光合作用作为重要的物质和能量转化过程,是地球上几乎所有生命赖以生存和发展的基础。光合作用状态转换是光合膜在光环境变化条件下调节激发能在光系统I(PSI)和光系统II(PSII)间均衡分配的一种快速适应机制,是通过PSII主要捕光天线(LHCII)在PSII和PSI之间的迁移和可逆结合,改变两个光系统的捕光截面大小,进而实现激发能均衡分配。探索光合作用状态转换机制对于理解光合膜动态调控具有重要的理论和实践意义。
绿藻生长在光强不断变化的水环境条件下,具有很强的状态转换功能。目前,在原子、分子水平上揭示绿藻状态转换超分子复合体的精确结构及组装机制存在巨大挑战。中科院植物所光合膜蛋白结构生物学研究团队与浙江大学张兴研究团队合作首次解析了绿藻(莱茵衣藻,Chlamydomonas reinhardtii)光合作用状态转换超分子色素蛋白复合体的冷冻电镜三维结构(3.42埃),揭示了复合体中蛋白亚基的组成、捕光天线的结构特点、色素分布及其能量捕获、传递和光保护的途径。研究发现,该蛋白复合体是由1个光系统I核心-捕光天线I复合体(PSI-LHCI)结合2个PSII主要捕光天线复合体(LHCII)而形成的PSI-LHCI-LHCII超分子复合体,每个超分子复合体含有29个蛋白亚基、332个叶绿素分子、83个类胡萝卜素分子、3个铁硫簇和大量的脂分子。研究首次观察到绿藻PSI核心亚基PsaO和完整的PsaH与PsaL亚基及与它们结合的色素分子。两个LHCII三聚体相互靠近并位于PsaO-PsaL-PsaH-Lhca2一侧,其中LHCII-1通过N末端磷酸化位点与PsaO、PsaH和PsaL亚基相互作用,而LHCII-2通过与Lhca2和LHCII-1相互作用与超分子复合体结合。基于超分子复合体的结构特点及色素分子的排列情况,研究人员发现了多条光能捕获、传递及光保护途径,这可能有助于绿藻在水中光强变化较快的条件下高效地进行状态转换。这对于认识绿藻光合膜动态组装和对光环境适应的分子机制具有重要意义。
该研究于2021年2月17日在线发表于国际学术期刊Nature Communications。浙江大学博士研究生黄子惠、植物所博士研究生沈亮亮为论文共同第一作者,植物所副研究员韩广业、浙江大学教授张兴为共同通讯作者。中科院院士、植物所研究员匡廷云与研究员王文达等参与了该研究。该研究工作得到了国家重点研发计划、中科院先导专项以及中央高校校长专项等项目资助,并得到中科院植物所公共技术服务中心技术支持。
文章链接:https://www.nature.com/articles/s41467-021-21362-6
(光合实验室供稿)
莱茵衣藻(Chlamydomonas reinhardtii)光系统I-捕光天线I-捕光天线II(PSI-LHCI-LHCII)超分子复合体结构:(a, b)PSI-LHCI-LHCII超分子复合体结构基质侧俯视图与沿膜平面观察图;(c)PSI-LHCI-LHCII超分子复合体中LHCII亚基与PSI核心复合体结合的磷酸化位点。
附件下载:
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
植物所科研人员与浙江大学合作解析绿藻光合状态转换超分子复合体的三维结构
本站小编 Free考研考试/2021-12-31
相关话题/结构 植物 系统 浙江大学 环境
植物所科研人员揭示增温和干旱对高寒草地底层土壤微生物过程的影响
全球一半以上的土壤有机碳贮存在深度超过30cm的底层土壤中,底层土壤碳库对气候变化的响应是当前全球变化生态学的研究焦点之一。近期研究表明,高寒草地表层和底层土壤有机质的降解及新碳封存对增温和干旱具有不同响应。然而,增温和干旱对底层土壤微生物碳过程的影响尚不明确。 中科院植物所冯晓娟研究组与合作者利 ...中科院植物研究所 本站小编 Free考研考试 2021-12-31植物所科研人员培育的羊草品种通过国家审定
2月7日,国家林业和草原局“国家林业和草原局草品种审定委员会”审定通过了植物所刘公社研究组选育的‘中科5号’、‘中科7号’羊草品种,这是国家林草局自机构改革成立以来首批审定的国家级草品种。 羊草是欧亚草原区东部广泛分布的多年生禾本科乡土植物。羊草耐盐性和耐碱性强,发达的地下横走根茎有利于固定土壤、 ...中科院植物研究所 本站小编 Free考研考试 2021-12-31植物所科研人员与清华大学合作揭示组装因子Psb27调控光系统II组装修复的结构基础
