删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一种基于局部属性生成对抗网络的人脸修复算法

本站小编 Free考研考试/2022-01-01

蒋斌,刘虹雨,杨超,涂文轩,赵子龙
(湖南大学信息科学与工程学院 长沙 410082) (jiangbin@hnu.edu.cn)
出版日期: 2019-11-12


基金资助:国家自然科学基金项目(61702176);湖南省自然科学基金项目(2017JJ3038)

A Face Inpainting Algorithm with Local Attribute Generative Adversarial Networks

Jiang Bin, Liu Hongyu, Yang Chao, Tu Wenxuan, Zhao Zilong
(College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082)
Online: 2019-11-12







摘要/Abstract


摘要: 最近对神经网络模型的研究在图像修复任务中显示出巨大的潜力,其核心任务是理解图像语义信息并重建缺失的图像内容.这些研究可以生成语义和内容上合理的结构和纹理,但通常会导致与孔洞周围区域不一致的扭曲结构或模糊纹理,特别是人脸图像修复问题.人脸图像修复工作经常需要为包含大量外观元素以及局部属性的缺失区域(例如眼睛或嘴巴)生成语义上的新内容,这些缺失区域往往具有独特的属性和语义信息从而导致生成内容不合理.为了解决以上问题,提出了一个有效的深度神经网络模型,模型的生成器结合全连接卷积和U-net网络的优越特性,同时提出局部属性辨别器使修复内容具有创新性的同时也能够使整体与局部保持语义一致性.模型不仅提升了对于人脸图像整体语义信息的感知能力,同时也基于局部属性能够有效地修复人脸关键部位,通过在CelebA数据集上的实验证明了该模型能够有效地修复人脸缺失部分并且能够生成新颖的修复内容.






[1]刘颖, 杨轲. 基于深度集成学习的类极度不均衡数据信用欺诈检测算法[J]. 计算机研究与发展, 2021, 58(3): 539-547.
[2]曾碧卿, 曾锋, 韩旭丽, 商齐. 基于交互特征表示的评价对象抽取模型[J]. 计算机研究与发展, 2021, 58(1): 224-232.
[3]陈珂锐, 孟小峰. 机器学习的可解释性[J]. 计算机研究与发展, 2020, 57(9): 1971-1986.
[4]陈彦敏, 王皓, 马建辉, 杜东舫, 赵洪科. 基于层级注意力机制的互联网用户信用评估框架[J]. 计算机研究与发展, 2020, 57(8): 1755-1768.
[5]林培光, 周佳倩, 温玉莲. SCONV:一种基于情感分析的金融市场趋势预测方法[J]. 计算机研究与发展, 2020, 57(8): 1769-1778.
[6]李若南, 李金宝. 一种无源被动室内区域定位方法的研究[J]. 计算机研究与发展, 2020, 57(7): 1381-1392.
[7]邢新颖, 冀俊忠, 姚垚. 基于自适应多任务卷积神经网络的脑网络分类方法[J]. 计算机研究与发展, 2020, 57(7): 1449-1459.
[8]于海涛, 杨小汕, 徐常胜. 基于多模态输入的对抗式视频生成方法[J]. 计算机研究与发展, 2020, 57(7): 1522-1530.
[9]王庆林, 李东升, 梅松竹, 赖志权, 窦勇. 面向飞腾多核处理器的Winograd快速卷积算法优化[J]. 计算机研究与发展, 2020, 57(6): 1140-1151.
[10]成科扬, 王宁, 师文喜, 詹永照. 深度学习可解释性研究进展[J]. 计算机研究与发展, 2020, 57(6): 1208-1217.
[11]蓝天, 彭川, 李森, 叶文政, 李萌, 惠国强, 吕忆蓝, 钱宇欣, 刘峤. 单声道语音降噪与去混响研究综述[J]. 计算机研究与发展, 2020, 57(5): 928-953.
[12]张艺璇, 郭斌, 刘佳琪, 欧阳逸, 於志文. 基于多级注意力机制网络的app流行度预测[J]. 计算机研究与发展, 2020, 57(5): 984-995.
[13]孙胜, 李叙晶, 刘敏, 杨博, 过晓冰. 面向异构IoT设备协作的DNN推断加速研究[J]. 计算机研究与发展, 2020, 57(4): 709-722.
[14]马陈城, 杜学绘, 曹利峰, 吴蓓. 基于深度神经网络burst特征分析的网站指纹攻击方法[J]. 计算机研究与发展, 2020, 57(4): 746-766.
[15]张蕊, 李锦涛. 基于深度学习的场景分割算法研究综述[J]. 计算机研究与发展, 2020, 57(4): 859-875.





PDF全文下载地址:

https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4052
相关话题/计算机 图像 信息 网络 数据