删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

多旋翼无人机航磁系统误差综合补偿研究

本站小编 Free考研考试/2022-01-03

乔中坤1,,
马国庆1,
周文纳2,,,
于平1,
周帅1,
王泰涵1,
唐水亮3,
戴伟铭3,
孟兆海4,
张志厚5
1. 吉林大学地球探测科学与技术学院, 长春 130026
2. 兰州大学地质科学与矿产资源学院, 兰州 730000
3. 浙江大年科技有限公司, 宁波 315400
4. 天津航海仪器研究所, 天津 300131
5. 西南交通大学地球科学与环境工程学院, 成都 611756

基金项目: 十三五国家重点研发计划课题(2017YFC0602203), 中国地质调查局二级项目(DD20201118), 甘肃省科技计划(20JR5RA251)资助


详细信息
作者简介: 乔中坤, 男, 1988年生, 博士研究生, 主要从事航空重、磁勘探数据处理研究.E-mail:qiaozhongkun007@163.com
通讯作者: 周文纳, 男, 1987年生, 博士, 副教授, 主要从事移动平台地球物理数据处理、解释研究.E-mail:wennazhou@163.com
中图分类号: P631

收稿日期:2020-07-06
修回日期:2020-09-16
上线日期:2020-12-05



Research on the comprehensive compensation of aeromagnetic system error of multi-rotor UAV

QIAO ZhongKun1,,
MA GuoQing1,
ZHOU WenNa2,,,
YU Ping1,
ZHOU Shuai1,
WANG TaiHan1,
TANG ShuiLiang3,
DAI WeiMing3,
MENG ZhaoHai4,
ZHANG ZhiHou5
1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
2. College of geological science and mineral resources, Lanzhou University, Lanzhou 730000, China
3. Zhejiang Danian Technology Co., Ltd, Ningbo 315400, China
4. Tianjin Navigation Instrument Research Institute, Tianjin 300131, China
5. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China


More Information
Corresponding author: ZHOU WenNa,E-mail:wennazhou@163.com
MSC: P631

--> Received Date: 06 July 2020
Revised Date: 16 September 2020
Available Online: 05 December 2020


摘要
多旋翼无人机磁通门航磁系统以其安全、稳定、高效等特点可广泛应用于中大比例尺矿产资源探测领域,但由于磁通门传感器存在三轴不严格正交,灵敏度、零偏不一致造成的转向差,且系统作业中存在固定场干扰、感应干扰和涡流干扰,需要进行流程繁琐的标定和补偿测试.本文根据实测数据分析出航磁系统机电干扰主要来自机载设备高频干扰,针对机电干扰高频特性设计相应低通滤波器进行误差处理,并基于Tolles-Lawson模型建立仪器转向误差和飞行平台机动误差补偿模型,根据两者结构相似的特点,建立综合补偿模型,该模型简单,实用性强,可通过野外一次补偿测试求取补偿参数进而对工区航磁数据进行补偿处理.最后,将综合补偿研究应用到辽宁省兴城市夹山地区航磁数据,综合补偿后的处理有效去除了航磁数据中的条带状干扰异常,并与地面磁测数据异常形态具有良好的一致性,验证了该研究方法有效性和实用性.
无人机航磁系统/
误差分析/
综合补偿

The multiple-rotor UAV fluxgate aeromagnetic system can be widely applied in large-scale exploration of mineral resources due to its safety, stability and high efficiency. However, three-axis non orthogonal, sensitivity and zero deviation inconsistency in its sensor can produce steering error. In addition, fixed field interference, induction interference and eddy current interference exist in the system operation, which require to carry out complex calibration and compensation tests. This work found that the electromechanical interference of the aeromagnetic system mainly comes from the high-frequency interference of airborne equipment according to the measured data, and designed a corresponding low-pass filter for filtering such interference according to the high-frequency characteristics of the electromechanical interference. We also developed a simple and practical compensation model based on the Tolles-Lawson model and the characteristics of structure similarity of instrument steering error and flight platform maneuvering error, which can finish the compensation process of aeromagnetic data in the work area, by which a field compensation test can be made to obtain all the compensation parameters. Finally, the comprehensive compensation method was applied to the aeromagnetic data in the Jiashan area of Xingcheng City, Liaoning Province. The strip interference anomalies in aeromagnetic data were effectively removed by the developed method, and the aeromagnetic data after processing was consistent with the anomaly shape of ground magnetic data, which verified the effectiveness and practicability of the new method.
UAV aeromagnetic system/
Error analysis/
Comprehensive compensation



PDF全文下载地址:

http://www.geophy.cn/data/article/export-pdf?id=5fed39e2bfedb50717e0ce63
相关话题/干扰 系统 数据 综合 测试