乙烯在单子叶作物水稻适应半水生环境以及调控多种农艺性状中发挥重要的作用。前期课题组建立了一个有效的突变体筛选系统,筛选了一系列水稻乙烯反应突变体,命名为猫胡子突变体(mhz)。通过对水稻乙烯突变体的分析,鉴定了与双子叶模式植物拟南芥相比保守的组分,发现了乙烯信号途径的新调控组分及与其它激素互作的新机制。
本研究进一步对一个水稻乙烯不敏感突变体mhz11进行了分析,发现MHZ11基因编码一个GDSL家族脂酰水解酶,正调控水稻根部的乙烯反应。MHZ11蛋白定位在内质网上,可以通过水解磷脂产生游离脂肪酸用于甾醇的酯酰化反应,进而调控内质网膜上游离甾醇的含量。mhz11突变体的根部甾醇过量积累,用甾醇合成抑制剂处理可部分恢复mhz11的乙烯不敏感表型。
遗传分析表明,MHZ11可能作用于受体OsERS2水平,在激酶OsCTR2和内质网膜蛋白OsEIN2上游发挥功能。进一步生化研究揭示了MHZ11对OsCTR2磷酸化的调控作用。空气中,体内OsCTR2呈现磷酸化和非磷酸化两种形式,且磷酸化的蛋白丰度高于非磷酸化蛋白;乙烯处理后,磷酸化形式的蛋白丰度逐渐降低。而MHZ11突变后,磷酸化的OsCTR2一直处于高丰度状态,不随乙烯处理发生变化。MHZ11过表达则促进乙烯对OsCTR2磷酸化的快速抑制。
进一步研究发现甾醇合成抑制剂处理可以抑制乙烯受体和OsCTR2的互作,进而抑制OsCTR2的磷酸化/激酶活性。因此,该研究提出了MHZ11可能的工作模型:在野生型水稻根部,乙烯处理后,MHZ11通过自身的脂酰水解酶活性使得内质网膜上游离甾醇的含量保持在一个较低的水平,减弱乙烯受体和OsCTR2的互作并抑制OsCTR2磷酸化/激酶活性,从而促进下游信号转导及根的乙烯反应(见图)。该研究发现了水稻中的一个新的乙烯信号调控组分,为乙烯通过抑制受体和OsCTR2调控根生长的机制提供了新的见解。
该项研究于2020年3月17日在线发表于The Plant Cell(DOI:10.1105/tpc.19.00840)。该杂志也在2020年3月19日以IN BRIEF(DOI:10.1105/tpc.20.00218)形式对该工作进行了点评。中国科学院遗传与发育生物学研究所已毕业学生赵赫和原工作人员马彪(现北京科大教授)是第一作者,税光厚研究团队和褚金芳研究团队也参与了这项工作。这项研究受国家自然基金和973等项目资助。
MHZ11调控水稻根部乙烯反应模式图
MHZ11蛋白定位在内质网膜上,可以水解膜上的磷脂产生游离脂肪酸,用于甾醇的酯酰化反应,进而调控内质网膜上游离甾醇的含量。在野生型水稻中,MHZ11通过自身的脂酰水解酶活性使得内质网上游离甾醇的含量保持在一个较低的水平,影响乙烯受体和OsCTR2的互作,进而抑制OsCTR2的磷酸化/激酶活性,从而促进水稻根部的乙烯反应。在mhz11突变体中,过量积累的甾醇可能影响了乙烯诱导的受体构象变化,使得受体和OsCTR2维持较强的互作,OsCTR2的磷酸化/激酶活性无法被抑制。OsCTR2持续磷酸化下游的OsEIN2蛋白使其被降解,进而阻断了乙烯的信号转导。
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
张劲松研究组和陈受宜研究组发现GDSL家族脂酰水解酶MHZ11调控水稻根部乙烯反应
本站小编 Free考研/2020-05-26
相关话题/信号 工作
傅向东研究组在赤霉素信号传导新机制提高水稻氮肥利用效率研究上取得重要进展
上世纪60年代,以矮化育种为标志的“绿色革命”使水稻和小麦具有耐高肥、抗倒伏和高产的优良特性,但同时也存在氮肥利用效率低的缺点,其产量增加对化肥的依赖性高。持续大量的氮肥投入不仅增加种植成本,还导致环境污染。农业农村部公布2019年我国三大粮食作物的化肥利用率为39.2%,远低于世界平均水平,更远低 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26储成才研究组在水稻油菜素内酯信号调控机制研究上取得新进展
油菜素内酯 (简称BR) 是一类重要的植物激素,调控着水稻株高、叶夹角、籽粒大小等诸多重要农艺性状。近年来,BR信号传导研究进展迅速,但其精细调控机制还不清楚。 中国科学院遗传与发育生物学研究所植物基因组学国家重点实验室储成才研究组和中国农业科学院作物科学研究所童红宁研究组长期合作致力于BR调控水 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26李传友研究组在茉莉酸信号转录调控机理研究中取得新进展
