删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

泥质砂岩黏土附加导电强度评价指数定义及应用方法

本站小编 Free考研考试/2022-01-03

韩学辉1,,
郭俊鑫2,,,
毛新军3,
刘红林4,
张浩3,
房涛3,
陈芸娟5,
江佳洋1,
李昊1,
李靖1,
王鹏1
1. 中国石油大学(华东)地球科学与技术学院, 青岛 266580
2. 南方科技大学, 深圳 518055
3. 中国石油股份有限公司新疆油田公司勘探事业部, 克拉玛依 834000
4. 新疆油田公司采油二厂, 克拉玛依 834000
5. 中国石油集团测井有限公司新疆分公司, 克拉玛依 834000

基金项目: 国家自然基金(U1562108)、国家科技重大专项(2017ZX05009001)和"十三五"专项(2016ZX05011)联合资助


详细信息
作者简介: 韩学辉, 男, 1974年生, 博士, 副教授, 主要研究方向为岩石物理.E-mail:hanxuehui@upc.edu.cn
通讯作者: 郭俊鑫, 男, 南方科技大学卓越博士后, 主要研究方向为岩石物理与岩石力学.E-mail:guojx@sustech.edu.cn
中图分类号: P631

收稿日期:2019-07-04
修回日期:2019-10-11
上线日期:2019-11-05



Definition of clay additional conductivity intensity index for argillaceous sandstone and its application

HAN XueHui1,,
GUO JunXin2,,,
MAO XinJun3,
LIU HongLin4,
ZHANG Hao3,
FANG Tao3,
CHEN YunJuan5,
JIANG JiaYang1,
LI Hao1,
LI Jing1,
WANG Peng1
1. School of Geoscience, China University of Petroleum(East China), Qingdao 266580, China
2. Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen 518055, China
3. Exploration Department of Xinjiang Oilfield Company, PetroChina, Karamy 834000, China
4. The Second Oil Production Plant, Xinjiang Oilfield Company, PetroChina, Kalamay 834000, China
5. Xinjiang Branch of China Petroleum Logging Company Limited, Kalamay 834000, China


More Information
Corresponding author: GUO JunXin,E-mail:guojx@sustech.edu.cn
MSC: P631

--> Received Date: 04 July 2019
Revised Date: 11 October 2019
Available Online: 05 November 2019


摘要
针对泥质砂岩黏土附加导电还没有综合定量评价指标的现状,从Archie公式和Waxman-Smits方程计算的含水饱和度的相对误差出发定义了黏土附加导电强度指数η,并考察了地层水电导率Cw、阳离子交换容量Qv、含水饱和度Sw、饱和度指数nη的影响,给出了黏土附加导电强度判别方法和图版,通过低阻油气层的工程应用实例探讨了η在饱和度方程选取中的应用.结果表明,ηCwSwn值的增大而以近似乘幂规律减小,随Qv的增大而近似线性增大;CwQvη的影响最大,nSw次之;无法由单一因素判断黏土附加导电性强弱,必须综合考虑QvCwSwn的影响;对于低阻油气层,可利用该指数按照"三步法"及判别图版定量判断低阻成因并为饱和度模型的选取提供技术依据.
低阻/
黏土附加导电/
判别图版/
饱和度方程

Up to now no comprehensive index has been proposed to quantify the clay additional conductivity for argillaceous sandstone. To fill this gap, this paper defines a clay additional conductivity intensity index η based on the relative error between the results calculated by Archie formula and those by Waxman-Smits equation. Then, the influences of the formation water conductivity Cw, cation exchange capacity Qv, water saturation Sw, and the saturation index n on this parameter are examined. The method to quantify the clay additional conductivity and the corresponding discrimination template are given. Furthermore, the application of η in the selection of saturation equations is also discussed through a case study to low-resistivity reservoirs. The results show that η decreases exponentially with Cw, Sw and n, whereas it increases nearly linearly with Qv. Cw and Qv have the largest influence on η, while the influences of n and Sw are smaller. It is difficult to determine the clay additional conductivity from only one factor and hence the influence of Qv, Cw, Sw and n should be considered comprehensively. For low-resistivity reservoirs, 'three-step approach' and the discrimination template can be used to determine the reason for low resistivity, which provides a basis for selection of the saturation model.
Low resistivity/
Clay additional conductivity/
Discrimination template/
Saturation equation



PDF全文下载地址:

http://www.geophy.cn/data/article/export-pdf?id=dqwlxb_15242
相关话题/岩石 新疆 综合 南方科技大学 公司