删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Construction of totally real surfaces in complex Grassmannians

本站小编 Free考研考试/2021-12-25

JIAO Xiaoxiang, XIN Jialin
School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Received 20 November 2019; Revised 4 February 2020
Foundation items: Supported by the National Natural Science Foundation of China (11871450)
Corresponding author: XIN Jialin, E-mail: xinjialin17@mails.ucas.ac.cn

Abstract: We present a construction of the complex Grassmannian G(2, n+2) as a quotient of some minimal submanifold Qn+1 of $\mathbb{H}$Pn+1, then show that a surface in G(2, n+2) can be horizontally lifted to Qn+1 if and only if it is totally real.
Keywords: Grassmanniantotally real surfacehorizontal lift
复Grassmann流形中全实曲面的构造
焦晓祥, 辛嘉麟
中国科学院大学数学科学学院, 北京 100049
摘要: 给出复Grassmann流形G(2,n+2)的全实曲面的一种构造方法,也就是把G(2,n+2)看作$\mathbb{H}$Pn+1中极小子流形Qn+1的商,并证明G(2,n+2)中的曲面可以水平提升到Qn+1中当且仅当它是全实的。
关键词: Grassmann流形全实曲面水平提升
The theory of minimal surfaces is an important part of modern differential geometry. The theory is particularly fruitful when the ambient space is a symmetric space. Calabi[1] proved a rigidity theorem for minimal two-spheres of constant curvature in Sn. Bolton et al.[2] constructed all the minimal two-spheres of constant curvature in $\mathbb{C}$Pn, and showed that a totally real minimal two-sphere in $\mathbb{C}$Pn can be mapped, by a holomorphic isometry of $\mathbb{C}$Pn, into $\mathbb{R}$Pn?$\mathbb{C}$Pn. Then He and Wang[3] proved a similar rigidity result for totally real minimal two-spheres in $\mathbb{H}$Pn.
In this paper, we present a construction of the complex Grassmannian G(2, n+2) due to Berndt[4], which considers G(2, n+2) as a quotient of some minimal submanifold Qn+1 of $\mathbb{H}$Pn+1. A Riemannian metric can be given on G(2, n+2) so that the projection π: Qn+1G(2, n+2) is a Riemannian submersion. Then we show that a surface in G(2, n+2) can be horizontally lifted to Qn+1 if and only if it is totally real.
Our result is a special case of Ref.[5], where the author considered a general Riemannian submersion NB, and characterized the existence of horizontal lifts of a submanifold of B using a family J of (1, 1)-tensors on B. In our paper, we make use of the fact that the projection Qn+1G(2, n+2) is a principal bundle, thus obtain a characterization by a first order PDE. Our method is largely inspired by Ref.[3], where the authors considered the Riemannian submersion S4n+3$\mathbb{H}$Pn.
1 PreliminariesWe denote by $\mathbb{H}$ the algebra of quaternions. This is a 4-dimensional vector space over $\mathbb{R}$ with basis {1, i, j, k}, and the multiplication is defined by
$\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=-1,$
$\mathrm{ij}=\mathrm{k}=-\mathrm{ji}, \mathrm{jk}=\mathrm{i}=-\mathrm{kj}, \mathrm{ki}=\mathrm{j}=-\mathrm{ik} .$
Thus $\mathbb{H}$ is associative but not commutative. $\mathbb{R}$ and $\mathbb{C}$ are naturally embedded into $\mathbb{H}$ as follows:
$\mathbb{R}=\mathbb{R} \cdot 1 \subset \mathbb{H}, \quad \mathbb{C}=\mathbb{R} \cdot 1 \oplus \mathbb{R} \cdot \mathrm{i} \subset \mathbb{H},$
and we sometimes express an element of $\mathbb{H}$ as q=z+wj, where z, w$\mathbb{C}$.
Conjugation is defined for quaternions:
$\overline{a+b \mathrm{i}+c \mathrm{j}+d \mathrm{k}}=a-b \mathrm{i}-c \mathrm{j}-d \mathrm{k}(a, b, c, d \in \mathbb{R}).$
Or equivalently,
$\overline{z+w \mathrm{j}}=\bar{z}-w \mathrm{j}(z, w \in \mathbb{C}).$
Then we have pq=qp, for any p, q$\mathbb{H}$.
