丁新景1,
马风云1, 2,,,
李树生3,
敬如岩1,
黄雅丽1
1.山东农业大学林学院 泰安 271018
2.农业生态与环境重点实验室 泰安 271018
3.三明学院数学与计算机科学系 三明 365000
基金项目: 国家自然科学基金项目30970499
详细信息
作者简介:白世红, 主要研究方向为生态与生物统计。E-mail:bsh@sdau.edu.cn
通讯作者:马风云, 主要研究方向为林业生态工程。E-mail:sdmfy@sdau.edu.cn
中图分类号:S728.5;S718.5计量
文章访问数:966
HTML全文浏览量:3
PDF下载量:753
被引次数:0
出版历程
收稿日期:2017-08-20
录用日期:2017-09-29
刊出日期:2018-01-01
Fine root distribution in mixed Robinia pseudoacacia plantations in saline soils of the Yellow River Delta
BAI Shihong1, 2,,DING Xinjing1,
MA Fengyun1, 2,,,
LI Shusheng3,
JING Ruyan1,
HUANG Yali1
1. College of Forestry, Shandong Agricultural University, Tai'an 271018, China
2. Key Laboratory for Agricultural Ecology and Environment, Tai'an 271018, China
3. Department of Mathematics and Computer Sciences, Sanming University, Sanming 365000, China
Funds: the National Natural Science Foundation of China30970499
More Information
Corresponding author:MA Fengyun, E-mail: sdmfy@sdau.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为研究黄河三角洲盐碱地人工刺槐混交林及纯林细根空间分布格局,选取绒毛白蜡刺槐混交林、臭椿刺槐混交林、刺槐纯林,采用土柱法取样,从细根生物量密度、表面积密度、体积密度、根长密度等方面研究盐碱地中不同林分中树木细根的垂直分布情况,从细根生物量分析不同林木细根垂直分布情况,研究不同人工林细根分布差异及土壤影响因子。结果表明:绒毛白蜡刺槐混交林在细根的生物量、表面积、体积、根长等方面都显著高于臭椿刺槐混交林和刺槐纯林;绒毛白蜡刺槐混交林95.77%细根生物量分布在0~60 cm土层,臭椿刺槐混交林85.37%细根生物量分布在0~40 cm土层,而刺槐纯林的细根在土壤中分布则比较均匀,0~40 cm土层细根占生物量总量的66.38%。绒毛白蜡细根生物量最高,显著高于其他林木。绒毛白蜡刺槐混交林细根表面积密度、体积密度、根长密度显著高于刺槐纯林;臭椿刺槐混交林高于刺槐纯林,差异不显著。绒毛白蜡刺槐混交林、臭椿刺槐混交林细根总根尖数分别是刺槐纯林的2.34倍、1.23倍,总分叉数分别为刺槐纯林的6.15倍、1.66倍。绒毛白蜡刺槐混交林、臭椿刺槐混交林、刺槐纯林树木细根生物量与土壤有效磷、速效钾含量呈显著正相关关系;绒毛白蜡刺槐混交林细根生物量碱解氮、有机质含量呈极显著正相关关系。适当的混交模式在一定程度上提高了人工林细根生物量,增强植物吸收土壤营养物质的能力,混交使人工林在盐碱立地条件下适应能力提高。
关键词:刺槐/
混交林/
纯林/
细根/
盐碱地
Abstract:To determine the distribution of fine roots of Robinia pseudoacacia mixed forests and pure forest in saline-alkali soils of the Yellow River Delta, fine root distributions in Fraxinus velutina and Robinia pseudoacacia mixed forest, Ailanthus altissima and Robinia pseudoacacia mixed forest and Robinia pseudoacacia pure forest were sampled with a soil column method. The vertical distributions of fine roots in different forest stands were analyzed for the distributions of fine root biomass density, fine root surface area density, volume density, root length density and other root parameters. The aim of the study was to clarify differences of roots distribution of different forests and their relationship with soil properties and to provide references for the vegetation recovery and tree species selection in saline soils of the Yellow River Delta. The results showed that fine root biomass, surface area, volume and root length of F. velutina and R. pseudoacacia mixed forest were significantly higher than those of A. altissima and R. pseudoacacia mixed forest and R. pseudoacacia plantation. About 95.77% of fine root biomass was distributed in the 0-60 cm soil layer for F. velutina and R. pseudoacacia mixed forest, 85.37% in the 0-40 cm soil layer for A. altissima and R. pseudoacacia mixed forest and 66.38% in the 0-40 cm soil layer for R. pseudoacacia pure forest. Although surface aggregation of fine roots was conducive to reducing the harmful effects of saline-alkaline conditions on the root, fine roots of R. pseudoacacia pure forest were more uniformly distributed in the soil. F. velutina and R. pseudoacacia mixed forest had the highest