删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于扩展的S-LSTM的文本蕴含识别

本站小编 Free考研考试/2022-01-01

胡超文,邬昌兴,杨亚连
(华东交通大学软件学院 南昌 330013) (hcwjuly@126.com)
出版日期: 2020-07-01


基金资助:国家自然科学基金项目(61866012);江西省自然科学基金项目(20181BAB202012);江西省教育厅科学技术研究项目(GJJ180329)

Extended S-LSTM Based Textual Entailment Recognition

Hu Chaowen, Wu Changxing, Yang Yalian
(School of Software, East China Jiaotong University, Nanchang 330013)
Online: 2020-07-01


Supported by:This work was supported by the National Natural Science Foundation of China (61866012), the Natural Science Foundation of Jiangxi Province of China (20181BAB202012), and the Science and Technology Research Project of Jiangxi Provincial Education Department (GJJ180329).




摘要/Abstract


摘要: 文本蕴含识别旨在自动判断给定的前提和假设(通常为2个句子)之间是否存在蕴含关系,是自然语言处理领域一项基础但富有挑战的任务.当前,主流的基于深度学习的模型通常分别建模前提和假设的语义表示,而没有把它们看作一个整体;另外,在捕获它们之间的语义关系时,大都没有同时利用句子级别的全局信息和短语级别的局部信息.最近提出的S-LSTM能够同时学习句子和短语的语义表示,在文本分类等任务上取得了较好的效果.基于上述情况,提出了一种基于扩展的S-LSTM的文本蕴含识别模型.一方面,把前提和假设看作一个整体,扩展S-LSTM以同时学习它们的语义表示;另一方面,在建模语义关系时,既利用句子级别的信息又利用短语级别的信息,以此获得更好的语义表示.在英文SNLI数据集和中文CNLI数据集上的实验结果表明:提出的模型取得了比基准模型更好的识别性能.






[1]吴宗友, 白昆龙, 杨林蕊, 王仪琦, 田英杰. 电子病历文本挖掘研究综述[J]. 计算机研究与发展, 2021, 58(3): 513-527.
[2]廖海斌, 徐斌. 基于性别和年龄因子分析的鲁棒性人脸表情识别[J]. 计算机研究与发展, 2021, 58(3): 528-538.
[3]付章杰, 李恩露, 程旭, 黄永峰, 胡雨婷. 基于深度学习的图像隐写研究进展[J]. 计算机研究与发展, 2021, 58(3): 548-568.
[4]古天龙, 冯旋, 李龙, 包旭光, 李云辉. 基于社会新闻数据集的伦理行为判别方法[J]. 计算机研究与发展, 2021, 58(2): 253-263.
[5]陈晋音, 陈奕芃, 陈一鸣, 郑海斌, 纪守领, 时杰, 程瑶. 面向深度学习的公平性研究综述[J]. 计算机研究与发展, 2021, 58(2): 264-280.
[6]李金鹏, 张闯, 陈小军, 胡玥, 廖鹏程. 自动文本摘要研究综述[J]. 计算机研究与发展, 2021, 58(1): 1-21.
[7]孟子尧, 谷雪, 梁艳春, 许东, 吴春国. 深度神经架构搜索综述[J]. 计算机研究与发展, 2021, 58(1): 22-33.
[8]朱泓睿, 元国军, 姚成吉, 谭光明, 王展, 户忠哲, 张晓扬, 安学军. 分布式深度学习训练网络综述[J]. 计算机研究与发展, 2021, 58(1): 98-115.
[9]林培光, 周佳倩, 温玉莲. SCONV:一种基于情感分析的金融市场趋势预测方法[J]. 计算机研究与发展, 2020, 57(8): 1769-1778.
[10]李冬梅, 张扬, 李东远, 林丹琼. 实体关系抽取方法研究综述[J]. 计算机研究与发展, 2020, 57(7): 1424-1448.
[11]于海涛, 杨小汕, 徐常胜. 基于多模态输入的对抗式视频生成方法[J]. 计算机研究与发展, 2020, 57(7): 1522-1530.
[12]王庆林, 李东升, 梅松竹, 赖志权, 窦勇. 面向飞腾多核处理器的Winograd快速卷积算法优化[J]. 计算机研究与发展, 2020, 57(6): 1140-1151.
[13]成科扬, 王宁, 师文喜, 詹永照. 深度学习可解释性研究进展[J]. 计算机研究与发展, 2020, 57(6): 1208-1217.
[14]王子晔, 苗夺谦, 赵才荣, 罗晟, 卫志华. 基于多粒度特征的行人跟踪检测结合算法[J]. 计算机研究与发展, 2020, 57(5): 996-1002.
[15]张莹莹, 钱胜胜, 方全, 徐常胜. 基于多模态知识感知注意力机制的问答方法[J]. 计算机研究与发展, 2020, 57(5): 1037-1045.