Let $\mathbb{H}$n be the space of n-dimensional quaternion column vectors. We consider it as a right $\mathbb{H}$-module. If p=(p1, …, pn)T, q=(q1, …, qn)T$\mathbb{H}$n, two inner products of p, q are defined:
$\langle\boldsymbol{p}, \boldsymbol{q}\rangle_{\mathbb{H}}=\sum\limits_{l} \bar{p}_{l} q_{l},\langle\boldsymbol{p}, \boldsymbol{q}\rangle_{\mathbb{R}}=\operatorname{Re}\langle\boldsymbol{p}, \boldsymbol{q}\rangle_{\mathbb{H}}.$
It is easily verified that 〈, 〉$\mathbb{R}$ is just the usual Euclidean inner product if $\mathbb{H}$n is identified as $\mathbb{R}$4n, and that the following properties hold:
$\langle\boldsymbol{p} x, \boldsymbol{q} y\rangle_{\mathbb{H}} =\bar{x}\langle\boldsymbol{p}, \boldsymbol{q}\rangle_{\mathbb{H}} y, $
$\langle\boldsymbol{p}, \boldsymbol{q}\rangle_{\mathbb{H}} =\overline{\langle\boldsymbol{q}, \boldsymbol{p}\rangle}_{\mathbb{H}},$
where p, q$\mathbb{H}$n, x, y$\mathbb{H}$.
Similarly, for z=(z1, …, zn)t, w=(w1, …, wn)t$\mathbb{C}$n, we define their inner products:
$\langle \boldsymbol{z}, \boldsymbol{w}\rangle_{\mathbb{C}}=\sum\limits_{1} \overline{\mathrm{z}}_{1} \mathrm{w}_{1},\langle \boldsymbol{z}, \boldsymbol{w}\rangle_{\mathbb{R}}=\operatorname{Re}\langle \boldsymbol{z}, \boldsymbol{w}\rangle_{\mathbb{C}}.$
We will often omit the subscripts $\mathbb{C}$and $\mathbb{H}$ for simplicity.
Next we consider the quaternion projective space $\mathbb{H}$Pn, the set of quaternionic lines in $\mathbb{H}$n+1. Equivalently, $\mathbb{H}$Pn=S4n+3/Sp(1), where S4n+3 is the unit sphere in $\mathbb{H}$n+1$\cong \mathbb{R}$4n+4, and Sp(1), the multiplicative group of unit quaternions, acts on S4n+3 by right multiplication. Since this is an isometric action, there is a unique Riemannian metric on $\mathbb{H}$Pn, called the Fubini-Study metric, such that the quotient map τ: S4n+3$\mathbb{H}$Pn is a Riemannian submersion. For any qS4n+3, let Hq be the horizontal space of τ at q, i.e. the normal space to the fibre τ-1(τ(q)). Then Hq={q′∈$\mathbb{H}$n+1|〈q, q′〉$\mathbb{H}$=0}. Let τq=dτq|Hq. By assumption, τq: HqTτ(q)$\mathbb{H}$Pn is a linear isometry.
2 The submanifold Qn+1?$\mathbb{H}$Pn+1; the complex Grassmannian G(2, n+2)We quote some results from Ref.[4].
SU(n+2) acts on S4n+7?$\mathbb{H}$n+2 isometrically via
$S U(n+2) \times S^{4 n+7} \rightarrow S^{4 n+7}, $
$(\boldsymbol{A}, \boldsymbol{z}+\boldsymbol{v} \mathrm{j}) \mapsto \boldsymbol{A} \boldsymbol{z}+(\boldsymbol{A} \boldsymbol{v}) \mathrm{j},$
where z, v$\mathbb{C}$n+2, with |z|2+|v|2=1. This action commutes with the Sp(1)-action on S4n+7 defined in the last section, hence descends to an isometric action on $\mathbb{H}$Pn+1.
By some straightforward calculations, we find that this SU(n+2)-action on $\mathbb{H}$Pn+1 has only two singular orbits, namely,
$\mathbb{C} P^{n+1}=\left\{\boldsymbol{\tau}(\boldsymbol{z}+0 \cdot \mathrm{j}) \mid \boldsymbol{z} \in S^{2 n+3}\right\},$ (1)
and
$\begin{aligned}Q^{n+1} &=\{\boldsymbol{\tau}((1 / \sqrt{2})(\boldsymbol{z}+\boldsymbol{v} \mathrm{j})) \mid \boldsymbol{z},\\\boldsymbol{v} &\left.\in S^{2 n+3},\langle \boldsymbol{z}, \boldsymbol{v}\rangle=0\right\},\end{aligned}$ (2)
where S2n+3 is the unit sphere of $\mathbb{C}$n+2.