total fine root biomass (91.56 g in 2 500 cm2 of soil), significantly higher than those of other trees stands. Fine root surface area, length and volume densities of F. velutina and R. pseudoacacia mixed forest were significantly higher than that of R. pseudoacacia pure forest. Fine root tips of F. velutina and R. pseudoacacia mixed forest and A. altissima and R. pseudoacacia mixed forest were respectively 2.34 and 1.23 times that of R. pseudoacacia pure forest. Root forks of F. velutina and R. pseudoacacia mixed forest and A. altissima and R. pseudoacacia mixed forest were respectively 6.15 and 1.66 times that of R. pseudoacacia pure forest. There was a significant positive correlation between stand fine root biomass with soil available phosphorus and soil available potassium contents. The correlation between fine root biomass with available nitrogen and organic matter content of F. velutina and R. pseudoacacia mixed forest was also very significant and positive. The research showed that some trees mixed patterns increased fine root biomass distribution and the ability of roots to absorb soil nutrient. This suggested that proper mixing patterns could increase the adaptability of tree plantations.
Key words:Robinia pseudoacacia/
Mixed forest/
Pure forest/
Fine root/
Saline-alkali soil
HTML全文

图1黄河三角洲盐碱地不同类型刺槐人工林细根生物量密度(A)各树种生物量(B)垂直分布
不同小写字母表示不同土壤深度不同处理间差异显著(P < 0.05)。Different lowercase letters indicate significant differences among different treatments in different soil depths at 0.05 level.
Figure1.Vertical distributions of fine root biomass densities of different stand types (A) and fine root biomasses of different tree species in different stand types (B) of Robinia pseudoacacia plantation in the saline land in the Yellow River Delta


图2黄河三角洲盐碱地不同类型刺槐人工林细根表面积(A)、根长(B)、体积(C)密度垂直分布
不同小写字母表示不同土壤深度不同处理间差异显著(P < 0.05)。Different lowercase letters indicate significant differences among different treatments in different soil depths at 0.05 level.
Figure2.Vertical distributions of densities of tree fine root surface area (A), root length (B) and volume (C) of different stand types of Robinia pseudoacacia plantation in the saline land in the Yellow River Delta


图3黄河三角洲盐碱地不同类型刺槐人工林树木细根根尖数(A)、分叉数(B)垂直分布
不同小写字母表示不同土壤深度不同处理间差异显著(P < 0.05)。Different lowercase letters indicate significant differences among different treatments in different soil depths at 0.05 level.
Figure3.Vertical distributions of tree fine root tips number (A) and root forks number (B) of different stand types of Robinia pseudoacacia plantation in the saline land in the Yellow River Delta

表1黄河三角洲盐碱地试验区不同类型刺槐人工林树木生长情况
Table1.Growth status of trees in different stand types of the investigated Robinia pseudoacacia plantations in the study area of saline land in the Yellow River Delta
林分类型 Stand type | 树种 Tree species | 林龄 Age (a) | 郁闭度 Canopy density (%) | 株行距 Spacing (m) | 平均胸径 Average DBH (cm) | 平均树高 Average height (m) | ||
绒毛白蜡刺槐混交林 Fraxinus velutina/Robinia pseudoacacia mixed forest | FR | 绒毛白蜡F. velutina | FFR | 29 | 73 | 3×3 | 25.2±4.36 | 14.1±1.59 |
刺槐R. pseudoacacia | RFR | 29 | 3×3 | 20.5±3.26 | 12.8±1.75 | |||
臭椿刺槐混交林 Ailanthus altissima/Robinia pseudoacacia mixed forest | AR | 臭椿A. altissima | AAR | 29 | 70 | 3×3 | 21.7±2.25 | 13.9±1.46 |
