植物生存有赖于体内不同激素信号间复杂交互作用以维持生长发育和逆境响应的有效平衡。脱落酸(Abscisic acid,ABA)和油菜素甾醇(Brassinosteriod,BR)是两类重要的植物激素,前者与植物对环境胁迫的响应紧密相关,被视为典型的“逆境激素”;而后者在促进植物生长发育中具有重要功能。因而,研究人员很早就关注到ABA和BR信号间的拮抗现象,并系统揭示了ABA和BR信号间多层次、复杂的拮抗交互机制。值得注意的是,尽管有零星的基因表达或生理数据暗示了ABA和BR信号间存在协同作用的可能性,但这一协同作用的可见表型一直未能被确定地观察到,导致ABA和BR信号之间是否存在协同以及如何进行协同作用成为激素研究领域的一个待解之谜。
2021年7月5日,中国科学院遗传与发育生物学研究所储成才/唐九友研究团队在Nature Plants在线发表了题为Synergistic interplay of ABA and BR signal in regulating plant growth and adaptation的研究论文。该研究发现低浓度(10 μM)的ABA并非如报道的高浓度ABA那样抑制、而是在幼苗叶片发育的特定时间窗口促进了水稻幼苗叶片倾角的展开,且这一促进作用依赖于健全的BR合成以及信号传导途径。随后转录组数据分析发现,近60%的低浓度ABA响应基因能被油菜素内酯(BL)同向诱导,而仅有1%的低浓度ABA响应基因被BL反向调控,表明植物体在转录水平上对低浓度ABA和BL的早期响应以协同而非拮抗为主导。进一步机制分析揭示ABA通过快速、轻度诱导BR合成调控基因OsGSR1的表达来有限度、非持续地激活BR的合成与信号,且ABA调控OsGSR1表达仅依赖于ABA信号核心转录因子ABI3而并非ABI5。此外,通过盐胁迫处理分析发现,早期有限度的BR信号激活或OsGSR1的正常表达在低浓度ABA介导的盐胁迫耐受性中同样发挥关键作用。有意思的是,在高浓度ABA处理下,ABA和BR的协同效应并不能被有效的检测到,暗示植物体可能采用不同的适应性策略来应对不同程度的环境胁迫。
综上所述,该研究明确了逆境激素ABA与促生长激素BR之间协同交互作用的存在,并揭示了这一协同作用部分依赖ABI3-OsGSR1模块的分子机制,为全面阐明逆境激素与促生长激素间的复杂交互作用提供了新的切入点。该研究也同时暗示在作物逆境耐受性的改良中,有必要考虑植株对不同程度胁迫的差异化适应机制,以确保获得适度逆境耐受性的同时兼顾有利于生产的作物生长发育(图)。
遗传发育所唐九友副研究员和储成才研究员为本文共同通讯作者,李倩倩博士为本研究第一作者。遗传发育所汪迎春研究员、黄夏禾工程师参与了该研究。该研究得到了国家自然科学基金的经费资助。
图:水稻幼苗中ABA与BR激素信号交互的工作模型
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
储成才研究组揭示ABA逆境信号与BR生长信号的协同调控现象及分子机制
本站小编 Free考研考试/2022-01-01
相关话题/信号 基因 遗传 植物 作物
薛勇彪和张一婧研究组合作在普通小麦亚基因组非对称调控机制研究中取得新进展
普通小麦(Triticum aestivum L.)是经两次远缘杂交而形成的一种异源六倍体作物,含有A、B和D三个亚基因组。亚基因组分化对多倍体小麦基因组可塑性具有重要贡献,且成为其成功驯化的关键因素之一。然而,决定小麦亚基因组分化的时空特异性调控机制还不清楚。中国科学院遗传与发育生物学研究所薛勇彪 ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2022-01-01谢旗研究组在ERAD调控植物耐旱方面取得新进展
内质网相关的蛋白质降解(ERAD)在植物的生长发育和适应胁迫过程中扮演重要角色,主要负责清除细胞内积累的错误折叠蛋白,同时也调控正常折叠的蛋白。中国科学院遗传与发育生物学研究所谢旗研究组一直致力植物泛素化在植物与环境互作中的调控机制研究,并且在ERAD调控植物逆境的研究中取得了一系列研究成果(Liu ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2022-01-01周俭民、陈宇航、何康敏、柴继杰合作团队在植物抗病小体的研究中再次取得重大突破
