(中山大学国家超级计算广州中心 广州 510006)
出版日期:
2020-09-01Online:
2020-09-01摘要/Abstract
摘要: 近年来,随着智能万物互联时代的快速到来和新一代无线通信网络的高速普及,各类新兴智能应用如智慧城市、智能制造、新零售、智能安防等百花齐放.这些新兴数据密集型应用在网络边缘设备产生的数据量正在高速攀升,对数据传输带宽和数据处理的实时性都提出了更高的要求.边缘计算应运而生,通过将计算资源和任务从云端下沉到网络边缘侧,贴近数据源头提供分析处理服务,从而降低数据传输带宽消耗和数据处理延迟,从边缘到中心更好地一体化支撑各类新兴数据密集型的实时应用.
得益于技术演进而不断提升的带宽效率和实时性双重优势,边缘计算近年来得到了迅速发展,除了在商业上的得到国内外传统云计算巨头如谷歌、微软、亚马逊、百度、腾讯和阿里巴巴的高度青睐,美国、欧盟和我国还从国家层面对边缘计算展开了政策规划和科研布局.在美国,国防部高级研究计划局(DARPA)2017年资助了DCOMP重点项目,研究边缘计算在军事领域应用;美国国家科学基金会(NSF)发布的2020—2022年MLWiNS专项,专门支持研究跨边缘网络的分布式机器学习.在欧洲,欧盟地平线(EU Horizon)2020计划自2016年起连续资助了FAR-EDGE,FogGuru和DECENTER 等多个边缘计算相关的重大项目.在我国,广东、北京、上海等多个省市制定的“新基建”战略行动方案均明确指出推动边缘计算基础设施建设.此外,国家重点研发计划“宽带通信和新型网络”和“物联网与智慧城市”等多个专项均将边缘计算作为重点方向列入支持.
为了分享国内****在边缘计算方面的最新研究成果,推动国内边缘计算领域前沿技术的交流,加强我国在边缘计算方面的研究,《计算机研究与发展》推出了此次边缘计算专题.本专题共录用了6篇论文,论文作者既有来自于海内外知名高校的资深****,也有来自于谷歌和英特尔等业界龙头的一线研发人员.所录用的6篇论文分别展示了边缘计算赋能自动驾驶、边缘计算赋能智能家居、边缘计算资源分配、边缘计算任务卸载、边缘机器学习、边缘计算赋能机器人等方面的研究现状和最新成果.希望这组论文能够为相关领域的研究提供一些启发和帮助.
参考文献
相关文章 0
No related articles found! |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4265