We have the following proposition from Ref.[4]:
Proposition 2.1??The singular orbits of the SU(n+2)-action on $\mathbb{H}$Pn+1 are $\mathbb{C}$Pn+1 and Qn+1.Qn+1 has codimension 3 in $\mathbb{H}$Pn+1, and is isometric to the homogeneous space SU(n+2)/SU(2)×SU(n) equipped with a suitable invariant metric. Furthermore, Qn+1 is a minimal submanifold of $\mathbb{H}$Pn+1.
Now consider an action of U(1) on Qn+1:
$U(1) \times Q^{n+1} \rightarrow Q^{n+1},\left(\mathrm{e}^{\mathrm{i} t}, \boldsymbol{\tau}(\boldsymbol{q})\right) \mapsto \boldsymbol{\tau}\left(\mathrm{e}^{\mathrm{i} t} \boldsymbol{q}\right),$
where t$\mathbb{R}$. Again this is an isometric action. A vector field ξ on Qn+1 is defined:
$\begin{aligned}\boldsymbol{\xi}_{\boldsymbol{\tau}(\boldsymbol{q})} &=\left.\frac{\mathrm{d}}{\mathrm{d} t}\right|_{t=0} \mathrm{e}^{\mathrm{i} t} \cdot \boldsymbol{\tau}(\boldsymbol{q})=\left.\frac{\mathrm{d}}{\mathrm{d} t}\right|_{t=0} \boldsymbol{\tau}\left(\mathrm{e}^{\mathrm{i} t} \boldsymbol{q}\right) \\&=\mathrm{d} \boldsymbol{\tau}_{\boldsymbol{q}}(\mathrm{i} \boldsymbol{q})=\boldsymbol{\tau}_{\boldsymbol{q}}(\mathrm{i} \boldsymbol{q}).\end{aligned}$ (3)
Here $\boldsymbol{q}=\frac{1}{\sqrt{2}}(\boldsymbol{z}+\boldsymbol{v} \mathrm{j}) \in \boldsymbol{\tau}^{-1}\left(Q^{n+1}\right), \boldsymbol{z}, \boldsymbol{v} \in S^{2 n+3}$, 〈z, v〉=0. For the last equality, we note that 〈q, iq$\mathbb{H}$=0 for qτ-1(Qn+1), i.e., iqHq. Thus ξ is the field of tangent vectors to the orbits of the U(1)-action.
Let Bn+1=Qn+1/U(1). Since U(1) acts on Qn+1 isometrically, there is a unique Riemannian metric on Bn+1 such that the natural projection π: Qn+1Bn+1 is a Riemannian submersion.
For τ(q)∈Qn+1, let $\mathcal{H}$τ(q) be the orthogonal complement of ξτ(q) in Tτ(q)Qn+1, i.e. the horizontal space of the Riemannian submersion π: Qn+1Bn+1. Then the map $\pi_{\tau(\boldsymbol{q})}=\mathrm{d} \pi_{\tau(\boldsymbol{q})} \mid _{\mathcal{H}_{\tau(\boldsymbol{q})}}\;: \mathcal{H}_{\tau(\boldsymbol{q})}$Tπ(τ(q))Bn+1 is a linear isometry. By Ref.[4], the horizontal lift of $\mathcal{H}_{\tau(\boldsymbol{q})}$ through τ: S4n+7$\mathbb{H}$Pn+1 is
$\boldsymbol{\tau}_{\boldsymbol{q}}^{-1} \mathcal{H}_{\boldsymbol{\tau}(\boldsymbol{q})}=\left\{\boldsymbol{X} \in \mathbb{H}^{n+2} \mid\langle\boldsymbol{X}, \boldsymbol{q}\rangle=\langle\boldsymbol{X}, \mathrm{i} \boldsymbol{q}\rangle=0\right\}.$ (4)
We define a (1, 1)-tensor φ on Qn+1 as φX=$-\nabla_{\boldsymbol{X}}^{Q^{n+1}} \boldsymbol{\xi}, \boldsymbol{X} \in T Q^{n+1}$, where $\nabla^{Q^{n+1}}$ is the Riemannian connection on Qn+1. Using the O'Neil formula for Riemannian submersions (see, for example, Proposition 4.5.1 of Ref.[6]), it can be shown that
$\varphi X= \begin{cases}0, & \boldsymbol{X}=\boldsymbol{\xi}, \\ \boldsymbol{\tau}_{\boldsymbol{q}}\left(-\mathrm{i} \cdot \boldsymbol{\tau}_{\boldsymbol{q}}^{-1}(\boldsymbol{X})\right), & \boldsymbol{X} \in \mathcal{H}_{\boldsymbol{\tau}(\boldsymbol{q})} .\end{cases}$ (5)
Since by definition Tτ(q)Qn+1=$\mathbb{R}$·$\boldsymbol{\xi}_{\tau(\boldsymbol{q})} \oplus \mathcal{H}_{\tau(\boldsymbol{q})}$, this completely determines φ. In particular, $\varphi(\mathcal{H})\subset \mathcal{H}$.
