1(中国科学院计算技术研究所 北京 100190);2(计算机体系结构国家重点实验室(中国科学院计算技术研究所) 北京 100190);3(数学工程与先进计算国家重点实验室 郑州 450001);4(郑州大学信息工程学院 郑州 450001);5(中国科学院大学 北京 100049) (lvzhuo11@163.com)
出版日期:
2021-12-01基金资助:
军科委基础加强项目(2019-xCxQ-xD-172-00);广东省普及型高性能计算机重点实验室项目(2017B030314073);国家自然科学基金项目(62090020, 61672499);中国科学院青年促进创新会项目(2013073);中国科学院战略性先导科技专项(XDC05030200)A Heterogeneous Approach for 3D Object Detection
Lü Zhuo1,2,3,4, Yao Zhicheng1,2,5, Jia Yuxiang4, Bao Yungang1,2,51(Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190);2(State Key Laboratory of Computer Architecture (Institute of Computing Technology, Chinese Academy of Sciences), Beijing 100190);3(State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001);4(School of Information Engineering, Zhengzhou University, Zhengzhou 450001);5(University of Chinese Academy of Sciences, Beijing 100049)
Online:
2021-12-01Supported by:
This work was supported by the Foundation Enhancement Project of Commission of Science and Technology of the CMC(2019-xCxQ-xD-172-00), the Guangdong Province Key Laboratory of Popular High Performance Computers (2017B030314073), the National Natural Science Foundation of China (62090020, 61672499), the Youth Innovation Promotion Association of Chinese Academy of Sciences (2013073), and the Strategic Priority Research Program of Chinese Academy of Sciences (XDC05030200).摘要/Abstract
摘要: 3D物体检测是计算机视觉的一个重要研究方向,在自动驾驶等领域有着广泛的应用.现有的前沿工作采用端到端的深度学习方法,虽然达到了很好的检测效果但存在着算法复杂度高、计算量大、实时性不够等问题.经过分析发现3D物体检测中的“部分任务”并不适合使用深度学习的方法进行解决,为此提出了一种基于异构方法的3D物体检测方法,该方法在检测过程中同时使用深度学习和传统算法,将检测过程划分为多任务阶段:1)利用深度学习方法从被检测图片中获取被检测物体的mask、物体类别等信息;2)基于mask,利用快速聚类方法从雷达点云空间中筛选出目标物体的表面雷达点;3)利用物体mask、类别、雷达点云等信息计算物体朝向、边框等信息,最终实现3D物体检测.对该方法进行了系统实现,称之为HA3D(a heterogeneous approach for 3D object detection).经实验表明:在针对汽车的3D检测数据集KITTI上,该方法与代表性的基于深度学习的3D物体检测方法相比,在检测精度下降接受范围内(2.0%),速度提升了52.2%,精确率与计算时间的比值提升了49%.从综合表现上来看,方法具有明显的优势.
参考文献
相关文章 15
[1] | 潘璇, 徐思涵, 蔡祥睿, 温延龙, 袁晓洁. 基于深度学习的数据库自然语言接口综述[J]. 计算机研究与发展, 2021, 58(9): 1925-1950. |
[2] | 张力天, 孔嘉漪, 樊一航, 范灵俊, 包尔固德. 基于宏微观因素的概率级别的车辆事故预测[J]. 计算机研究与发展, 2021, 58(9): 2052-2061. |
[3] | 丁宗元, 孙权森, 王涛, 王洪元. 基于融合多尺度标记信息的深度交互式图像分割[J]. 计算机研究与发展, 2021, 58(8): 1705-1717. |
[4] | 陈波冯, 李靖东, 卢兴见, 沙朝锋, 王晓玲, 张吉. 基于深度学习的图异常检测技术综述[J]. 计算机研究与发展, 2021, 58(7): 1436-1455. |
[5] | 王慧娇, 丛鹏, 蒋华, 韦永壮. 基于深度学习的SIMON32/64安全性分析[J]. 计算机研究与发展, 2021, 58(5): 1056-1064. |
[6] | 冯云, 刘宝旭, 张金莉, 汪旭童, 刘潮歌, 申明喆, 刘奇旭. 一种无监督的窃密攻击及时发现方法[J]. 计算机研究与发展, 2021, 58(5): 995-1005. |
[7] | 潘旭东, 张谧, 颜一帆, 陆逸凡, 杨珉. 通用深度学习语言模型的隐私风险评估[J]. 计算机研究与发展, 2021, 58(5): 1092-1105. |
[8] | 李明慧, 江沛佩, 王骞, 沈超, 李琦. 针对深度学习模型的对抗性攻击与防御[J]. 计算机研究与发展, 2021, 58(5): 909-926. |
[9] | 汪嘉来, 张超, 戚旭衍, 荣易. Windows平台恶意软件智能检测综述[J]. 计算机研究与发展, 2021, 58(5): 977-994. |
[10] | 周纯毅, 陈大卫, 王尚, 付安民, 高艳松. 分布式深度学习隐私与安全攻击研究进展与挑战[J]. 计算机研究与发展, 2021, 58(5): 927-943. |
[11] | 汪烨, 陈骏武, 夏鑫, 姜波. 智能需求获取与建模研究综述[J]. 计算机研究与发展, 2021, 58(4): 683-705. |
[12] | 吴宗友, 白昆龙, 杨林蕊, 王仪琦, 田英杰. 电子病历文本挖掘研究综述[J]. 计算机研究与发展, 2021, 58(3): 513-527. |
[13] | 廖海斌, 徐斌. 基于性别和年龄因子分析的鲁棒性人脸表情识别[J]. 计算机研究与发展, 2021, 58(3): 528-538. |
[14] | 付章杰, 李恩露, 程旭, 黄永峰, 胡雨婷. 基于深度学习的图像隐写研究进展[J]. 计算机研究与发展, 2021, 58(3): 548-568. |
[15] | 古天龙, 冯旋, 李龙, 包旭光, 李云辉. 基于社会新闻数据集的伦理行为判别方法[J]. 计算机研究与发展, 2021, 58(2): 253-263. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4549