删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

多孔弹性波方程的多尺度波场模拟

本站小编 Free考研考试/2022-01-03

张文生1,,
郑晖1,2
1. 中国科学院数学与系统科学研究院, 计算数学与科学工程计算研究所, 科学与工程计算国家重点实验室, 北京 100190
2. 华中科技大学, 数学与统计学院, 武汉 430074

基金项目: 国家自然科学基金项目(11471328)和国家重点基金项目(51739007)的资助


详细信息
作者简介: 张文生, 男, 1966年生, 研究员, 主要从事波场模拟与反演的研究.E-mail:zws@lsec.cc.ac.cn
中图分类号: P631

收稿日期:2018-04-05
修回日期:2018-05-10
上线日期:2019-06-05



Wave simulation for the poroelastic wave equations by the multiscale method

ZHANG WenSheng1,,
ZHENG Hui1,2
1. Institute of Computational Mathematics and Scientific/Engineering Computing, State Key Laboratory of Scientific and Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
2. School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China


MSC: P631

--> Received Date: 05 April 2018
Revised Date: 10 May 2018
Available Online: 05 June 2019


摘要
本文研究了二维多孔弹性波方程的多尺度波场数值模拟方法.该多尺度方法可采用较粗的网格计算,同时又能反映细尺度上物性参数的变化信息.文中详细阐述了多尺度模拟方法与算法,并推导了相应的计算格式.基本思想是建立粗细两套网格,在粗网格上,基于有限体积方法计算更新波场;在细网格上,计算多尺度基函数,这基于有限元方法通过求解一个局部化问题得到.对含有随机分布散射体的多孔介质模型进行了数值计算,计算中应用了完全匹配层(PML)吸收边界条件,数值结果验证了本文方法和算法的正确性和有效性.
多孔弹性方程/
非均匀介质/
波场模拟/
多尺度方法/
PML吸收边界

In this paper, a multiscale method of wave simulation for solving two-dimensional poroelastic wave equations numerically is developed. The multiscale method allows us to apply coarser grids in computations while the information of physical parameter variations in small scale still can be captured. In this paper, the theoretical method and algorithm of the multiscale method are expounded in detail. The corresponding computational schemes are also derived. The basic idea is to construct two sets of meshes, i.e., coarse grids and fine grids. The computations for wavefield updating on coarse grids are implemented based on the finite volume method while the multiscale basis functions are computed on fine grids with the finite element method by solving a local problem. Numerical computations with the perfectly matched layer (PML) absorbing boundary conditions are implemented for a poroelastic model with randomly distributed scatterers and the numerical results verify the correctness and effectiveness of the method and algorithm in this paper.
Poroelastic wave equations/
Inhomogeneous media/
Wave simulation/
Multiscale method/
PML absorbing boundary



PDF全文下载地址:

http://www.geophy.cn/data/article/export-pdf?id=dqwlxb_15015
相关话题/计算 数学 科学 工程 中国科学院