摘要/Abstract
摘要: 针对油藏测井解释中的水淹层计算机自动识别问题,本文首先提出一种基于量子神经网络的识别方法.首先构造了一个量子神经网络模型,该模型可以接收多维离散序列样本,隐层为量子神经元,输出层为普通神经元.采用梯度下降法设计了该模型的学习算法.然后设计了基于量子神经网络的水淹层识别方法.该方法精选了描述水淹级别的九个特征,直接采用这些特征的离散数值构造训练样本,实施网络训练,训练后的网络即可用于同类地区的水淹层识别.最后以辽河油田某区块258个地层样本为例,进行了水淹层识别处理,识别率可达88%.实验结果揭示出,量子神经网络对于水淹层自动识别问题具有良好的适应性和实用性.
PDF全文下载地址:
http://www.progeophys.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=9323