刺槐R. pseudoacacia | RAR | 29 | 3×3 | 19.7±2.17 | 11.6±1.21 | |||
刺槐纯林 Robinia pseudoacacia pure forest | RR | 刺槐R. pseudoacacia | RR | 29 | 65 | 3×3 | 19.0±1.88 | 13.4±1.46 |

表2黄河三角洲盐碱地不同类型刺槐人工林土壤性质
Table2.Soil properties of different stand types of Robinia pseudoacacia plantation in the saline land in the Yellow River Delta
林分类型 Stand type | 土壤深度 Soil depth (cm) | 电导率 Conductivity (uS·cm-1) | pH | 含水量 Moisture content (%) | 碱解氮 Available N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) | 有机质 Organic matter (g·kg-1) |
FR | 0~20 | 117.45±9.69b | 8.24±0.64c | 50.21±6.34ab | 37.89±4.32a | 2.66±0.32b | 193.76±20.13a | 24.29±3.15b |
20~40 | 118.56±8.61b | 8.26±0.34cd | 52.13±3.58ab | 25.16±3.52b | 2.25±0.25bc | 150.13±16.53b | 17.16±2.46bc | |
40~60 | 105.46±7.34c | 8.15±0.48b | 52.07±8.21ab | 18.51±2.37c | 1.65±0.17c | 80.46±8.35c | 12.13±1.32cd | |
60~80 | 109.49±5.64bc | 8.34±0.94d | 57.43±6.46a | 12.15±2.46cd | 1.13±0.12cd | 40.43±4.26d | 9.21±0.94d | |
80~100 | 103.15±9.64 | 8.29±0.82cd | 60.19±7.24a | 10.41±2.41d | 0.85±0.09d | 32.15±3.61d | 8.92±1.52d | |
AR | 0~20 | 109.36±8.14bc | 8.15±0.74a | 30.74±4.28c | 37.52±4.18a | 1.85±0.19c | 111.56±10.21bc | 29.42±3.62ab |
20~40 | 105.31±9.13c | 8.26±0.68b | 35.16±6.89bc | 23.24±2.98bc | 1.56±0.16c | 90.46±9.62c | 18.46±2.48bc | |
40~60 | 106.48±9.56c | 8.39±0.69bc | 42.46±4.15b | 18.46±1.34c | 1.33±0.14cd | 60.48±7.46cd | 12.49±1.38cd | |
60~80 | 101.16±9.35cd | 8.35±0.52c | 55.46±5.44a | 12.16±2.01cd | 1.05±0.11cd | 40.76±6.34d | 8.92±1.11d | |
80~100 | 95.47±8.16d | 8.32±0.16c | 59.13±9.46a | 10.46±1.63d | 0.88±0.09d | 28.41±3.15d | 8.84±0.82d | |
RR | 0~20 | 125.15±4.61a | 8.17±0.34b | 15.44±2.46d | 42.65±3.92a | 3.22±0.34a | 196.63±19.34a | 34.78±3.64a |
20~40 | 116.48±3.26b | 8.24±0.48c | 25.12±3.64c | 36.48±4.61a | 2.67±0.17b | 150.16±16.32b | 29.87±3.25ab | |
40~60 | 110.25±7.26bc | 8.33±0.92c | 35.15±4.11bc | 28.46±3.47b | 1.34±0.15cd | 71.34±7.15cd | 22.14±2.54b | |
60~80 | 102.43±8.16c | 8.37±0.64c | 49.16±5.55b | 15.43±2.66c | 0.94±0.12d | 50.13±6.38d | 15.39±2.61c | |
80~100 | 105.44±5.16c | 8.36±0.45cd | 61.34±4.64a | 9.37±1.02d | 0.63±0.08d | 30.18±4.19d | 10.46±1.18d | |
???不同小写字母表示不同土壤深度不同处理间差异显著(P < 0.05)。Different lowercase letters indicate significant differences among different treatments in different soil depths at 0.05 level. |

表3黄河三角洲盐碱地不同类型刺槐人工林细根生物量密度与土壤性质相关系数
Table3.Correlation coefficients between fine root biomass and soil properties in different stand types of Robinia pseudoacacia plantation in the saline land in the Yellow River Delta
林分类型 Stand type | 电导率 Conductivity | pH | 含水量 Moisture content | 碱解氮 Available N | 有效磷 Available P | 速效钾 Available K | 有机质 Organic matter |
FR | -38.50 | 0.52 | -0.80* | 0.96** | 0.88* | 0.89* | 0.95** |
AR | -93.40* | 0.84* | -0.83* | 0.87* | 0.87* | 0.91* | 0.92* |
RR | -81.34* | 0.72 | -0.73 | 0.71 | 0.86* | 0.86* | 0.77 |
??*与**分别表示达到5%和1%的显著水平。* and ** indicate significant correlation at 5% and 1% levels, respectively. |

参考文献
[1] | 吴林坤, 林向民, 林文雄.根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J].植物生态学报, 2014, 38(3):298-310 http://www.docin.com/p-776362071.html WU L K, LIN X M, LIN W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 2014, 38(3):298-310 http://www.docin.com/p-776362071.html |
