1(江苏大学计算机科学与通信工程学院 江苏镇江 212013);2(社会安全风险感知与防控大数据应用国家工程实验室(中国电子科学研究院) 北京 100041);3(新疆联海创智信息科技有限公司 乌鲁木齐 830001) (kycheng@ujs.edu.cn)
出版日期: 2020-06-01基金资助:国家自然科学基金项目(61972183,61672268);社会安全风险感知与防控大数据应用国家工程实验室主任基金项目Research Advances in the Interpretability of Deep Learning
Cheng Keyang1,2, Wang Ning1, Shi Wenxi2,3, Zhan Yongzhao11(School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013);2(National Engineering Laboratory for Public Safety Risk Perception and Control by the Big Data (China Academy of Electronic Sciences), Beijing 100041);3(Xinjiang Lianhaichuangzhi Information Technology Co. LTD, Urumqi 830001)
Online: 2020-06-01Supported by:This work was supported by the National Natural Science Foundation of China (61972183, 61672268) and the Director Foundation Project of National Engineering Laboratory for Public Safety Risk Perception and Control by the Big Data.摘要/Abstract
摘要: 深度学习的可解释性研究是人工智能、机器学习、认知心理学、逻辑学等众多学科的交叉研究课题,其在信息推送、医疗研究、金融、信息安全等领域具有重要的理论研究意义和实际应用价值.从深度学习可解释性研究起源、研究探索期、模型构建期3方面回顾了深度学习可解释性研究历史,从可视化分析、鲁棒性扰动分析、敏感性分析3方面展现了深度学习现有模型可解释性分析研究现状,从模型代理、逻辑推理、网络节点关联分析、传统机器学习模型改进4方面剖析了可解释性深度学习模型构建研究,同时对当前该领域研究存在的不足作出了分析,展示了可解释性深度学习的典型应用,并对未来可能的研究方向作出了展望.
参考文献
相关文章 15
| [1] | 吴宗友, 白昆龙, 杨林蕊, 王仪琦, 田英杰. 电子病历文本挖掘研究综述[J]. 计算机研究与发展, 2021, 58(3): 513-527. |
| [2] | 廖海斌, 徐斌. 基于性别和年龄因子分析的鲁棒性人脸表情识别[J]. 计算机研究与发展, 2021, 58(3): 528-538. |
| [3] | 刘颖, 杨轲. 基于深度集成学习的类极度不均衡数据信用欺诈检测算法[J]. 计算机研究与发展, 2021, 58(3): 539-547. |
| [4] | 付章杰, 李恩露, 程旭, 黄永峰, 胡雨婷. 基于深度学习的图像隐写研究进展[J]. 计算机研究与发展, 2021, 58(3): 548-568. |
| [5] | 周鹏, 武延军, 赵琛. 一种融合程序员和神经网络的自动化程序生成方法[J]. 计算机研究与发展, 2021, 58(3): 638-650. |
| [6] | 侯朋朋, 张珩, 武延军, 于佳耕, 邰阳, 苗玉霞. 基于多标签的内核配置图及其应用[J]. 计算机研究与发展, 2021, 58(3): 651-667. |
| [7] | 古天龙, 冯旋, 李龙, 包旭光, 李云辉. 基于社会新闻数据集的伦理行为判别方法[J]. 计算机研究与发展, 2021, 58(2): 253-263. |
| [8] | 陈晋音, 陈奕芃, 陈一鸣, 郑海斌, 纪守领, 时杰, 程瑶. 面向深度学习的公平性研究综述[J]. 计算机研究与发展, 2021, 58(2): 264-280. |
| [9] | 李金鹏, 张闯, 陈小军, 胡玥, 廖鹏程. 自动文本摘要研究综述[J]. 计算机研究与发展, 2021, 58(1): 1-21. |
| [10] | 孟子尧, 谷雪, 梁艳春, 许东, 吴春国. 深度神经架构搜索综述[J]. 计算机研究与发展, 2021, 58(1): 22-33. |
| [11] | 朱泓睿, 元国军, 姚成吉, 谭光明, 王展, 户忠哲, 张晓扬, 安学军. 分布式深度学习训练网络综述[J]. 计算机研究与发展, 2021, 58(1): 98-115. |
| [12] | 曾碧卿, 曾锋, 韩旭丽, 商齐. 基于交互特征表示的评价对象抽取模型[J]. 计算机研究与发展, 2021, 58(1): 224-232. |
| [13] | 陈珂锐, 孟小峰. 机器学习的可解释性[J]. 计算机研究与发展, 2020, 57(9): 1971-1986. |
| [14] | 陈彦敏, 王皓, 马建辉, 杜东舫, 赵洪科. 基于层级注意力机制的互联网用户信用评估框架[J]. 计算机研究与发展, 2020, 57(8): 1755-1768. |
| [15] | 林培光, 周佳倩, 温玉莲. SCONV:一种基于情感分析的金融市场趋势预测方法[J]. 计算机研究与发展, 2020, 57(8): 1769-1778. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4196
