摘要/Abstract
摘要: 地震波形传播的复杂多变性,导致传统互相关分析方法难以识别诱发型微震事件的深度类型.本文基于微震波形的时域、频域及时频域特征,利用自编码网络 (SAE)构造具有可鉴别性的特征空间,提升对深源和浅源诱发型微震事件的分类精度.首先,针对440个诱发型微震事件,构建了大小为40的特征空间;其次,利用遗传算法 (GA)和关联规则特征选择方法 (CFS)对特征空间进行初步筛选,得到特征重要性程度较强的谱矩心和线性度,通过分类验证了谱矩心与震源深度有强相关性;然后,将筛选结果输入到自编码网络,采用基于无监督学习的方法获得新的特征空间;最后,利用逻辑回归 (LR)对新特征空间进行交叉验证分类.与利用初步筛选的特征结果进行分类相比,利用4层的自编码网络模型对40特征进行交叉验证分类,所得正确率(Accuracy)和接收者操作特征曲线(ROC)曲线下方的面积(AUC)分别从84.5%提高到90.91%及84.31%提高到87.14%,结果表明自编码网络提高了分类模型对低能量诱发型微震事件的识别精度.
PDF全文下载地址:
http://www.progeophys.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=8849