PDF全文下载地址:

https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4219
相关话题/计算机 信息 数据 网络 软件学院

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 一种基于智能手机传感器数据的地图轮廓生成方法
    陶涛1,孙玉娥2,5,陈冬梅1,杨文建1,黄河1,3,罗永龙4,51(苏州大学计算机科学与技术学院江苏苏州215006);2(苏州大学轨道交通学院江苏苏州215131);3(中国科学技术大学苏州研究院江苏苏州215123);4(安徽师范大学计算机与信息学院安徽芜湖241002);5(网络与信息安全安 ...
    本站小编 Free考研考试 2022-01-01
  • 适应立体匹配任务的端到端深度网络
    李曈1,马伟1,徐士彪2,张晓鹏21(北京工业大学信息学部北京100124);2(中国科学院自动化研究所北京100190)(772402345@qq.com)出版日期:2020-07-01基金资助:国家自然科学基金项目(61771026,61671451);模式识别国家重点实验室开放课题基金Task ...
    本站小编 Free考研考试 2022-01-01
  • 计算机体系结构前沿技术2020专题前言
    刘志勇1,窦勇21(中国科学院计算技术研究所北京100190);2(国防科技大学长沙410073)出版日期:2020-06-01Online:2020-06-01摘要/Abstract摘要:我们高兴地向读者推出本刊“计算机体系结构前沿技术”专题!本专题收录的6篇文章既包含不同技术领域和方向的综述,也 ...
    本站小编 Free考研考试 2022-01-01
  • 基于Spark的大数据访存行为跨层分析工具
    许丹亚1,王晶1,2,王利3,张伟功2,31(首都师范大学信息工程学院北京100048);2(高可靠嵌入式技术北京市工程研究中心(首都师范大学)北京100048);3(北京成像理论与技术高精尖创新中心(首都师范大学)北京100048)(xudanya@cnu.edu.cn)出版日期:2020-06- ...
    本站小编 Free考研考试 2022-01-01
  • 面向高通量计算机的图算法优化技术
    张承龙1,2,曹华伟1,王国波1,2,郝沁汾1,张洋1,叶笑春1,范东睿1,21(计算机体系结构国家重点实验室(中国科学院计算技术研究所)北京100190);2(中国科学院大学计算机与控制学院北京100049)(caohuawei@ict.ac.cn)出版日期:2020-06-01基金资助:国家重点 ...
    本站小编 Free考研考试 2022-01-01
  • 基于多视角RGB-D图像帧数据融合的室内场景理解
    李祥攀1,张彪1,孙凤池2,刘杰31(南开大学计算机学院天津300750);2(南开大学软件学院天津300750);3(南开大学人工智能学院天津300750)(xiangpan.li@qq.com)出版日期:2020-06-01基金资助:国家自然科学基金项目(61873327)IndoorScene ...
    本站小编 Free考研考试 2022-01-01
  • 基于Jacobi ADMM的传感网分布式压缩感知数据重构算法
    李国瑞1,孟婕1,彭三城2,王聪11(东北大学计算机科学与工程学院沈阳110819);2(广东外语外贸大学语言工程与计算实验室广州510006)(lgr@neuq.edu.cn)出版日期:2020-06-01基金资助:国家自然科学基金项目(61876205);中央高校基本科研业务费专项资金(N172 ...
    本站小编 Free考研考试 2022-01-01
  • RGNE:粗糙粒化的网络嵌入式重叠社区发现方法
    赵霞1,张泽华1,张晨威2,李娴11(太原理工大学信息与计算机学院太原030024);2(伊利诺伊大学芝加哥分校计算机科学学院美国芝加哥60607)(zhaoxiazzzz@163.com)出版日期:2020-06-01基金资助:国家自然科学基金项目(61503273,61702356);国家留学基 ...
    本站小编 Free考研考试 2022-01-01
  • 融合多元信息的多关系社交网络节点重要性研究
    罗浩1,闫光辉1,张萌1,包峻波1,李俊成1,刘婷1,杨波2,魏军21(兰州交通大学电子与信息工程学院兰州730070);2(国网甘肃省电力公司信通公司兰州730050)(luoh382@163.com)出版日期:2020-05-01基金资助:国家自然科学基金项目(61662066,61163010 ...
    本站小编 Free考研考试 2022-01-01
  • 基于多级注意力机制网络的app流行度预测
    张艺璇,郭斌,刘佳琪,欧阳逸,於志文(西北工业大学计算机学院西安710029)(zhangyixuan2014@mail.nwpu.edu.cn)出版日期:2020-05-01基金资助:国家重点研发计划项目(2017YFB1001803);国家自然科学基金项目(61772428,61725205)a ...
    本站小编 Free考研考试 2022-01-01