高金耀2,
赵俐红1,3,
杨春国2,
管清胜2,4,
张涛2,,
1. 山东科技大学, 青岛 266590
2. 国家海洋局海底科学重点实验室, 自然资源部第二海洋研究所, 杭州 310012
3. 海洋矿产资源评价与探测技术功能实验室, 青岛海洋科学与技术国家实验室, 青岛 266237
4. 南京大学, 地理与海洋科学学院, 南京 210023
基金项目: 国家自然科学基金"北冰洋Mohns洋中脊的非对称扩张机制研究(41376069)",国家自然科学基金"北冰洋美亚海盆岩石圈的挠曲形变特征(41676039)","中央级公益性科研院所基本科研业务费专项资金资助项目(QNYC201503)","南北极环境综合考察与评估专项"北极海域地球物理考察(CHINARE-03-03)项目,国家重大科学仪器设备开发专项(2014YQ100817-06)联合资助
详细信息
作者简介: 凌子龙, 男, 1990年出生, 博士研究生, 主要从事海洋地球物理研究.E-mail:1376073417@qq.com
通讯作者: 张涛, 男, 1980年出生, 副研究员, 博士, 主要从事海洋地球物理研究.E-mail:Tao_zhang@sio.org.cn
中图分类号: P738收稿日期:2018-10-24
修回日期:2019-01-14
上线日期:2019-05-05
The asymmetric crustal structures of basement ridges of the Gakkel Ridge
LING ZiLong1,2,3,,GAO JinYao2,
ZHAO LiHong1,3,
YANG ChunGuo2,
GUAN QingSheng2,4,
ZHANG Tao2,,
1. Shandong University of Science and Technology, Qingdao 266590, China
2. Key Laboratory of Submarine Geosciences, State Oceanic Administration, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
3. Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
4. Nanjing University, School of Geography and Ocean Science, Nanjing 210023, China
More Information
Corresponding author: ZHANG Tao,E-mail:Tao_zhang@sio.org.cn
MSC: P738--> Received Date: 24 October 2018
Revised Date: 14 January 2019
Available Online: 05 May 2019
摘要
摘要:超慢速扩张的北冰洋Gakkel洋中脊具有六个沿扩张方向的线性基底隆起(本文编号为A-F).这些线性基底隆起在中轴两侧的地球物理场和地壳结构呈现不同程度的非对称性.本文利用Gakkel洋中脊的地形、空间重力异常(FAA)和航空磁力数据,计算了它的扩张速率、剩余地幔布格重力异常(RMBA)、地壳厚度和非均衡地形.根据中轴两侧地形和地壳厚度的对称关系,我们将六个基底隆起分为对称型和非对称型两种类型.整体上,B、D和F区基底隆起在中轴两侧的地形和地壳厚度的非对称幅值(两侧差值的绝对值)较小,其中地形的非对称幅值分别为~157 m、~125 m、~208 m,地壳厚度的非对称幅值分别为~1 km、~0.06 km、~0.3 km;而A、C和E区的非对称幅值较大,其中地形的非对称幅值分别为~510 m、~410 m、~673 m,地壳厚度的非对称幅值分别为~2 km、~2.5 km、~1.1 km.我们因此推断B、D和F区具有相对对称的地壳结构,而A、C和E区具有非对称的地壳结构.根据A、C和E区中轴两侧非均衡地形的对称关系和非对称地形的补偿状态,推测A区的非对称性可能是由岩浆分配不均所导致;而C区和E区的非对称性可能是由构造断层作用使断层下盘向上抬升变薄所导致.我们进一步推测洋中脊走向的改变可能使得构造作用更易集中于基底隆起的一侧.
关键词: Gakkel洋中脊/
基底隆起/
非对称性/
地壳厚度/
非均衡地形
Abstract:The ultraslow-spreading Gakkel Ridge has six linear basement ridges (A-F) along the spreading direction. They show different degrees of asymmetric geophysical signatures and crustal structures. The spreading rates, residual mantle bouguer anomaly, crustal thickness, and non-isostatic topography of Gakkel Ridge were calculated based on topographic data, free-air gravity anomaly data, and aeromagnetic data. Based on the comparison of topography and crustal thickness on conjugated flanks, we divide basement ridges into symmetric and asymmetric types. In general, the asymmetric amplitude (the absolute value of the difference between conjugated flanks) of topography and crustal thickness of basement ridges in B zone, D zone, and F zone are relatively small, and the asymmetric amplitude of topography is~157 m, ~125 m, ~208 m, the asymmetric amplitude of crustal thickness is~1 km, ~0.06 km, ~0.3 km. However, the asymmetric amplitude of topography and crustal thickness of basement ridges in A zone, C zone and E zone are relatively large, and the asymmetric amplitude of topography is~510 m, ~410 m, ~673 m, the asymmetric amplitude of crustal thickness is~2 km, ~2.5 km, ~1.1 km. We therefore suggest that B, D, and F have a relatively symmetric crustal structures, while A, C and E have an asymmetric crustal structures. According to the asymmetry of non-isostatic topography on conjugated flanks and compensation state of asymmetric topography, the asymmetry of A zone may due to uneven distribution of magma on conjugated flanks. The asymmetry of C zone and E zone may be caused by concentrated tectonism on one flank of basement ridge. We speculate that changes in the strike of ridge may facilitated the concentration of tectonism on one flank of the Gakkel Ridge.
Key words:Gakkel Ridge/
Basement ridge/
Asymmetry/
Crustal thickness/
Non-isostatic topography
PDF全文下载地址:
http://www.geophy.cn/data/article/export-pdf?id=dqwlxb_14976