删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

融合源信息和门控图神经网络的谣言检测研究

本站小编 Free考研考试/2022-01-01

杨延杰,王莉,王宇航
(太原理工大学大数据学院 山西晋中 030600) (yangyanjie1073@link.tyut.edu.cn)
出版日期: 2021-07-01


基金资助:国家自然科学基金项目(61872260)

Rumor Detection Based on Source Information and Gating Graph Neural Network

Yang Yanjie, Wang Li, Wang Yuhang
(College of Big Data, Taiyuan University of Technology, Jinzhong, Shanxi 030600)
Online: 2021-07-01


Supported by:This work was supported by the National Natural Science Foundation of China (61872260).




摘要/Abstract


摘要: 社交媒体在带给人们便利同时,也为谣言的发布和传播提供了平台.目前,大多数的谣言检测方法都是基于文本内容信息,但在社交媒体场景下,文本内容大多是短文本,这类方法往往会因为数据稀疏性的问题导致性能下降.社交网络上的消息传播可建模为图结构,已有研究考虑消息传播结构特点,通过GCN等模型进行谣言检测.GCN依据结构信息聚合邻居来提升节点表示,但有些邻居聚合是无用的,甚至可能带来噪声,使得通过GCN得到的表示并不可靠.此外,这些研究不能有效的突出源帖信息的重要性.针对这些问题提出了一种融合门控的传播图卷积网络模型GUCNH,在GUCNH模型中,首先利用消息转发关系构建信息转发图,通过2个融合门控的图卷积网络模块来聚合邻居节点信息生成节点的表示,融合门控能够对图卷积之前的特征表示和之后的特征表示进行选择与组合,以得到更加可靠的表示.考虑到在转发图中,任意的帖子之间都可能存在相互影响,而不仅仅是基于邻接关系,因此在2个融合门控的图卷积网络模块之间引入多头自注意力模块来建模任意帖子之间的多角度影响.此外,在转发图中,源帖包含的信息往往是最原始、最丰富的,在生成各节点表示之后,选择性的增强了源节点的信息以增强根源信息的影响力.在3个真实数据集上进行的实验表明,提出的模型优于现有的方法.






[1]陈慧敏, 金思辰, 林微, 朱泽宇, 仝凌波, 刘一芃, 叶奕宁, 姜维翰, 刘知远, 孙茂松, 金兼斌. 新冠疫情相关社交媒体谣言传播量化分析[J]. 计算机研究与发展, 2021, 58(7): 1366-1384.
[2]胡斗, 卫玲蔚, 周薇, 淮晓永, 韩冀中, 虎嵩林. 一种基于多关系传播树的谣言检测方法[J]. 计算机研究与发展, 2021, 58(7): 1395-1411.
[3]徐铭达,张子柯,许小可. 基于模体度的社交网络虚假信息传播机制研究[J]. 计算机研究与发展, 2021, 58(7): 1425-1435.
[4]刘金硕, 冯阔, Jeff Z. Pan, 邓娟, 王丽娜. MSRD: 多模态网络谣言检测方法[J]. 计算机研究与发展, 2020, 57(11): 2328-2336.
[5]石乐义,朱红强,刘祎豪,刘佳. 基于相关信息熵和CNN-BiLSTM的工业控制系统入侵检测[J]. 计算机研究与发展, 2019, 56(11): 2330-2338.
[6]孙小婉,王英,王鑫,孙玉东. 面向双注意力网络的特定方面情感分析模型[J]. 计算机研究与发展, 2019, 56(11): 2384-2395.





