删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一种无源被动室内区域定位方法的研究

本站小编 Free考研考试/2022-01-01

李若南,李金宝
(齐鲁工业大学(山东省科学院)山东省人工智能研究院 济南 250014) (黑龙江大学计算机科学技术学院 哈尔滨 150080) (黑龙江大学软件学院 哈尔滨 150080) (2043331028@qq.com)
出版日期: 2020-07-01


基金资助:国家自然科学基金项目(61370222);黑龙江省自然科学基金重点项目(ZD2019F003)

Research on a Device-free Passive Indoor Regional Localization Method

Li Ruonan, Li Jinbao
(Qilu University of Technology (Shandong Academy of Science), Shandong Artificial Intelligence Institute, Jinan 250014) (School of Computer Science and Technology, Heilongjiang University, Harbin 150080) (Software Technology Institute, Heilongjiang University, Harbin 150080)
Online: 2020-07-01


Supported by:This work was supported by the National Natural Science Foundation of China (61370222) and the Key Program of the Natural Science Foundation of Heilongjiang Province of China (ZD2019F003).




摘要/Abstract


摘要: 室内区域定位在医疗养老、智慧大楼等领域有着广泛的应用.室内区域定位中最突出的问题是无线电信道效应的动态和不可预测性(如多径传播、信道衰落等)对接收信号强度(received signal strength, RSS)的干扰影响.为了降低无线电的干扰,提出了一种新的基于注意力机制的CNN-BiLSTM的室内区域定位模型,该模型通过捕获粗细粒度特征与定位区域的对应关系来减弱RSS序列对信道变化的依赖.首先,利用卷积神经网络(convolutional neural network, CNN)学习捕捉RSS序列的特征来抽取区域中心点的细粒度特征.然后,利用双向长短时记忆(bidirectional long short-term memory, BiLSTM)网络的存储记忆特性,学习当前与过去RSS序列中隐含区域范围的粗粒度特征.最后,利用注意力机制,通过融合粗细粒度特征,建立RSS序列特征与区域位置的映射关系,获取区域位置信息.真实室内环境下区域定位的实验结果表明,与目前定位效果最好的网格区域综合概率定位模型相比,提出的方法在降低计算复杂度的同时提高了区域定位的准确度和对环境的适应能力.






[1]廖海斌, 徐斌. 基于性别和年龄因子分析的鲁棒性人脸表情识别[J]. 计算机研究与发展, 2021, 58(3): 528-538.
[2]张世琨, 谢睿, 叶蔚, 陈龙. 基于关键词的代码自动摘要[J]. 计算机研究与发展, 2020, 57(9): 1987-2000.
[3]李梦莹, 王晓东, 阮书岚, 张琨, 刘淇. 基于双路注意力机制的学生成绩预测模型[J]. 计算机研究与发展, 2020, 57(8): 1729-1740.
[4]陈彦敏, 王皓, 马建辉, 杜东舫, 赵洪科. 基于层级注意力机制的互联网用户信用评估框架[J]. 计算机研究与发展, 2020, 57(8): 1755-1768.
[5]邢新颖, 冀俊忠, 姚垚. 基于自适应多任务卷积神经网络的脑网络分类方法[J]. 计算机研究与发展, 2020, 57(7): 1449-1459.
[6]于海涛, 杨小汕, 徐常胜. 基于多模态输入的对抗式视频生成方法[J]. 计算机研究与发展, 2020, 57(7): 1522-1530.
[7]王庆林, 李东升, 梅松竹, 赖志权, 窦勇. 面向飞腾多核处理器的Winograd快速卷积算法优化[J]. 计算机研究与发展, 2020, 57(6): 1140-1151.
[8]张艺璇, 郭斌, 刘佳琪, 欧阳逸, 於志文. 基于多级注意力机制网络的app流行度预测[J]. 计算机研究与发展, 2020, 57(5): 984-995.
[9]张莹莹, 钱胜胜, 方全, 徐常胜. 基于多模态知识感知注意力机制的问答方法[J]. 计算机研究与发展, 2020, 57(5): 1037-1045.
[10]刘烨, 黄金筱, 马于涛. 基于混合神经网络和注意力机制的软件缺陷自动分派方法[J]. 计算机研究与发展, 2020, 57(3): 461-473.
[11]杜鹏, 丁世飞. 基于混合词向量深度学习模型的DGA域名检测方法[J]. 计算机研究与发展, 2020, 57(2): 433-446.
[12]程艳, 尧磊波, 张光河, 唐天伟, 项国雄, 陈豪迈, 冯悦, 蔡壮. 基于注意力机制的多通道CNN和BiGRU的文本情感倾向性分析[J]. 计算机研究与发展, 2020, 57(12): 2583-2595.
[13]贺周雨, 冯旭鹏, 刘利军, 黄青松. 面向大规模图像检索的深度强相关散列学习方法[J]. 计算机研究与发展, 2020, 57(11): 2375-2388.
[14]尉桢楷, 程梦, 周夏冰, 李志峰, 邹博伟, 洪宇, 姚建民. 基于类卷积交互式注意力机制的属性抽取研究[J]. 计算机研究与发展, 2020, 57(11): 2456-2466.
[15]石文浩,孟军,张朋,刘婵娟. 融合CNN和Bi-LSTM的miRNA-lncRNA互作关系预测模型[J]. 计算机研究与发展, 2019, 56(8): 1652-1660.