Finally, notice that φ commutes with the U(1)-action on Qn+1. In other words, if Lt denotes the map Qn+1Qn+1, $\tau(\boldsymbol{q}) \mapsto \tau\left(\mathrm{e}^{\mathrm{i} t} \boldsymbol{q}\right)$, then $\mathrm{d} L_{t} \circ \varphi=\varphi \circ \mathrm{d} L_{t}$ for all t$\mathbb{R}$. Therefore, there exists a (1, 1)-tensor J on Bn+1 satisfying *=π*φ. As φ2X=-X for all $\boldsymbol{X} \in \mathcal{H}$, it follows that J is an almost Hermitian structure on Bn+1. Actually, as is proved in Ref.[4], J turns out to be K?hler, and Bn+1 is holomorphically isometric to the complex Grass-mannian
$G(2, n+2)=U(n+2) / U(2) \times U(n),$
where the metric on G(2, n+2) is induced by the following bi-invariant metric on U(n+2):
$\langle\boldsymbol{X}, \boldsymbol{Y}\rangle=-\frac{1}{4} \operatorname{tr}(\boldsymbol{X} \boldsymbol{Y}),(\boldsymbol{X}, \boldsymbol{Y} \in \mathfrak{U}(n+2)).$
Thus, for example, B2 is isometric to G(2, 3)=$\mathbb{C}$P2, with the Fubini-Study metric of constant holomorphic sectional curvature 8.
Remark??The isometry between G(2, n+2) and Bn+1 can be explicitly given as
$G(2, n+2) \rightarrow B^{n+1},$
$\mathbb{C} \boldsymbol{z} \oplus \mathbb{C} \boldsymbol{v} \mapsto \boldsymbol{\pi}\left(\boldsymbol{\tau}\left(\frac{1}{\sqrt{2}}(\boldsymbol{z}+\boldsymbol{v} \mathrm{j})\right)\right),$
where z, v$\mathbb{C}$n+2, |z|=|v|=1, 〈z, v$\mathbb{C}$=0.
3 The main theoremDefinition 3.1??Suppose N is a Hermitian manifold, J is its complex structure, f: MN is an immersion from a surface M to N. Then f is called totally real if J Im f*p⊥Imf*p for all pM.
If we choose a local frame X, Y for M, then fis totally real if and only if Jf*Xf*Y everywhere. This follows easily from the Hermitian condition 〈Ju, Jv〉=〈u, v〉, J2=-1, where 〈, 〉 is the Riemannian metric on N.
Now we can state our main result.
Theorem 3.1??Suppose M is a surface, ψ: MBn+1 an immersion, then the following are equivalent:
1) ψ is totally real;
2) ψ has local horizontal lifts to Qn+1, that is, for any pM, there is a neighborhood U of p, and an immersion η: UQn+1, such that $\pi \circ \eta=\psi$, and Im $\eta_{*} \subset \mathcal{H}$.
Furthermore, η is minimal in Qn+1 if and only if ψ is minimal in Bn+1.
We prove the theorem step by step.
Step 1??Let U be an open subset of M, η: UQn+1 an immersion, we shall find a sufficient and necessary condition for η to be horizontal.