光合作用是大规模利用太阳能将二氧化碳和水合成有机物并放出氧气的过程,光系统II(Photosystem II, PSII)位于放氧光合生物类囊体膜上,是光合水氧化的重要场所,具有光合放氧功能的PSII核心复合体(PSII core complex)是一个由20个蛋白亚基、锰簇、色素分子等多个辅助因子 ...中科院植物研究所 本站小编 Free考研考试 2021-12-31植物所科研人员揭示莲子心黄酮碳苷合成的分子机制
黄酮碳苷是类黄酮化合物的一个重要分支,由于其独特的化学结构、广泛的生理活性、显著的药理活性,近年来受到了****们的广泛关注。目前,研究人员已对诸多植物来源的黄酮碳苷进行结构鉴定,然而对黄酮碳苷生物合成的分子机制知之甚少。 莲(Nelumbo)又称荷花,是一种药食同源的水生植物,其荷叶、藕节、莲子 ...中科院植物研究所 本站小编 Free考研考试 2021-12-31植物所科研人员揭示植物叶片氮吸收对生态系统碳氮循环的影响
人类活动导致大量活性氮通过大气沉降进入生态系统,显著改变了陆地生态系统的生物地球化学循环过程。在森林生态系统中,40%-80%的沉降氮在到达林下土壤之前已经被森林冠层截留,部分被截留的氮可直接被冠层吸收。目前的研究大多从增加土壤氮供应的角度关注大气氮沉降产生的影响,对森林冠层氮截留过程的认识严重不足 ...中科院植物研究所 本站小编 Free考研考试 2021-12-31植物所科研人员在生物钟调控水稻耐盐性的机制解析中取得重要进展
水稻是全球主要粮食作物,对盐胁迫敏感,盐渍环境会导致水稻产量显著下降。生物钟是内在的时间维持机制,在调节植物非生物胁迫响应过程中发挥着关键作用,但目前关于水稻生物钟核心组分是否参与耐盐性调节及其相关机制尚不清楚。 中科院植物所王雷研究组发现,在转录水平,水稻生OsPRR (Oryza sativa ...中科院植物研究所 本站小编 Free考研考试 2021-12-31植物所科研人员揭示组蛋白去乙酰化酶复合体调控光形态建成的新机制
植物基因在光形态建成中会发生转录的重编程,同时伴随染色质的动态变化和组蛋白修饰的动态分布。大量光响应基因由于染色质开放性的变化,在“开(激活)”和“关(抑制)”之间切换以确保植物适应不断变化的光照环境,这些基因包含光信号途径中的重要组分因子。虽然同为光信号的正向调节因子,转录因子编码基因HY5和BB ...中科院植物研究所 本站小编 Free考研考试 2021-12-31植物所科研人员在植物精细胞发育机制研究中取得新进展
被子植物的精细胞发育涉及精细调控的细胞分化与命运决定,在此过程中单倍体的小孢子通过不对称有丝分裂产生两个命运和身份不同的子细胞,即营养细胞和生殖细胞,前者退出细胞周期、在适宜条件下发育成运送精细胞的花粉管;后者则通过有丝分裂产生两个精细胞,这两个精细胞被花粉管运送到雌蕊的胚囊分别与中央细胞和卵细胞融 ...中科院植物研究所 本站小编 Free考研考试 2021-12-31植物所科研人员在合子激活和干细胞稳态维持机制研究中取得重要进展
受精后合子的第一次分裂是高等植物发育起点,启动了随后的细胞分裂、组织分化和器官发生。胚后发育过程中,形成于胚胎期的干细胞通过其稳态调控机制保证植物拥有不断形成新组织和器官的能力。因此,对合子激活和干细胞稳态调控机制的解析一直是生命科学领域重要研究方向。 近日,中科院植物所刘春明课题组解析了DEAD ...中科院植物研究所 本站小编 Free考研考试 2021-12-31植物所与浙江大学合作解析绿硫细菌光合作用反应中心复合物冷冻电镜结构
光合作用是地球上规模最大的太阳能转换过程,光合生物利用光能将无机物转化为有机物同时释放出氧气(或生成硫单质),是自然界最高效的太阳能固定“机器”。绿硫细菌是一类厌氧型光合细菌,诞生在大约35亿年前,是最古老的光合细菌之一。 绿硫细菌的光合作用系统包括外周捕光天线绿小体(chlorosome)、内周 ...中科院植物研究所 本站小编 Free考研考试 2021-12-31