大约24-38亿年前,地球开始产生氧气,大气层由厌氧环境逐渐转变为富氧环境,自然选择促进了耗氧生物的生存优势和生命演化。耗氧代谢增加了多细胞生物的能量代谢效率,但高频的电子传递和能量转换不可避免地产生化学性质活泼、具有高度氧化力的活性氧分子(Reactive Oxygen Species, ROS),主要包括超氧阴离子、过氧化氢、羟基自由基以及一氧化氮等。细胞内累积过量ROS会导致DNA的氧化损伤以及蛋白质行为的改变, 引起细胞病变和死亡。 因此,长期以来,活性氧被认为是一种危险信号。多细胞生物正常生长发育过程中旺盛的能量代谢会产生大量ROS,除了自身清除机制,它们是否进化出更为“节能”的办法变废为宝,将危险信号变成有益信号?植物难以像动物那样自由移动来规避各种风险,它们是否进化出更为灵活和“聪明”的策略驾驭这些危险信号?
2021年2月25号Nature Chemical Biology 在线发表了题为ROS regulated reversible protein phase separation synchronizes plant flowering的论文(DOI:10.1038/s41589-021-00739-0)。报道了中国科学院遗传与发育生物学研究所许操研究组与合作者关于ROS激发蛋白质相分离控制干细胞命运的研究进展。该研究发现,正常生长发育的番茄茎尖分生组织周边区亦积累过氧化氢,它可以作为“有益”的发育信号,以依赖TMF的方式调控茎尖分生组织成熟和番茄开花时间。番茄茎尖分生组织成熟是一个精准的程序化发育过程,TMF编码一个含有保守半胱氨酸(Cysteine)的转录因子,通过抑制茎尖分生组织过早成熟(Precocious maturation),确保开花有序进行。TMF是控制茎尖干细胞命运,保障分生组织时序性发育的关键基因,它突变后,番茄过早开花,而且花序由多花变为单花。TMF在番茄茎尖分生组织的周边区特异表达,与过氧化氢积累的位置有部分重叠,而在这一区域表达的TMF蛋白在细胞核内呈现斑点状定位模式(Puncta)。进一步研究发现,TMF蛋白的半胱氨酸可以被在此累积的过氧化氢氧化,形成分子间和分子内的二硫键,二硫键促进TMF的天然无序区域(Intrinsically disordered region, IDR)聚集,增强了多价相互作用(Multivalency),进而驱动蛋白质相分离,靶向花原基(Floral meristem)分化基因ANATHA(AN),形成转录凝聚体(Transcriptional condensate),精准调控番茄茎尖分生组织的成熟(Meristem maturation)和开花。
该文章是迄今世界第一篇以作物为研究模式报道蛋白质相分离机制的科研论文。研究发现了一种新的蛋白质相分离机制:干细胞利用能量代谢的副产物ROS作为氧化信号,诱导转录因子二硫键形成和天然无序区多价作用,产生“双驱动力”引发相分离。该研究成果第一次将活性氧信号、蛋白质相分离和干细胞命运决定三个重要的生物学现象和科学问题建立了分子联系,并阐明了机制,系统验证了生物学功能,为该领域的突破性进展;首次将化学生物学信号,蛋白质行为直接与植物发育时序性转录调控联系在一起,更新了人们对植物茎尖干细胞命运决定机制的认识,将人们对发育生物学的认知推进到生物物理学和化学生物学层面,为使用交叉学科知识解析复杂生物学机制提供了范例。
该文章被Nature Chemical Biology选为featured article, 并配发了题为“Redox control of flowering”的亮点推荐和专评(https://www.nature.com/articles/s41589-021-00758-x)。评论认为该研究是“Particularly exciting”的重大突破,完全更新了人们对ROS以及植物干细胞调控机制的认识。
许操研究组博士后黄小珍、博士研究生陈树栋为该论文的共同第一作者,许操研究员为论文通讯作者,清华大学李丕龙研究员为共同通讯作者。清华大学李丕龙研究组李维平、许操研究组唐伶俐、章月琴(现广东海洋大学)、杨宁、邹玉盼、翟夏琬(现江西农业大学)、肖楠、刘伟对该工作做出重要贡献。该工作得到王志珍院士、李家洋院士、Zachary Lippman教授、王磊研究员、杨靖研究员、蒋科研究员、吴庆钰研究员的指导和帮助。该研究得到中国科学院基础前沿科学研究计划从0到1原始创新项目、中国科学院A类战略先导科技专项、科技部重点研发计划、自然基金委项目以及植物基因组学国家重点实验室资金支持。
图:活性氧激发转录因子蛋白质相分离控制植物干细胞命运
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
许操研究组发现ROS激发的蛋白质相分离控制植物干细胞命运
本站小编 Free考研考试/2022-01-01
相关话题/信号 组织 植物 生物学 论文
李家洋研究组应邀在《National Science Review》杂志撰写社论文章
近日,中国科学院遗传与发育生物学研究所李家洋研究组受邀在权威学术期刊National Science Review发表题为《Short and Long Term Challenges in Crop Breeding》的社论文章(DOI:10.1093/nsr/nwab002),文中对作物育种所面 ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2022-01-01程祝宽研究组在植物减数分裂纺锤体组装研究中取得新进展