First, since τ: S4n+7$\mathbb{H}$Pn+1 is a submersion, η can be lifted to S4n+7, that is, there is an immersion $\boldsymbol{q}=\frac{1}{\sqrt{2}}(\boldsymbol{Z}+\boldsymbol{V} \mathrm{j}): U \rightarrow \tau^{-1}\left(Q^{n+1}\right) \subset S^{4 n+7}$ such that $\eta=\tau \circ q$, where Z, V: U$\mathbb{C}$n+2, |Z|=|V|=1, 〈Z, V〉=0. Now
$\begin{aligned}\mathrm{d} \eta &=\mathrm{d} \boldsymbol{\tau} \mathrm{d} \boldsymbol{q} \\&=\mathrm{d} \boldsymbol{\tau}(\mathrm{d} \boldsymbol{q}-\boldsymbol{q}\langle\boldsymbol{q}, \mathrm{d} \boldsymbol{q}\rangle),\end{aligned}$ (6)
so the horizontal lift of dη to S4n+7 is τq-1dη=dq-qq, dq〉, namely the orthogonal projection of dq onto Hq, the horizontal space of τ at q.
Recall from the last section that
η is horizontal with respect to π
$\Leftrightarrow \operatorname{Im}(\mathrm{d} \eta) \subset \mathcal{H}$
$\Leftrightarrow$τq-1dη, q〉=〈τq-1dη, iq〉=0
$\Leftrightarrow$〈dq-qq, dq〉, iq〉=0
$\Leftrightarrow$〈dq, iq〉=0.
For the last equivalence note that qτ-1(Qn+1) implies 〈q, iq〉=0.
Write $\boldsymbol{q}=\frac{1}{\sqrt{2}}(\boldsymbol{Z}+\boldsymbol{V} \mathrm{j}), \mathrm{d} \boldsymbol{q}=\frac{1}{\sqrt{2}}(\mathrm{~d} \boldsymbol{Z}+\mathrm{d} \boldsymbol{V} \cdot \mathrm{j})$. Differentiating 〈V, V〉=1, 〈Z, V〉=0 gives
$\left\{\begin{array}{l}\langle\mathrm{d} \boldsymbol{V}, \boldsymbol{V}\rangle+\langle\boldsymbol{V}, \mathrm{d} \boldsymbol{V}\rangle=0, \\\langle\mathrm{d} \boldsymbol{Z}, \boldsymbol{V}\rangle+\langle\boldsymbol{Z}, \mathrm{d} \boldsymbol{V}\rangle=0.\end{array}\right.$
Then
$\begin{aligned}\langle&\mathrm{d} \boldsymbol{q}, \mathrm{i} \boldsymbol{q}\rangle=0 \\\Leftrightarrow 0=&\langle\mathrm{d} \boldsymbol{Z}+\mathrm{d} \boldsymbol{V} \cdot \mathrm{j}, \boldsymbol{Z} \mathrm{i}+\boldsymbol{V} \boldsymbol{\mathrm { k }}\rangle \\=&(\langle\mathrm{d} \boldsymbol{Z}, \boldsymbol{Z}\rangle-\langle\boldsymbol{V}, \mathrm{d} \boldsymbol{V}\rangle) \mathrm{i}+\\&(\langle\boldsymbol{Z}, \mathrm{d} \boldsymbol{V}\rangle+\langle\mathrm{d} \boldsymbol{Z}, \boldsymbol{V}\rangle) \mathrm{k} \\=&(\langle\mathrm{d} \boldsymbol{Z}, \boldsymbol{Z}\rangle+\langle\mathrm{d} \boldsymbol{V}, \boldsymbol{V}\rangle) \mathrm{i} .\end{aligned}$
In summary, we have proved
Lemma 3.1??Suppose $\eta=\tau\left(\frac{1}{\sqrt{2}}(\boldsymbol{Z}+\boldsymbol{V} \mathrm{j})\right)$: UQn+1 is an immersion. Then η is horizontal with respect to π: Qn+1Bn+1 if and only if
$\langle\mathrm{d} \boldsymbol{Z}, \boldsymbol{Z}\rangle+\langle\mathrm{d} \boldsymbol{V}, \boldsymbol{V}\rangle=0.$ (7)
Step 2??Let ψ: MBn+1 be an immersion of a surface M into Bn+1. We look for the condition under which ψ has a local horizontal lift to Qn+1.