PDF全文下载地址:

https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4453
相关话题/信息 网络 传播 计算机 结构

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于模体度的社交网络虚假信息传播机制研究
    徐铭达1,张子柯2,3,许小可11(大连民族大学信息与通信工程学院辽宁大连116600);2(浙江大学传媒与国际文化学院杭州310058);3(杭州师范大学阿里巴巴复杂科学研究中心杭州311121)(854655253@qq.com)出版日期:2021-07-01基金资助:国家自然科学基金项目(61 ...
    本站小编 Free考研考试 2022-01-01
  • 基于全局-时频注意力网络的语音伪造检测
    王成龙1,2,易江燕2,陶建华2,3,马浩鑫2,田正坤2,傅睿博21(中国科学技术大学信息科学技术学院合肥230027);2(模式识别国家重点实验室(中国科学院自动化研究所)北京100080);3(中国科学院大学人工智能学院北京100049)(chenglong.wang@nlpr.ia.ac.cn ...
    本站小编 Free考研考试 2022-01-01
  • 基于粗粒度数据流架构的稀疏卷积神经网络加速
    吴欣欣1,2,3,欧焱1,2,3,李文明1,2,王达1,2,张浩1,2,范东睿1,2,31(计算机体系结构国家重点实验室(中国科学院计算技术研究所)北京100190);2(中国科学院计算技术研究所北京100190);3(中国科学院大学计算机科学与技术学院北京100049)(wuxinxin@ict. ...
    本站小编 Free考研考试 2022-01-01
  • 社交网络信息传播预测与特定信息抑制
    曹玖新1,高庆清1,夏蓉清2,刘伟佳1,朱雪林1,刘波21(东南大学网络空间安全学院南京211189);2(东南大学计算机科学与工程学院南京211189)(jx.cao@seu.edu.cn)出版日期:2021-07-01基金资助:国家自然科学基金项目(61772133,61972087);国家社会 ...
    本站小编 Free考研考试 2022-01-01
  • 闪存固态硬盘系统结构与技术
    高聪明1,石亮2,刘凯3,薛春4,舒继武11(清华大学计算机科学与技术系北京100083);2(华东师范大学计算机科学与技术学院上海200062);3(重庆大学计算机学院重庆400044);4(香港城市大学计算机系香港999077)(gaocm92@gmail.com)出版日期:2021-07-01 ...
    本站小编 Free考研考试 2022-01-01
  • 计算机芯片关键技术前沿与进展专题前言
    出版日期:2021-06-01Online:2021-06-01摘要/Abstract摘要:“计算机体系结构前沿技术2021”专题———“计算机芯片关键技术前沿与进展”,集中介绍计算机芯片设计、测试、验证方面的新理论、新技术,以及新型部件和新型芯片系统.本专题包括关于处理器芯片敏捷设计和类脑计算的2 ...
    本站小编 Free考研考试 2022-01-01
  • 图神经网络加速结构综述
    李涵1,2,严明玉1,2,吕征阳1,2,李文明1,叶笑春1,范东睿1,2,唐志敏1,21(计算机体系结构国家重点实验室(中国科学院计算技术研究所)北京100190);2(中国科学院大学北京100049)(lihan-ams@ict.ac.cn)出版日期:2021-06-01基金资助:国家自然科学基金 ...
    本站小编 Free考研考试 2022-01-01
  • 枫林一号:一款面向高端装备定制的低功耗时间敏感网络芯片
    全巍,付文文,孙志刚,李韬(国防科技大学计算机学院长沙410073)(w.quan@nudt.edu.cn)出版日期:2021-06-01基金资助:国家自然科学基金项目(61802417,91938301);之江实验室开放课题(2020LE0AB01)HX-DS09:ACustomizedLowPo ...
    本站小编 Free考研考试 2022-01-01
  • 一种减少网络振动的智能路由选择算法设计
    邵天竺,王晓亮,陈文龙,唐晓岚,徐敏(首都师范大学信息工程学院北京100048)(nestea_god@hotmail.com)出版日期:2021-06-01基金资助:国家重点研发计划项目(2018YFB1800403);国家自然科学基金项目(61872252);北京市自然科学基金项目(420201 ...
    本站小编 Free考研考试 2022-01-01
  • 支持网络切片和绿色通信的软件定义虚拟化接入网
    王廷1,2,刘刚31(华东师范大学软件工程学院上海200062);2(上海市高可信计算重点实验室(华东师范大学)上海200062);3(上海诺基亚贝尔股份有限公司贝尔实验室上海201206)(twang@sei.ecnu.edu.cn)出版日期:2021-06-01SoftwareDefinedVi ...
    本站小编 Free考研考试 2022-01-01