[2] | WANG C, MA Y, TROGISCH S, et al. Soil respiration is driven by fine root biomass along a forest chronosequence in subtropical China[J]. Journal of Plant Ecology, 2017, 10(1):36-46 doi: 10.1093/jpe/rtw044 |
[3] | FOGEL R. Root turnover and productivity of coniferous forests[J]. Plant and Soil, 1983, 71(1/3):75-85 doi: 10.1007/978-94-009-6833-2_8.pdf |
[4] | 朱婉芮, 汪其同, 刘梦玲, 等.酚酸和氮素交互作用下欧美杨107细根形态特征[J].植物生态学报, 2015, 39(12):1198-1208 doi: 10.17521/cjpe.2015.0116 ZHU W R, WANG Q T, LIU M L, et al. Interactive effects of phenolic acid and nitrogen on morphological traits of poplar (Populus×euramericana 'Neva') fine roots[J]. Chinese Journal of Plant Ecology, 2015, 39(12):1198-1208 doi: 10.17521/cjpe.2015.0116 |
[5] | 苗宇, 陈栎霖, 李贤伟, 等.施肥对台湾桤木-扁穗牛鞭草复合模式下桤木细根形态特征、生物量及组织碳氮含量的影响[J].植物生态学报, 2013, 37(7):674-683 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_zwstxb201307010 MIAO Y, CHEN Y L, LI X W, et al. Effects of fertilization on Alnus formosana fine root morphological characteristics, bi-omass and issue content of C, N under A. formosana-Hemarthria compressa compound mode[J]. Chinese Journal of Plant Ecology, 2013, 37(7):674-683 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_zwstxb201307010 |
[6] | STONE E L, KALISZ P J. On the maximum extent of tree roots[J]. Forest Ecology and Management, 1991, 46(1):59-102 https://www.researchgate.net/publication/222950899_On_the_maximum_extent_of_tree_roots |
[7] | 黄林, 王峰, 周立江, 等.不同森林类型根系分布与土壤性质的关系[J].生态学报, 2012, 32(19):6110-6119 http://www.doc88.com/p-9703619122805.html HUANG L, WANG F, ZHOU L J, et al. Root distribution in the different forest types and their relationship to soil proper-ties[J]. Acta Ecologica Sinica, 2012, 32(19):6110-6119 http://www.doc88.com/p-9703619122805.html |
[8] | GALE M R, GRIGALl D F. Vertical root distribution of northern tree species in relation to successional status[J]. Canadian Journal for Forest Research, 1987, 17(8):829-834 doi: 10.1139/x87-131 |
[9] | KUMMEO W J, MANGA N R. Root systems in Quer-cus-dumosa nutt dominated chaparral in southern Califor-nia[J]. Acta Oecologica, 1981, 2:177-188 https://www.researchgate.net/publication/35003660_A_local_study_of_variation_in_Quercus_dumosa_Nutt |
[10] | 钱文丽, 卢元, 王韶仲, 等.混交对红松人工林细根生物量和空间分布的影响[J].东北林业大学学报, 2016, 44(2):1-5 http://www.oalib.com/paper/4766192 QIAN W L, LU Y, WANG S Z, et al. Influence of species mixing on fine root biomass and spatial distribution of Pinus koraiensis plantation[J]. Journal of Northeast Forest Univer-sity, 2016, 44(2):1-5 http://www.oalib.com/paper/4766192 |
[11] | 石培礼, 钟章成.桤柏混交林根系的研究[J].生态学报, 1996, 16(6):623-631 http://www.oalib.com/paper/1511321 SHI P L, ZHONG Z C. A study on root system of Alder and Cypress mixed plantation[J]. Acta Ecologica Sinica, 1996, 16(6):623-631 http://www.oalib.com/paper/1511321 |
[12] | 翟明普, 蒋三乃, 贾黎明.沙地杨树刺槐混交林细根动态[J].北京林业大学学报, 2002, 24(5/6):39-44 http://www.cnki.com.cn/Article/CJFDTOTAL-NJLY201402036.htm ZHAI M P, JIANG S N, JIA L M. Fine-root dynamics in mixed plantation of poplar and black locus[J]. Journal of Beijing Forest University, 2002, 24(5/6):39-44 http://www.cnki.com.cn/Article/CJFDTOTAL-NJLY201402036.htm |
[13] | 林子力.人工刺槐混交林细根分布研究[J].福建农业, 2015, (6):238 http://www.cqvip.com/qk/91893X/20066/22388698.html LIN Z L. Root distribution of locus mixed plantation[J]. Fu-jian Agriculture, 2015, (6):238-238 http://www.cqvip.com/qk/91893X/20066/22388698.html |