茉莉酸作为一种重要的植物激素不仅调控植物对于机械损伤、昆虫取食和腐生型病原菌侵害的防御反应,还参与调控诸多生长发育过程。basic Helix-Loop-Helix (bHLH)类型转录因子MYC2是茉莉酸信号通路的核心转录因子,其所指导的转录调控过程是整个茉莉酸信号通路的核心事件。目前人们对于MY ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26李传友研究组发现增强子调控茉莉酸信号途径的机理
增强子是真核细胞调控基因转录的重要元件。在模式动物中,增强子与相应的基因启动子通过形成染色质环在物理上相互靠近,从而精确调控基因的时空特异性表达。然而目前在植物中,如何界定特定基因的启动子和增强子元件尚未明确,特定生理途径中增强子的系统鉴定未见报道,增强子与启动子之间染色质环的形成及其作用机理也不清 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26朱立煌研究组在水稻抗病蛋白引发的防卫信号传导中的新发现
抗病蛋白是植物免疫的重要成员,以NLR类蛋白居多,以水稻为例,其基因组中就拥有超过400个编码NLR蛋白的基因,由此可见NLR蛋白对植物免疫的重要性。作为免疫受体,抗病蛋白能引发对多种病原微生物以及昆虫的防卫反应,从而赋予植物对病原小种的免疫性。目前已知的抗病蛋白数量不少,但从病原物被抗病蛋白所识别 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26储成才研究组揭示植物硝酸盐信号传导通路和氮磷营养平衡分子机制
硝酸盐(nitrate)不仅是植物最主要的无机氮源,还作为信号分子激活一系列基因表达,触发硝酸盐应答反应,进而促进氮高效利用。细胞膜定位的硝酸盐转运蛋白NRT1.1(拟南芥AtNRT1.1和水稻NRT1.1B)作为硝酸盐受体(sensor),可以感知外界硝酸盐信号并触发下游应答基因表达。然而,长期以 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26李传友研究组揭示MYC2调控茉莉酸信号终止的机制
作为一种重要的植物激素,茉莉酸调控植物的防御反应和适应性生长。当植物遭遇病虫侵害或其它逆境胁迫时,活性茉莉酸被受体COI1 (CORONATINE-INSENSITIVE 1) 识别而释放核心转录因子MYC2的活性,MYC2与转录中介体亚基MED25形成功能复合物而在全基因组范围内激活茉莉酸响应基因 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26傅向东研究组在赤霉素信号途径调控作物氮肥高效利用研究中取得重要进展
在农业生产中,大量施用氮肥一直是水稻、小麦等农作物增产的重要措施。然而,氮肥的使用量逐年增加并未带来农作物产量的大幅提高,经济效益和生态效益反而呈下降趋势。因此,培育氮肥高效利用的新品种是降低生产成本、减少环境污染、绿色高效提高水稻、小麦等农作物产量的一种有效途经。 8月16日,英国《自然》杂志以 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26Wnt信号通路介导神经到肠道细胞的线粒体应激反应
线粒体不仅是细胞能量供给的中心,也是调控衰老进程以及影响神经退行性疾病的重要细胞器之一。当线粒体功能损伤,将启动细胞内的线粒体未折叠蛋白反应(UPRmt),使线粒体分子伴侣、蛋白酶、代谢相关基因等表达水平上调,重建线粒体稳态平衡。在多细胞的机体内,不同组织之间(神经细胞-肠道细胞)也会感知并协调各自 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26储成才研究组发现糖信号通过影响ABA信号传导调节水稻穗发芽
水稻、小麦等禾谷类作物是世界上重要的粮食作物,部分栽培品种由于缺少收获期休眠,收获前籽粒遇到高温高湿等外界条件在穗上会发生胎萌或穗发芽(Pre-harvest sprouting,PHS)现象。穗发芽不仅造成粮食作物的减产,也会导致食用品质的下降,更重要的是,严重影响了制种的质量。因此,穗发芽是影响 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26