删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

全球地磁感应测深数据三维反演

本站小编 Free考研考试/2022-01-03

李世文1,,
翁爱华1,,,
张艳辉1,
李建平2,
杨悦1,
唐裕1,
邹宗霖1,
李春成3
1. 吉林大学地球探测科学与技术学院, 长春 130026
2. 中国地质调查局广州海洋地质调查局, 广州 510075
3. 吉林省有色金属地质勘查局, 长春 130021

基金项目: 国家重大科研仪器专项(2011YQ05006010)资助


详细信息
作者简介: 李世文, 男, 山东莱芜人, 1988年生, 在读博士, 主要从事地球电磁法及电磁勘探正反演理论研究.E-mail:lisw1031@163.com
通讯作者: 翁爱华, 男, 安徽天长人, 1968年生, 教授, 主要从事电磁法勘探方法技术、正反演理论研究.E-mail:wengah@jlu.edu.cn
中图分类号: P631;P318

收稿日期:2018-07-10
修回日期:2018-12-12
上线日期:2019-05-05



3-D inversion for global geomagnetic depth sounding

LI ShiWen1,,
WENG AiHua1,,,
ZHANG YanHui1,
LI JianPing2,
YANG Yue1,
TANG Yu1,
ZOU ZongLin1,
LI ChunCheng3
1. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China
2. Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 510075, China
3. Jilin Nonferrous Metal Geological Exploration Bureau, Changchun 130021, China


More Information
Corresponding author: WENG AiHua,E-mail:wengah@jlu.edu.cn
MSC: P631;P318

--> Received Date: 10 July 2018
Revised Date: 12 December 2018
Available Online: 05 May 2019


摘要
全球地磁感应测深能获得地幔转换带及下地幔上部的导电结构.但目前稀疏的地磁台站分布及部分台站的观测数据稳定性较差,影响了三维反演对地下电性结构的分辨力和反演可靠性.为此,区别于传统的L2-范数反演方法,本文提出并实现了基于L1-范数的地磁测深响应三维反演技术.在反演中,利用L1-范数度量数据预测误差,降低"飞点"数据的影响,将相关系数较小的C-响应估计也纳入反演数据中.三维正演模拟采用球坐标系下的交错网格有限差分法,反演采用有限内存拟牛顿法.文中利用指数概率密度分布函数构造非高斯噪声的合成数据,并采用棋盘模型对反演方法的可靠性进行了验证.之后,我们将本文提出的三维反演方法用于全球129个地磁观测台站的C-响应数据反演,结果表明在地幔转换带深部,中国东北地区为高导电异常,南欧和北非则均为高阻;夏威夷在900 km以下为高导;菲律宾海及以东地区在转换带表现为明显的高阻,这些结果与前人研究结果一致.由于采用了更多的台站数据,我们的反演结果还发现一些新的异常:南美洲南端,转换带表现为明显的高导;澳大利亚东南部,地幔转换带深部,也存在一个明显的高导异常,这些异常分布和地震层析成像的低速区一致.因此,L1-范数三维反演能够充分利用全球C-响应数据信息,提高地磁测深对地球深部电性结构的分辨能力,更好的研究全球地幔电性结构.
地磁测深/
三维反演/
有限内存拟牛顿法/
L1-范数/
C-响应/
地幔结构

Global geomagnetic depth sounding (GDS) permits to detect the electrical structure of mantle transition zone and the upper part of lower mantle. However, the resolution and reliability of 3-D GDS inversion are restricted by sparse distribution of observatories and rejection caused by records' poor stability. In this paper, a 3-D GDS inversion method based on L1-norm has been developed to solve the problem, which differs from the traditional L2-norm inversion. The algorithm uses L1-norm in the measure of data misfit when outliers occur in the data, so during inversion process we could take C-responses with low coherency into account at a certain observatory. The L-BFGS inversion method is used and the forward solver is based on a staggered-grid finite difference method in frequency domain for spherical geometry. Non-Gaussian noise of synthetic data are generated by using an exponential probability density function, then a checkerboard model inversion test is performed to ensure the valid of our method. This 3-D inversion method is applied to C-responses of 129 selected observatories around the world. Results show high conductivity beneath Northeast of China and high resistivity in lower mantle transition beneath South Europe and North Africa, while high conductivity also exists below 900 km in Hawaii and high resistivity is registered beneath Philippine Sea and the East. These features are coincident with previous studies. Due to more observatories are used, our results present more anomalies, such as the high conductivity in the mantle transition zone beneath southern South America, and the high conductivity in the lower part of mantle transition zone of southeastern Australia. These anomalies coincide with the low velocity areas derived from seismic tomography. This work demonstrates that the L1-norm inversion method can make full use of observatories' records and improve exploratory resolution of deep electrical distribution of the Earth, contributing to further study of the global mantle structure.
Geomagnetic depth sounding/
3-D inversion/
L-BFGS/
L1-norm/
C-response/
Mantle structure



PDF全文下载地址:

http://www.geophy.cn/data/article/export-pdf?id=dqwlxb_14987
相关话题/数据 结构 地球 广州 观测