删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于GRACE RL06数据监测和分析南极冰盖27个流域质量变化

本站小编 Free考研考试/2022-01-03

高春春1,2,,
陆洋3,4,,,
史红岭3,
张子占3,
徐长仪2,5,
谭冰1
1. 南阳师范学院, 河南南阳 473061
2. "中央"研究院地球科学研究所, 中国台北 11529
3. 中国科学院测量与地球物理研究所大地测量与地球动力学国家重点实验室, 武汉 430077
4. 中国科学院大学, 北京 100049
5. 中国地震局地震预测研究所, 北京 100036

基金项目: 国家自然科学基金(41604009,41674085,41876219)、国家重大科学研究计划(2012CB957703)和南阳师范学院高层次人才科研启动费(ZX2017022)联合资助


详细信息
作者简介: 高春春, 男, 1987年生, 讲师, 主要从事空间大地测量技术及其在极地冰盖监测中的应用等研究.E-mail:gaocc@nynu.edu.cn
通讯作者: 陆洋, 男, 1959年生, 研究员, 主要从事地球重力场精化、卫星测高及极地冰盖监测等研究.E-mail:luyang@whigg.ac.cn
中图分类号: P312

收稿日期:2018-10-09
修回日期:2019-01-06
上线日期:2019-03-05



Detection and analysis of ice sheet mass changes over 27 Antarctic drainage systems from GRACE RL06 data

GAO ChunChun1,2,,
LU Yang3,4,,,
SHI HongLing3,
ZHANG ZiZhan3,
XU ChangYi2,5,
TAN Bing1
1. Nanyang Normal University, Nanyang Henan 473061, China
2. Institute of Earth Sciences, Academia Sinica, Taipei 11529, China
3. State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China
4. University of Chinese Academy of Sciences, Beijing 100049, China
5. Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036, China


More Information
Corresponding author: LU Yang,E-mail:luyang@whigg.ac.cn
MSC: P312

--> Received Date: 09 October 2018
Revised Date: 06 January 2019
Available Online: 05 March 2019


摘要
本文基于CSR最新公布的GRACE RL06版本数据,采用Slepian空域反演法估算了南极冰盖27个流域的质量变化.Slepian空域反演法结合了Slepian空间谱集中法和空域反演法的技术优势,能够有效降低GRACE在小区域反演时信号出现的严重泄漏和衰减,进而精确获得南极冰盖在每个流域的质量变化.相对于GRACE RL05版本数据,RL06在条带误差的控制上要更加优化,获得的南极冰盖质量变化时间序列也更加平滑,但在趋势估算上差别并不明显(小于10 Gt/a).本文的估算结果显示:在2002年4月至2016年8月期间,整个南极冰盖质量变化速率为-118.6±16.3 Gt/a,其中西南极为-142.4±10.5 Gt/a,南极半岛为-29.2±2.1 Gt/a,东南极则为52.9±8.6 Gt/a.南极冰盖损失最大的区域集中在西南极Amundsen Sea Embayment(流域20-23),该地区质量变化速率为-203.5±4.1 Gt/a,其次为南极半岛(流域24-27)以及东南极Victoria-Wilkes Land(流域13-15),质量变化速率分别为-29.2±2.1 Gt/a和-19.0±4.7 Gt/a,其中Amundsen Sea Embayment和南极半岛南部两个地区的冰排放呈现加速状态.南极冰盖质量显著增加的区域主要有西南极的Ellsworth Land(流域1)和Siple Coast(流域18和19)以及东南极的Coats-Queen Maud-Enderby Land(流域3-8),三个地区质量变化速率分别为17.2±2.4 Gt/a、43.9±1.9 Gt/a和62.7±3.8 Gt/a,质量增加大多来自降雪累积,比如:Coats-Queen Maud-Enderby Land在2009年和2011年发生的大规模降雪事件,但也有来自冰川的增厚,如:Siple Coast地区Kamb冰流的持续加厚.此外,对GRACE估算的南极冰盖质量变化年际信号进行初步分析发现,GRACE年际信号与气候模型估算的冰盖表面质量平衡年际信号存在显著的线性相关关系,但与主要影响南极气候年际变化的气候事件之间却不存在线性相关关系,这说明南极冰盖质量变化的年际信号主要受冰盖表面质量平衡的支配,而气候事件对冰盖表面质量平衡的影响可能是复杂的非线性耦合过程.
南极冰盖/
质量平衡/
GRACE/
流域/
年际变化

