安徽理工大学 地球与环境学院, 安徽 淮南 232001
3. 中国矿业大学 资源与地球科学学院, 江苏 徐州 221116
4. 安徽省煤田地质局 勘查研究院, 合肥 230088

基金项目: 国家自然科学基金(41902167),安徽省自然科学基金(1908085QD169),安徽省重点研究与开发计划项目(1804a0802203)资助


详细信息
作者简介: 吴海波, 男, 江苏大丰人, 博士, 副教授, 研究方向: 煤系非常规气储层岩石物理与地震反演.E-mail: wuhaibocumt@163.com
通讯作者: 张平松, 男, 博士, 教授, 研究方向: 矿井地球物理勘探.E-mail: 2016017@aust.edu.cn
中图分类号: P631

收稿日期:2020-10-12
修回日期:2021-01-17
上线日期:2021-06-10



Rock physics model for coal-bed methane reservoir and its application based on equivalent medium theory

WU HaiBo1,2,,
HUANG YaPing3,,,
ZHANG PingSong1,2,
JI GuangZhong1,2,
DONG ShouHua3,
DING Hai4
1. State Key Laboratory Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan Anhui 232001, China
2. School of Earth and Environment, Anhui University of Science and Technology, Huainan Anhui 232001, China
3. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou Jiangsu 221116, China
4. Exploration Research Institute, Anhui Provincial Bureau of Coal Geology, Hefei 230088, China


More Information
Corresponding author: HUANG YaPing,E-mail:2016017@aust.edu.cn
MSC: P631

--> Received Date: 12 October 2020
Revised Date: 17 January 2021
Available Online: 10 June 2021


摘要
地震岩石物理建模作为表征油气储层物性参数与地震参数间映射关系的主流工具,鲜有应用于煤层气储层,关键制约因素在于煤层气储层特有的吸附气和双重孔隙的等效计算问题尚未有效解决.为此,本文将吸附气视为类似煤基质的固相,将双重孔隙分解为基质孔隙和裂隙两部分;尝试利用自相容近似模型计算煤基质、吸附气和基质孔隙混合后煤基质干骨架的等效纵、横波速度,通过Mori-Tanaka模型和Brown-Korringa各向异性流体替换理论加入裂隙和流体,以此构建煤层气储层岩石物理模型.在此基础之上,通过正演模拟分析基质孔隙参数、吸附气含量以及裂隙参数的等效纵、横波速度响应;基于模型反演基质孔隙和裂隙参数,并将基于模型预测的纵、横波速度与实测数据对比,论证所构建的煤层气储层岩石物理模型的合理性.进一步通过制作岩石物理量版,探讨煤层气"甜点区"界定的两个关键参数——吸附气含量和脆性指数与储层物性参数(基质孔隙度、裂隙孔隙度)以及地震参数间的关系.结果表明:吸附气含量的变化引起的纵、横波速度、纵横波速度比和纵波阻抗变化微弱,引起的流体因子参数(λρμρ)变化略显著;基质孔隙度变化引起的地震参数响应显著强于吸附气含量;裂隙孔隙度与两种脆性指数间均具有明显的负相关性,可认为是煤层气储层脆性的主要影响因素.
煤层气/
基质孔隙/
裂隙/
孔隙度/
吸附气含量/
脆性指数

Rock physics modeling serves as a mainstream tool to describe the relationship between the physical parameters of an oil-gas reservoir and seismic corresponding, and has seldom been applied in coal-bed methane (CBM) reservoirs. The key issue is that an effective calculation method for the specific properties of a CBM reservoir has not been resolved, including adsorbed-gas and dual-pore systems. Therefore, in this study, we regarded the adsorbed gas as the solid phase, which is similar to the coal matrix, and divided the dual-pore system into two parts: matrix pore and fracture. The self-consistent model was then used to calculate the effective P-wave and S-wave velocities of a dry coal matrix skeleton mix comprised of coal matrix, adsorbed gas, and matrix pores. We then added fracture and fluid parameters to the rock physics model of the CBM reservoir using the Mori-Tanaka model and the Brown-Korringa anisotropic fluid substitution equation, respectively. Using the model, we analyzed the variations in effective P-wave and S-wave velocities with respect to the matrix pore parameters, adsorbed-gas content, and fracture parameters by forward modeling. The reasonability of the rock physics model was proved by comparing the predicted and measured P-wave and S-wave velocities with the dual-pore parameters inversed simultaneously. Finally, rock physics templates were constructed and used to describe the response of reservoir physics parameters (matrix and fracture porosity) and seismic parameters to the two key factors (adsorbed-gas and brittleness index) in the CBM sweet spot definition. It shows that the P-wave and S-wave velocity responses and velocity ratio, and the P-wave impedance caused by the adsorbed gas content variation are weakened. The change in fluid factors (λρ and μρ) caused by the adsorbed gas content was only slightly significant. The fracture porosity showed a significantly negative correlation with both the brittleness indices of the CBM reservoir and can be regarded as the main influencing factor.
Coal-bed methane (CBM)/
Matrix pore/
Fracture/
Porosity/
Absorbed gas content/
Brittleness index



PDF全文下载地址:

http://www.geophy.cn/data/article/export-pdf?id=14b1303e-2684-45eb-a1c2-2b1a4d4d569f
相关话题/地震 岩石 物理 江苏 安徽理工大学