减数分裂过程中,纺锤体的正确组装对于同源染色体的准确分离极其重要。但是,不同物种间纺锤体组装的机制并不保守。哺乳动物,线虫,和果蝇中对纺锤体的组装机制研究较为深入。然而对于植物性母细胞减数分裂过程中纺锤体组装的机制研究还十分缺乏。 中国科学院遗传与发育生物学研究所程祝宽研究组通过图位克隆方法,鉴定 ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2022-01-01曹晓风研究组在植物核糖体前体加工和组装分子机制研究中取得重要进展
核糖体是细胞内蛋白质合成的分子工厂,其生物合成受到严格的监管和调控。核糖体生物合成缺陷会导致动植物胚胎致死、严重的人类遗传疾病和癌症的高频发生,以及农作物环境胁迫应答的异常和减产。对核糖体生物合成调控机理的研究一直是生命科学的研究热点。酵母和动物中有关核糖体前体加工和组装的研究相对较多,而植物中对于 ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2022-01-01李传友研究组发现植物干细胞命运决定新机制
固着生长的高等植物能够不断调整器官发生和发育进程,从而适应复杂多变的环境条件。与动物相比,植物的生长发育表现超强的可塑性,这主要取决于其干细胞组织结构。以模式植物拟南芥根尖分生组织为例,干细胞组织中心 (静止中心,Quiescent center, QC)与其周围干细胞共同构成根尖干细胞微环境,为根 ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2022-01-01高彩霞研究组应邀在Nature Reviews Molecular Cell Biology上发表CRISPR-Cas在农业与植物生物技术上的应用的综述文章
现代农业面临着诸多困境与挑战。现有的农作物栽培品种亟需改良与优化,以应对日益恶化的环境问题以及不断增长的世界人口。相比于传统育种,来自于原核生物的CRISPR-Cas系统可以准确、高效、可编程地对农作物基因组进行编辑,从而为未来的农业发展提供了新的机遇。中国科学院遗传与发育生物学研究所高彩霞研究组一 ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2022-01-01焦雨铃研究组发现调控植物器官塑形的生物力学机制
扁平化是叶片等植物器官最为常见的形状之一。另一种常见的器官形状是辐射对称,如根、茎。不同的器官形状如何产生是一个基本的发育生物学问题。多年来的分子遗传学研究发现了众多能够影响植物器官形态的基因,但是这些基因怎样介导器官三维形态的变化(又称塑形)尚有待解析。 中国科学院遗传与发育生物学研究所植物基因 ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2022-01-01李传友研究组应邀在Current Opinion in Plant Biology撰写茉莉酸信号通路转录调控机理的综述文章
激素在植物生长发育和对环境适应性的调控中发挥重要作用。茉莉酸、生长素、赤霉素、水杨酸等多种植物激素的受体都定位于细胞核内,且与转录调控紧密偶联。因此,深入解析激素信号介导的转录调控网络对于人们全面理解植物激素信号的动态响应过程及作用机理具有重要意义。转录中介体(Mediator)是真核生物中高度保守 ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2022-01-01韩方普研究组在植物着丝粒研究取得重要进展
传统的比较基因组学已经揭示基因组的进化过程伴随着染色体的核型变化,例如两条染色体末端融合成为一条新的染色体或者一条染色体插入到另一条染色体的着丝粒附近,以及在染色体其他位置从头产生着丝粒导致着丝粒位置的多态性。然而这些发现引起了人们的困惑,重排后包含两个或是多个着丝粒区域的染色体和不包含着丝粒的染色 ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2022-01-01谢旗研究组应邀发表植物平衡生长发育与逆境应答的分子机制综述
由于固着生长的特性,植物不能像动物一样有效躲避外界的不利因素。因此,其生长发育会受到各种逆境胁迫的影响。而对这些逆境胁迫及时、有效地响应,是植物的存活的前提。植物激素脱落酸(Abscisic acid, ABA)被称为“逆境激素”,广泛参与植物的干旱、冷和盐等逆境胁迫的应答过程。同时,油菜素内酯(B ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2022-01-01焦雨铃研究组应邀在Current Opinion in Plant Biology撰写力学调控植物器官塑形综述文章
植物器官的形态建成是大量基因感受内源和外源信号后,有序表达的结果。尽管目前的研究揭示了参与植物形态建成的基因和信号通路,但是这些基因怎样介导器官物理形态的变化尚有待解析。细胞壁等细胞组分化学性质的差异能够导致力学属性的变化,是最终影响器官塑形的关键步骤。 中国科学院遗传与发育生物学研究所植物基因组 ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2022-01-01