PDF全文下载地址:

https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4211
相关话题/计算机 序列 网络 干扰 黑龙江大学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于自适应多任务卷积神经网络的脑网络分类方法
    邢新颖,冀俊忠,姚垚(北京工业大学信息学部计算机学院北京100124)(xinying.xing@emails.bjut.edu.cn)出版日期:2020-07-01基金资助:国家自然科学基金项目(61672065)BrainNetworksClassificationBasedonanAdapti ...
    本站小编 Free考研考试 2022-01-01
  • 适应立体匹配任务的端到端深度网络
    李曈1,马伟1,徐士彪2,张晓鹏21(北京工业大学信息学部北京100124);2(中国科学院自动化研究所北京100190)(772402345@qq.com)出版日期:2020-07-01基金资助:国家自然科学基金项目(61771026,61671451);模式识别国家重点实验室开放课题基金Task ...
    本站小编 Free考研考试 2022-01-01
  • 计算机体系结构前沿技术2020专题前言
    刘志勇1,窦勇21(中国科学院计算技术研究所北京100190);2(国防科技大学长沙410073)出版日期:2020-06-01Online:2020-06-01摘要/Abstract摘要:我们高兴地向读者推出本刊“计算机体系结构前沿技术”专题!本专题收录的6篇文章既包含不同技术领域和方向的综述,也 ...
    本站小编 Free考研考试 2022-01-01
  • 面向高通量计算机的图算法优化技术
    张承龙1,2,曹华伟1,王国波1,2,郝沁汾1,张洋1,叶笑春1,范东睿1,21(计算机体系结构国家重点实验室(中国科学院计算技术研究所)北京100190);2(中国科学院大学计算机与控制学院北京100049)(caohuawei@ict.ac.cn)出版日期:2020-06-01基金资助:国家重点 ...
    本站小编 Free考研考试 2022-01-01
  • RGNE:粗糙粒化的网络嵌入式重叠社区发现方法
    赵霞1,张泽华1,张晨威2,李娴11(太原理工大学信息与计算机学院太原030024);2(伊利诺伊大学芝加哥分校计算机科学学院美国芝加哥60607)(zhaoxiazzzz@163.com)出版日期:2020-06-01基金资助:国家自然科学基金项目(61503273,61702356);国家留学基 ...
    本站小编 Free考研考试 2022-01-01
  • 融合多元信息的多关系社交网络节点重要性研究
    罗浩1,闫光辉1,张萌1,包峻波1,李俊成1,刘婷1,杨波2,魏军21(兰州交通大学电子与信息工程学院兰州730070);2(国网甘肃省电力公司信通公司兰州730050)(luoh382@163.com)出版日期:2020-05-01基金资助:国家自然科学基金项目(61662066,61163010 ...
    本站小编 Free考研考试 2022-01-01
  • 基于多级注意力机制网络的app流行度预测
    张艺璇,郭斌,刘佳琪,欧阳逸,於志文(西北工业大学计算机学院西安710029)(zhangyixuan2014@mail.nwpu.edu.cn)出版日期:2020-05-01基金资助:国家重点研发计划项目(2017YFB1001803);国家自然科学基金项目(61772428,61725205)a ...
    本站小编 Free考研考试 2022-01-01
  • 2020数据驱动网络专题前言
    崔勇1,马华东2,陈凯3,俞敏岚4,刘洪强51(清华大学北京100084);2(北京邮电大学北京100876);3(香港科技大学香港999077);4(哈佛大学美国马萨诸塞州剑桥市02138);5(阿里巴巴杭州310023)出版日期:2020-04-01Online:2020-04-01摘要/Abs ...
    本站小编 Free考研考试 2022-01-01
  • 异构YANG模型驱动的网络领域知识图谱构建
    董永强1,3,王鑫1,刘永博1,杨望2,31(东南大学计算机科学与工程学院南京211189);2(东南大学网络空间安全学院南京211189);3(计算机网络和信息集成教育部重点实验室(东南大学)南京211189)(dongyq@seu.edu.cn)出版日期:2020-04-01基金资助:国家自然科 ...
    本站小编 Free考研考试 2022-01-01
  • 基于深度神经网络burst特征分析的网站指纹攻击方法
    马陈城1,2,杜学绘1,2,曹利峰1,2,吴蓓31(战略支援部队信息工程大学郑州450001);2(河南省信息安全重点实验室(战略支援部队信息工程大学)郑州450001);3(61497部队北京100000)(machencheng07@foxmail.com)出版日期:2020-04-01基金资助 ...
    本站小编 Free考研考试 2022-01-01