(中国人民大学信息学院 北京 100872) (xfmeng@ruc.edu.cn)
出版日期:
2019-09-10基金资助:
国家自然科学基金项目(61532016,61532010,91846204,91646203,61762082);国家重点研发计划项目(2016YFB1000602,2016YFB1000603)Survey on Machine Learning for Database Systems
Meng Xiaofeng, Ma Chaohong, Yang Chen(School of Information, Renmin University of China, Beijing 100872)
Online:
2019-09-10Supported by:
This work was supported by the National Natural Science Foundation of China (61532016, 61532010, 91846204, 91646203, 61762082) and the National Key Research and Development Program of China (2016YFB1000602, 2016YFB1000603).摘要/Abstract
摘要: 数据库系统经过近50年的发展,虽然已经普遍商用,但随着大数据时代的到来,数据库系统在2个方面面临挑战.首先数据量持续增大期望单个查询任务具有更快的处理速度;其次查询负载的快速变化及其多样性使得基于DBA经验的数据库配置和查询优化偏好不能实时地调整为最佳运行时状态.而数据库系统的性能优化进入瓶颈期,优化空间收窄,进一步优化只能依托新的硬件加速器来实现,传统的数据库系统不能够有效利用现代的硬件加速器;数据库系统具有成百个可调参数,面对工作负载频繁变化,大量繁琐的参数配置已经超出DBA的能力,这使得数据库系统面对快速而又多样性的变化缺乏实时响应能力.当下机器学习技术恰好同时符合这2个条件:应用现代加速器以及从众多参数调节经验中学习.机器学习化数据库系统将机器学习技术引入到数据库系统设计中.一方面将顺序扫描转化为计算模型,从而能够利用现代硬件加速平台;另一方面将DBA的经验转化为预测模型,从而使得数据库系统更加智能地动态适应工作负载的快速多样性变化.将对机器学习化数据库系统当前的研究工作进行总结与归纳,主要包括存储管理、查询优化的机器学习化研究以及自动化的数据库管理系统.在对已有技术分析的基础上,指出了机器学习化数据库系统的未来研究方向及可能面临的问题与挑战.
参考文献
相关文章 15
[1] | 吴宗友, 白昆龙, 杨林蕊, 王仪琦, 田英杰. 电子病历文本挖掘研究综述[J]. 计算机研究与发展, 2021, 58(3): 513-527. |
[2] | 陈晋音, 陈奕芃, 陈一鸣, 郑海斌, 纪守领, 时杰, 程瑶. 面向深度学习的公平性研究综述[J]. 计算机研究与发展, 2021, 58(2): 264-280. |
[3] | 于畅, 王雅文, 林欢, 宫云战. 基于故障检测上下文的等价变异体识别算法[J]. 计算机研究与发展, 2021, 58(1): 83-97. |
[4] | 李双峰. TensorFlow Lite:端侧机器学习框架[J]. 计算机研究与发展, 2020, 57(9): 1839-1853. |
[5] | 陈珂锐, 孟小峰. 机器学习的可解释性[J]. 计算机研究与发展, 2020, 57(9): 1971-1986. |
[6] | 丁成诚, 陶蔚, 陶卿. 一种三参数统一化动量方法及其最优收敛速率[J]. 计算机研究与发展, 2020, 57(8): 1571-1580. |
[7] | 贺一笑, 庞明, 姜远. 蒙德里安深度森林[J]. 计算机研究与发展, 2020, 57(8): 1594-1604. |
[8] | 李冬梅, 张扬, 李东远, 林丹琼. 实体关系抽取方法研究综述[J]. 计算机研究与发展, 2020, 57(7): 1424-1448. |
[9] | 陶涛, 孙玉娥, 陈冬梅, 杨文建, 黄河, 罗永龙. 一种基于智能手机传感器数据的地图轮廓生成方法[J]. 计算机研究与发展, 2020, 57(7): 1490-1507. |
[10] | 蓝天, 彭川, 李森, 叶文政, 李萌, 惠国强, 吕忆蓝, 钱宇欣, 刘峤. 单声道语音降噪与去混响研究综述[J]. 计算机研究与发展, 2020, 57(5): 928-953. |
[11] | 刘辰屹, 徐明伟, 耿男, 张翔. 基于机器学习的智能路由算法综述[J]. 计算机研究与发展, 2020, 57(4): 671-687. |
[12] | 周文, 张世琨, 丁勇, 陈曦. 面向低维工控网数据集的对抗样本攻击分析[J]. 计算机研究与发展, 2020, 57(4): 736-745. |
[13] | 王艳, 李念爽, 王希龄, 钟凤艳. 编码技术改进大规模分布式机器学习性能综述[J]. 计算机研究与发展, 2020, 57(3): 542-561. |
[14] | 刘俊旭, 孟小峰. 机器学习的隐私保护研究综述[J]. 计算机研究与发展, 2020, 57(2): 346-362. |
[15] | 程光, 钱德鑫, 郭建伟, 史海滨, 吴桦, 赵玉宇. 基于散度的网络流概念漂移分类方法[J]. 计算机研究与发展, 2020, 57(12): 2673-2682. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=3997