删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Magnitude of modulation of gene expression in aneuploid maize depends on the extent of genomic imbal

本站小编 Free考研考试/2022-01-01

Adam F. Johnsona, c,
Jie Houb,
Hua Yangc,
Xiaowen Shic,
Chen Chenb,
Md Soliman Islamb,
Tieming Jid,
Jianlin Chengb,
James A. Birchlerc
aInstitute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
bDepartment of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
cDivision of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
dDepartment of Statistics, University of Missouri, Columbia, MO, 65211, USA

More InformationCorresponding author: E-mail address: birchlerJ@missouri.edu (James A. Birchler)
Publish Date:2020-02-25




Abstract
Aneuploidy has profound effects on an organism, typically more so than polyploidy, and the basis of this contrast is not fully understood. A dosage series of the maize long arm of chromosome 1 (1L) was used to compare relative global gene expression in different types and degrees of aneuploidy to gain insights into how the magnitude of genomic imbalance as well as hypoploidy affects global gene expression. While previously available methods require a selective examination of specific genes, RNA sequencing provides a whole-genome view of gene expression in aneuploids. Most studies of global aneuploidy effects have concentrated on individual types of aneuploids because multiple dose aneuploidies of the same genomic region are difficult to produce in most model genetic organisms. The genetic toolkit of maize allows the examination of multiple ploidies and 1–4 doses of chromosome arms. Thus, a detailed examination of expression changes both on the varied chromosome arms and elsewhere in the genome is possible, in both hypoploids and hyperploids, compared with euploid controls. Previous studies observed the inverse trans effect, in which genes not varied in DNA dosage were expressed in a negative relationship to the varied chromosomal region. This response was also the major type of changes found globally in this study. Many genes varied in dosage showed proportional expression changes, though some were seen to be partly or fully dosage compensated. It was also found that the effects of aneuploidy were progressive, with more severe aneuploids producing effects of greater magnitude.
Keywords: Aneuploidy,
Polyploidy,
Inverse effect,
Gene regulation,
Dosage compensation,
Gene balance hypothesis



PDF全文下载地址:

http://www.jgenetgenomics.org/article/exportPdf?id=e8bba5ec-2709-4298-a91b-b122cec64cd7&language=en
相关话题/Magnitude modulation expression