(哈尔滨工业大学社会计算与信息检索研究中心 哈尔滨 150001) (rxsun@ir.hit.edu.cn)
出版日期:
2021-09-01基金资助:
国家自然科学基金项目(62076081,61772153,61936010);2030新一代人工智能重大项目(2020AAA0108605)Research on Document Grounded Conversations
Sun Runxin, Ma Longxuan, Zhang Weinan, Liu Ting(Research Center for Social Computing and Information Retrieval, Harbin Institute of Technology, Harbin 150001)
Online:
2021-09-01Supported by:
This work was supported by the National Natural Science Foundation of China (62076081, 61772153, 61936010) and 2030 Major Project of New Generation Artificial Intelligence of China (2020AAA0108605).摘要/Abstract
摘要: 基于文档的对话是目前对话领域一个新兴的热点任务.与以往的任务不同,其需要将对话信息和文档信息综合进行考虑.然而,先前的工作着重考虑二者之间的关系,却忽略了对话信息中的句子对回复生成的作用具有差异性.针对这一问题,提出了一种新的辩证看待对话历史的方法,在编码阶段讨论利用历史和忽略历史2种情况进行语义信息的建模,并采用辩证整合的方式进行分支信息的汇总.由此避免了在历史信息与当前对话不相关时,其作为噪声被引入进而损害模型性能,同时也强化了当前对话对信息筛选的指导作用.实验结果表明,该模型与现有基线模型相比,能够生成更为符合当前语境且信息量更加丰富的回复,从而说明其能够更好地理解对话信息并进行知识筛选.并且通过进行消融实验,也验证了各模块在建模过程中的有效性.
参考文献
相关文章 15
[1] | 谢娟英, 鲁银圆, 孔维轩, 许升全. 基于改进RetinaNet的自然环境中蝴蝶种类识别[J]. 计算机研究与发展, 2021, 58(8): 1686-1704. |
[2] | 刘凡, 王君锋, 陈峙宇, 许峰. 基于并行注意力UNet的裂缝检测方法[J]. 计算机研究与发展, 2021, 58(8): 1718-1726. |
[3] | 亓鹏, 曹娟, 盛强. 语义增强的多模态虚假新闻检测[J]. 计算机研究与发展, 2021, 58(7): 1456-1465. |
[4] | 王成龙, 易江燕, 陶建华, 马浩鑫, 田正坤, 傅睿博. 基于全局-时频注意力网络的语音伪造检测[J]. 计算机研究与发展, 2021, 58(7): 1466-1475. |
[5] | 廖海斌, 徐斌. 基于性别和年龄因子分析的鲁棒性人脸表情识别[J]. 计算机研究与发展, 2021, 58(3): 528-538. |
[6] | 张世琨, 谢睿, 叶蔚, 陈龙. 基于关键词的代码自动摘要[J]. 计算机研究与发展, 2020, 57(9): 1987-2000. |
[7] | 李梦莹, 王晓东, 阮书岚, 张琨, 刘淇. 基于双路注意力机制的学生成绩预测模型[J]. 计算机研究与发展, 2020, 57(8): 1729-1740. |
[8] | 陈彦敏, 王皓, 马建辉, 杜东舫, 赵洪科. 基于层级注意力机制的互联网用户信用评估框架[J]. 计算机研究与发展, 2020, 57(8): 1755-1768. |
[9] | 李若南, 李金宝. 一种无源被动室内区域定位方法的研究[J]. 计算机研究与发展, 2020, 57(7): 1381-1392. |
[10] | 张艺璇, 郭斌, 刘佳琪, 欧阳逸, 於志文. 基于多级注意力机制网络的app流行度预测[J]. 计算机研究与发展, 2020, 57(5): 984-995. |
[11] | 张莹莹, 钱胜胜, 方全, 徐常胜. 基于多模态知识感知注意力机制的问答方法[J]. 计算机研究与发展, 2020, 57(5): 1037-1045. |
[12] | 程艳, 尧磊波, 张光河, 唐天伟, 项国雄, 陈豪迈, 冯悦, 蔡壮. 基于注意力机制的多通道CNN和BiGRU的文本情感倾向性分析[J]. 计算机研究与发展, 2020, 57(12): 2583-2595. |
[13] | 尉桢楷, 程梦, 周夏冰, 李志峰, 邹博伟, 洪宇, 姚建民. 基于类卷积交互式注意力机制的属性抽取研究[J]. 计算机研究与发展, 2020, 57(11): 2456-2466. |
[14] | 张志昌,张珍文,张治满. 基于IndRNN-Attention的用户意图分类[J]. 计算机研究与发展, 2019, 56(7): 1517-1524. |
[15] | 石乐义,朱红强,刘祎豪,刘佳. 基于相关信息熵和CNN-BiLSTM的工业控制系统入侵检测[J]. 计算机研究与发展, 2019, 56(11): 2330-2338. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4492