[14] | 杜振宇, 刘方春, 马丙尧, 等.滨海盐碱地人工刺槐绒毛白蜡混交林的根系分布与细根生长[J].林业科学, 2014, 50(3):10-15 https://www.hanspub.org/journal/DetailedInforOfEditorialBoard.aspx?personID=20471 DU Z Y, LIU F C, MA B Y, et al. Root distribution and fine root growth in mixed plantation of Robinia pseudoacacia and Fraxinus velutina in coastal saline-alkali area[J]. Scientia Silvae Sinicae, 2014, 50(3):10-15 https://www.hanspub.org/journal/DetailedInforOfEditorialBoard.aspx?personID=20471 |
[15] | XIE T, LIU X, SUN T. The effects of groundwater table and flood irrigation strategies on soil water and salt dynamics and reed water use in the Yellow River Delta, China[J]. Ecological Modelling, 2011, 222(2):241-252 doi: 10.1016/j.ecolmodel.2010.01.012 |
[16] | YANG W, SUN T, YANG Z. Effect of activities associated with coastal reclamation on the macrobenthos community in coastal wetlands of the Yellow River Delta, China:A literature review and systematic assessment[J]. Ocean & Coastal Management, 2016, 129:1-9 https://www.sciencedirect.com/science/article/pii/S0964569116300746 |
[17] | YE X, BAI J, LU Q, et al. Spatial and seasonal distributions of soil phosphorus in a typical seasonal flooding wetland of the Yellow River Delta, China[J]. Environmental Earth Sciences, 2014, 71(11):4811-4820 doi: 10.1007/s12665-013-2872-3 |
[18] | LUO X X, WANG L, LIU G, et al. Effects of biochar on car-bon mineralization of coastal wetland soils in the Yellow River Delta, China[J]. Ecological Engineering, 2016, 94:329-336 doi: 10.1016/j.ecoleng.2016.06.004 |
[19] | 韩跃, 马风云, 解国磊, 等.黄河三角洲盐碱地混交林土壤电导率的空间异质性[J].中国水土保持科学, 2014, 12(5):84-89 doi: 10.3969/j.issn.1672-3007.2014.05.014 HAN Y, MA F Y, XIE G L, et al. Spatial heterogeneity of soil electrical conductivity in a mixed plantation of the Yellow River Delta saline land[J]. Science of Soil and Water Conservation, 2014, 12(5):84-89 doi: 10.3969/j.issn.1672-3007.2014.05.014 |
[20] | 王睿彤, 陆兆华, 孙景宽, 等.土壤改良剂对黄河三角洲滨海盐碱土的改良效应[J].水土保持学报, 2012, 26(4):239-244 http://mall.cnki.net/magazine/Article/STXB201702010.htm WANG R T, LU Z H, SUN J K, et al. Effect of soil ameliorants on coastal saline-alkali soil in the Yellow River Delta[J]. Journal of Soil and Water Conservation, 2012, 26(4):239-244 http://mall.cnki.net/magazine/Article/STXB201702010.htm |
[21] | 张英虎, 牛健植, 朱蔚利, 等.森林生态系统林木根系对优先流的影响[J].生态学报, 2015, 35(6):1788-1797 http://www.oalib.com/paper/5080102 ZHANG Y H, NIU J Z, ZHU W L, et al. Effects of plant root systems on preferential flow in forest ecosystems[J]. Acta Ecologica Sinica, 2015, 35(6):1788-1797 http://www.oalib.com/paper/5080102 |
[22] | 刘鑫, 满秀玲.毛乌素沙地梁地上小叶杨根系分布特征[J].中国水土保持科学, 2008, 6(4):48-53 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=stbc200804008&dbname=CJFD&dbcode=CJFQ LIU X, MAN X L. Distribution patterns of root systems of Populus simonii Carr. in highland of Mu Us Sandland[J]. Science of Soil and Water Conservation, 2008, 6(4):48-53 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=stbc200804008&dbname=CJFD&dbcode=CJFQ |