Based on the recently published GRACE data of Release 6 (RL06) from the Center for Space Research (CSR), we estimate the ice mass changes over 27 Antarctic drainage systems using a new method of Slepian space domain inverse (SSDIM), which is developed by combining the Slepian spatiospectral concentration method (SSCM) and the space domain inverse method (SDIM). The main advantage of SSDIM is to reduce the deviations of signal leakage and attenuation due to the coarse spatial resolution of GRACE, and therefore it is helpful to obtain both spatial and temporal mass changes for all Antarctic drainage systems with high accuracy. The errors of typical north-south oriented stripes from RL06 are significantly reduced when compared to that from the Release 5 (RL05) products, which makes the related time series of mass changes from RL06 more smooth than that from RL05. However, both of their trends are not much difference (less than 10 Gt/a). The results from this study indicate that, over the period April 2002 to August 2016, the trend of mass change in entire Antarctic ice sheet is -118.6±16.3 Gt/a, of which West Antarctica is -142.4±10.5 Gt/a, the Antarctic Peninsula is -29.2±2.1 Gt/a, and East Antarctica is 52.9±8.6 Gt/a. The ice mass loss is mostly concentrated in Amundsen Sea Embayment (ASE; basins 20-23) of West Antarctica at a rate of -203.5±4.1 Gt/a, while elsewhere in the Antarctic Peninsula (basins 24-27) and Victoria-Wilkes Land (VWL; basins 13-15) of East Antarctica we find much smaller magnitudes of -29.2±2.1 Gt/a, and -19.0±4.7 Gt/a. Our results imply an increasing rate of ice discharge among outlet glaciers or ice streams in ASE and the Southern Antarctic Peninsula (SAP; basins 24 and 27). Outside above-mentioned areas we find three distinct patterns:Ellsworth Land (EL; basin 1) and Siple Coast (SC; basins 18 and 19) of West Antarctica and Coats-Queen Maud-Enderby Land (CQMEL; basins 3-8) of East Antarctica exhibit significant mass gains with trends of 17.2±2.4 Gt/a, 43.9±1.9 Gt/a, and 62.7±3.8 Gt/a. The mass gains in these regions are primarily driven by positive surface mass balance (SMB) anomalies, e.g., massive snowing over CQMEL occurred in 2009 and 2011, however, the Kamb Ice Stream that located on SC, with one exception, shows a positive ice mass balance due to ice dynamic thickening. In addation, a preliminary analysis shows the interannual mass change of Antarctic ice sheet from GRACE data compares very well with that from surface mass balance (SMB) driven by the regional atmospheric climate model RACMO2.3, which illustrates interannual ice sheet mass variations observed by GRACE are largely explained by SMB variations. However, the interannual mass changes are not linearly related to the indices of El Ni?o/Southern Oscillation (ENSO), Southern Annular Mode (SAM), and Amundsen Sea Low (ASL) that are major climate drivers of interannual changes in Antarctica, likely meaning that the impact of climate events on interannual SMB variations is complicated, nonlinear and coupled.
Antarctic ice sheet/
Mass balance/
GRACE/
Drainage system/
Interannual change



PDF全文下载地址:

http://www.geophy.cn/data/article/export-pdf?id=dqwlxb_14896
相关话题/质量 信号 地球 空间 南阳师范学院