作物病虫害是农业生产的重要制约因素,严重威胁我国食品安全。数目众多的抗病蛋白通过感知病原菌的存在,迅速启动防卫反应,保护植物免受侵害,是农作物稳产高产的重要保障。然而抗病蛋白的关键作用机制,多年来一直是困扰植物抗病领域的重大难题。中国科学院遗传与发育生物学研究所周俭民研究组与清华大学研究组前期合作发 ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2022-01-01韩方普研究组在植物着丝粒研究取得进展
染色体的精确分离是保证遗传信息正确传递和基因组稳定的前提,这个过程直接依赖着丝粒区组装的多层动粒蛋白复合体和纺锤体微管间的动态结合。目前,在哺乳动物和酵母中已经鉴定超过100个动粒蛋白,它们之间相互结合形成蛋白亚复合体结构,包括与着丝粒染色质直接结合的内侧组成型CCAN蛋白网络、与微管直接结合的外侧 ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2022-01-01陈宇航研究组在植物SLAC1冷冻电镜结构研究中取得突破
气孔是植物与外界环境进行物质和信息交换的窗口。气孔通过感应和解码多种外界环境信号如干旱、CO2和臭氧等,介导植物对外界环境的适应过程。此外,气孔还是病原微生物的入侵通道,参与植物抗病的免疫响应。气孔控制植物CO2摄取和水分蒸腾散失,其开闭受到高度严格的调控。因此,植物气孔感应重要外界信号分子的机理解 ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2022-01-01高彩霞研究组和李家洋研究组合作建立植物高效引导编辑设计策略
实现重要农作物精准基因组编辑对加快农作物遗传改良进程具有重要意义。引导编辑技术(Prime Editing)能够在基因组的靶位点处实现精准的片段插入、删除及碱基的任意替换。引导编辑系统由两部分构成:其一是nCas9 (H840A)与工程化改造的逆转录酶(Reverse Transcriptase, ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2022-01-01刘翠敏研究组发现提高植物生产力新途径
植物光合作用产生的碳水化合物维持地球上的生命和生态系统。淀粉是植物叶绿体中最丰富的碳水化合物,是光合作用碳同化的产物,是重要的储存物质。磷酸葡萄糖异构酶(PGI)催化葡萄糖6-磷酸(G6P)和果糖6-磷酸(F6P)之间的相互转化,在质体与细胞质中存在同工酶。质体PGI(PGIp)参与光合作用的淀粉合 ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2022-01-01许操研究组发现ROS激发的蛋白质相分离控制植物干细胞命运
大约24-38亿年前,地球开始产生氧气,大气层由厌氧环境逐渐转变为富氧环境,自然选择促进了耗氧生物的生存优势和生命演化。耗氧代谢增加了多细胞生物的能量代谢效率,但高频的电子传递和能量转换不可避免地产生化学性质活泼、具有高度氧化力的活性氧分子(Reactive Oxygen Species, ROS) ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2022-01-01Speakman研究组发现mTOR信号介导低蛋白食物对小鼠摄食和体重的调控
人类膳食主要包括蛋白质、脂肪和碳水化合物三种宏量营养素。一直以来,学术界对膳食中的哪种宏量营养素是致肥的关键因素始终存在争议。早期很多****认为膳食中的脂肪或碳水化合物含量是导致肥胖的关键因素,近年来研究焦点又转向蛋白质,认为机体摄食的目的不是为了获取足够的能量,而是为了保证足够的蛋白质摄入量,因 ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2022-01-01高彩霞应邀在Cell撰写“基因组编辑助力作物改良和未来农业”综述文章
通过基因组的定向与特异改造而实现作物的精准设计和培育是作物遗传改良研究的重要科学问题,基因组编辑有望为该问题的解决提供重要策略与途径。中国科学院遗传与发育生物学研究所高彩霞研究组致力于植物基因组编辑技术创新及作物分子设计育种应用的研究。2021年2月12日,国际重要期刊Cell在线发表了高彩霞研究员 ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2022-01-01