[23] | 丁新景, 解国磊, 敬如岩, 等.黄河三角洲不同人工刺槐混交林凋落物分解特性[J].水土保持学报, 2016, 30(4):249-253 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=trqs201604042&dbname=CJFD&dbcode=CJFQ DING X J, XIE G L, JING R Y, et al. Decomposition charac-teristics of litter in different mixed forest of Robinia pseudoacacia in Yellow River Delta[J]. Journal of Soil and Water Conservation, 2016, 30(4):249-253 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=trqs201604042&dbname=CJFD&dbcode=CJFQ |
[24] | 王俊波, 季志平, 白立强, 等.刺槐人工林土壤有机碳与根系生物量的关系[J].西北林学院学报, 2007, 22(4):54-56 http://www.cqvip.com/QK/97059X/200704/24895186.html WANG J B, JI Z P, BAI L Q, et al. The relation between soil organic carbon and root biomass in plantation[J]. Journal of Northwest Forestry University, 2007, 22(4):54-56 http://www.cqvip.com/QK/97059X/200704/24895186.html |
[25] | 万子俊, 万浩宇, 贺亮, 等.榆林南部丘陵沟壑区油松和刺槐人工林根系生物量与土壤有机碳垂直分布特征[J].西北林学院学报, 2010, 25(6):1-4 http://www.wenkuxiazai.com/doc/a5a51e9969eae009591bec8d.html WAN Z J, WAN H Y, HE L, et al. Root system and organic carbon distributions in soil profiles of Pinus tabulaeformis and Robinia pseudoacacia in the hilly-gully region in South-ern Yulin[J]. Journal of Northwest Forestry University, 2010, 25(6):1-4 http://www.wenkuxiazai.com/doc/a5a51e9969eae009591bec8d.html |
[26] | 耿鹏飞, 金光泽.小兴安岭4种森林类型细根生物量的时空格局[J].林业科学, 2016, 52(6):140-148 http://www.cqvip.com/QK/91893X/201606/669440050.html GENG P F, JIN G Z. Spatial and temporal patterns of fine root biomass in four forest types in Xiaoxing'an Mountains[J]. Scientia Silvae Sinicae, 2016, 52(6):140-148 http://www.cqvip.com/QK/91893X/201606/669440050.html |
[27] | IDOL T W, POPE P E, PONDER F J. Fine root dynamics across a chronosequence of upland temperate deciduous forests[J]. Forest Ecology & Management, 2000, 127(1):153-167 https://www.sciencedirect.com/science/article/pii/S0378112799001279 |
[28] | 杨丽韫, 罗天祥, 吴松涛.长白山原始阔叶红松(Pinus koraiensis)林及其次生林细根生物量与垂直分布特征[J].生态学报, 2007, 27(9):3609-3617 http://med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_stxb200709008 YANG L Y, LUO T X, WU S T, et al. Fine root biomass and its depth distribution across the primitive Korean pine and broad-leaved forest and its secondary forests in Changbai Mountain, northeast China[J]. Acta Ecologica Sinica, 2007, 27(9):3609-3617 http://med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_stxb200709008 |
[29] | 马风云, 白世红, 侯本栋, 等.黄河三角洲退化人工刺槐林地土壤特征[J].中国水土保持科学, 2010, 8(2):74-79 http://www.cqvip.com/QK/95720X/201006/36617981.html MA F Y, BAI S H, HOU B D, et al. Soil properties of degraded Robinia pseudoacacia plantation in Yellow River Delta[J]. Science of Soil and Water Conservation, 2010, 8(2):74-79 http://www.cqvip.com/QK/95720X/201006/36617981.html |
[30] | 张彦东, 白尚斌, 沈有信, 等.混交条件下水曲柳落叶松根系的生长与分布[J].林业科学, 2001, 37(5):18-23 http://www.irgrid.ac.cn/handle/1471x/437761 ZHANG Y D, BAI S B, SHEN Y X, et al. Effect of the mixed on root growth and distribution of Fraxinus mandshurica and Larix gmelinii[J]. Scientia Silvae Sinicae, 2001, 37(5):18-23 http://www.irgrid.ac.cn/handle/1471x/437761 |
[31] | 陈亚明, 傅华, 张荣, 等.根-土界面水分再分配研究现状与展望[J].生态学报, 2004, 24(5):1040-1047 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_stxb200405027 CHEN Y M, FU H, ZHANG R, et al. The present situation and prospect of researches on hydraulic redistribution between the interface of root and soil[J]. Acta Ecologica Sinica, 2004, 24(5):1040-1047 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_stxb200405027 |