胡祥云1,2,,,
李建慧1,
刘亚军1
1. 中国地质大学(武汉)地球物理与空间信息学院, 武汉 430074
2. 地球内部多尺度成像湖北省重点实验室, 武汉 430074
基金项目: 国家自然科学基金(41704133,41630317)和地球内部多尺度成像湖北省重点实验室开放基金联合资助
详细信息
作者简介: 彭荣华, 男, 1988年生, 讲师, 研究方向为电磁法三维正演与反演模拟.E-mail:pengrh@cug.edu.cn
通讯作者: 胡祥云, 男, 1966年生, 教授, 博士生导师, 主要从事电磁法的理论与应用研究.E-mail:xyhu@cug.edu.cn
中图分类号: P631收稿日期:2018-03-07
修回日期:2018-08-16
上线日期:2019-06-05
3D inversion of frequency-domain marine CSEM data in VTI media
PENG RongHua1,2,,HU XiangYun1,2,,,
LI JianHui1,
LIU YaJun1
1. Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China
2. Hubei Subsurface Multi-scale Imaging Key Laboratory, Wuhan 430074, China
More Information
Corresponding author: HU XiangYun,E-mail:xyhu@cug.edu.cn
MSC: P631--> Received Date: 07 March 2018
Revised Date: 16 August 2018
Available Online: 05 June 2019
摘要
摘要:地层宏观电性各向异性会对可控源电磁响应产生重要影响.由于海底地层电性结构常表现为电导率各向异性,若仅对海洋可控源电磁(MCSEM)数据进行常规各向同性反演,有可能无法获得准确的反演解释结果,从而削弱MCSEM技术的可靠性.本文实现了电导率垂直各向异性(VTI)条件下频率域海洋可控源电磁数据三维反演算法.其中,三维正演采用基于二次场控制方程的交错网格有限体积法,并利用直接矩阵分解技术来求解离散所得的大型线性方程组,有利于快速计算多场源的响应.反演采用具有近似二次收敛性的高斯牛顿算法对目标函数进行最优化.最后,对具有VTI电性各向异性特征的盐丘构造模型的MCSEM合成数据分别进行了电导率各向同性和垂直各向异性三维反演,结果表明:各向同性三维反演算法无法对受VTI介质影响的MCSEM数据进行正确的反演解释,而垂直各向异性三维反演能够获得更为可靠的地下电阻率结构和异常体分布,展现出对海底电性各向异性结构更为优良的反演解释能力.
关键词: 海洋可控源电磁法/
电导率垂直各向异性/
三维反演/
高斯牛顿法/
直接矩阵分解法/
有限体积法
Abstract:Electrical anisotropy of geologic formations has a significant impact on controlled source electromagnetic (CSEM) field responses. It is now well recognized that sedimentary formations in the marine environment are usually characterized by electrical anisotropy due to strong sedimentation. In the presence of such electrical anisotropy, the interpretation of marine CSEM data based on the assumption of isotropic media may produce misleading resistivity images, which will undermine the power of MCSEM technique. To solve this problem, we develop an efficient three-dimensional (3D) anisotropic inversion algorithm for marine CSEM data affected by structures with vertical transverse isotropy (VTI). The forward engine is based on the scattering-field formulation to mitigate the numerical singularity in the vicinity of the transmitters, and employs a direct matrix factorization method to solve the system of linear equations arising from finite volume discretization. The direct solver facilitates the reuse of the matrix factorization, which makes the solutions for multiple transmitters with little additional effort. The inverse algorithm is based on the Gauss-Newton method with a quasi-quadratic convergence rate, which reduces the number of expensive matrix factorization required. Finally, numerical experiments on synthetic marine CSEM data show that 3D anisotropic inversion can produce more reliable resistivity images, demonstrating better interpretation capacity than conventional isotropic inversion of marine CSEM data in the presence of electrical anisotropy.
Key words:Marine CSEM/
Electrically vertical transverse isotropy/
3D inversion/
Gauss-Newton/
Direct solver/
Finite volume method
PDF全文下载地址:
http://www.geophy.cn/data/article/export-pdf?id=dqwlxb_15014