删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

面向深度学习的公平性研究综述

本站小编 Free考研考试/2022-01-01

陈晋音1,2,陈奕芃2,陈一鸣2,郑海斌2,纪守领3,时杰4,程瑶4
1(浙江工业大学网络空间安全研究院 杭州 310023);2(浙江工业大学信息工程学院 杭州 310023);3(浙江大学计算机科学与技术学院 杭州 310058);4(华为国际有限公司新加坡研究院 新加坡 138589) (chenjinyin@zjut.edu.cn)
出版日期: 2021-02-01


基金资助:国家自然科学基金项目(62072406);浙江省自然科学基金项目(LY19F020025);宁波市“科技创新2025”重大专项(2018B10063)

Fairness Research on Deep Learning

Chen Jinyin1,2, Chen Yipeng2, Chen Yiming2, Zheng Haibin2, Ji Shouling3, Shi Jie4, Cheng Yao4
1(Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou 310023);2(College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023);3(College of Computer Science and Technology, Zhejiang University, Hangzhou 310058);4(Huawei International Pte Ltd, Singapore 138589)
Online: 2021-02-01


Supported by:This work was supported by the National Natural Science Foundation of China (62072406), the Natural Science Foundation of Zhejiang Province (LY19F020025), and the Major Special Funding for “Science and Technology Innovation 2025” in Ningbo (2018B10063).




摘要/Abstract


摘要: 深度学习是机器学习研究中的一个重要领域,它具有强大的特征提取能力,且在许多应用中表现出先进的性能,因此在工业界中被广泛应用.然而,由于训练数据标注和模型设计存在偏见,现有的研究表明深度学习在某些应用中可能会强化人类的偏见和歧视,导致决策过程中的不公平现象产生,从而对个人和社会产生潜在的负面影响.为提高深度学习的应用可靠性、推动其在公平领域的发展,针对已有的研究工作,从数据和模型2方面出发,综述了深度学习应用中的偏见来源、针对不同类型偏见的去偏方法、评估去偏效果的公平性评价指标、以及目前主流的去偏平台,最后总结现有公平性研究领域存在的开放问题以及未来的发展趋势.






[1]邵天竺, 王晓亮, 陈文龙, 唐晓岚, 徐敏. 一种减少网络振动的智能路由选择算法设计[J]. 计算机研究与发展, 2021, 58(6): 1261-1274.
[2]王慧娇, 丛鹏, 蒋华, 韦永壮. 基于深度学习的SIMON32/64安全性分析[J]. 计算机研究与发展, 2021, 58(5): 1056-1064.
[3]潘旭东, 张谧, 颜一帆, 陆逸凡, 杨珉. 通用深度学习语言模型的隐私风险评估[J]. 计算机研究与发展, 2021, 58(5): 1092-1105.
[4]李明慧, 江沛佩, 王骞, 沈超, 李琦. 针对深度学习模型的对抗性攻击与防御[J]. 计算机研究与发展, 2021, 58(5): 909-926.
[5]孙聪, 李占魁, 陈亮, 马建峰, 乔新博. 面向数字货币特征的细粒度代码注入攻击检测[J]. 计算机研究与发展, 2021, 58(5): 1035-1044.
[6]汪嘉来, 张超, 戚旭衍, 荣易. Windows平台恶意软件智能检测综述[J]. 计算机研究与发展, 2021, 58(5): 977-994.
[7]周纯毅, 陈大卫, 王尚, 付安民, 高艳松. 分布式深度学习隐私与安全攻击研究进展与挑战[J]. 计算机研究与发展, 2021, 58(5): 927-943.
[8]任泽众, 郑晗, 张嘉元, 王文杰, 冯涛, 王鹤, 张玉清. 模糊测试技术综述[J]. 计算机研究与发展, 2021, 58(5): 944-963.
[9]汪烨, 陈骏武, 夏鑫, 姜波. 智能需求获取与建模研究综述[J]. 计算机研究与发展, 2021, 58(4): 683-705.
[10]吴宗友, 白昆龙, 杨林蕊, 王仪琦, 田英杰. 电子病历文本挖掘研究综述[J]. 计算机研究与发展, 2021, 58(3): 513-527.
[11]廖海斌, 徐斌. 基于性别和年龄因子分析的鲁棒性人脸表情识别[J]. 计算机研究与发展, 2021, 58(3): 528-538.
[12]付章杰, 李恩露, 程旭, 黄永峰, 胡雨婷. 基于深度学习的图像隐写研究进展[J]. 计算机研究与发展, 2021, 58(3): 548-568.
[13]古天龙, 冯旋, 李龙, 包旭光, 李云辉. 基于社会新闻数据集的伦理行为判别方法[J]. 计算机研究与发展, 2021, 58(2): 253-263.
[14]李金鹏, 张闯, 陈小军, 胡玥, 廖鹏程. 自动文本摘要研究综述[J]. 计算机研究与发展, 2021, 58(1): 1-21.
[15]孟子尧, 谷雪, 梁艳春, 许东, 吴春国. 深度神经架构搜索综述[J]. 计算机研究与发展, 2021, 58(1): 22-33.





PDF全文下载地址:

https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4344
相关话题/计算机 智能 数据 网络 设计