Let $\eta=\tau \circ \boldsymbol{q}=\tau\left(\frac{1}{\sqrt{2}}(\boldsymbol{Z}+\boldsymbol{V} \mathrm{j})\right): U \rightarrow Q^{n+1}$ be any local lift of ψ, and η0 a horizontal lift of ψ. Recall that Bn+1 is defined as the quotient of Qn+1 under the U(1)-action eit·τ(q)=τ(eitq), then for any pU, η(p) and η0(p) lie in the same orbit. It follows that there is a map λ: UU(1) such that η0(p)=λ(pη(p) for all pU. In short,
$\eta_{0}=\lambda \cdot \eta=\boldsymbol{\tau}\left(\frac{1}{\sqrt{2}}(\lambda \boldsymbol{Z}+\lambda \boldsymbol{V} \mathrm{j})\right).$ (8)
Since η0 is horizontal, we apply Lemma 1 to obtain
$\begin{aligned}0 &=\langle\mathrm{d}(\lambda \boldsymbol{Z}), \lambda \boldsymbol{Z}\rangle+\langle\mathrm{d}(\lambda \boldsymbol{V}), \lambda \boldsymbol{V}\rangle \\&=\langle\mathrm{d} \lambda \cdot \boldsymbol{Z}+\lambda \mathrm{d} \boldsymbol{Z}, \lambda \boldsymbol{Z}\rangle+\langle\mathrm{d} \lambda \cdot \boldsymbol{V}+\lambda \mathrm{d} \boldsymbol{V}, \lambda \boldsymbol{V}\rangle \\&=\lambda \mathrm{d} \bar{\lambda}(\langle\boldsymbol{Z}, \boldsymbol{Z}\rangle+\langle\boldsymbol{V}, \boldsymbol{V}\rangle)+\lambda \bar{\lambda}(\langle\mathrm{d} \boldsymbol{Z}, \boldsymbol{Z}\rangle+\langle\mathrm{d} \boldsymbol{V}, \boldsymbol{V}\rangle) \\&=-2 \bar{\lambda} \mathrm{d} \lambda+\langle\mathrm{d} \boldsymbol{Z}, \boldsymbol{Z}\rangle+\langle\mathrm{d} \boldsymbol{V}, \boldsymbol{V}\rangle.\end{aligned}$
Here we have used λλ=1 and λdλ+λdλ=0. Since λdλ=λ-1dλ=d(logλ) we get
$2 \mathrm{~d}(\log \lambda)=\langle\mathrm{d} \boldsymbol{Z}, \boldsymbol{Z}\rangle+\langle\mathrm{d} \boldsymbol{V}, \boldsymbol{V}\rangle.$ (9)
If we take a local coordinate (x, y) on M, this amounts to
$\left\{\begin{array}{l}2 \frac{\partial \log {\lambda}}{\partial x}=\left\langle\boldsymbol{Z}_{x}, \boldsymbol{Z}\right\rangle+\left\langle\boldsymbol{V}_{x}, \boldsymbol{V}\right\rangle, \\2 \frac{\partial \log \lambda}{\partial y}=\left\langle\boldsymbol{Z}_{y}, \boldsymbol{Z}\right\rangle+\left\langle\boldsymbol{V}_{y}, \boldsymbol{V}\right\rangle,\end{array}\right.$ (10)
where $\boldsymbol{Z}_{x}=\frac{\partial \boldsymbol{Z}}{\partial x}, \boldsymbol{Z}_{y}=\frac{\partial \boldsymbol{Z}}{\partial y}$, etc. This is a system of first-order PDEs inλ. By the Frobenius theorem for PDEs, an initial value problem of such a system is solvable if and only if the integrability condition
$\frac{\partial}{\partial y}\left(\frac{\partial \log \lambda}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial \log \lambda}{\partial y}\right),$
that is,
$\frac{\partial}{\partial y}\left(\left\langle\boldsymbol{Z}_{x}, \boldsymbol{Z}\right\rangle+\left\langle\boldsymbol{V}_{x}, \boldsymbol{V}\right\rangle\right)=\frac{\partial}{\partial x}\left(\left\langle\boldsymbol{Z}_{y}, \boldsymbol{Z}\right\rangle+\left\langle\boldsymbol{V}_{y}, \boldsymbol{V}\right\rangle\right)$
holds. This equation simplifies to
$\left\langle\boldsymbol{Z}_{x}, \boldsymbol{Z}_{y}\right\rangle+\left\langle\boldsymbol{V}_{x}, \boldsymbol{V}_{y}\right\rangle=\left\langle\boldsymbol{Z}_{y}, \boldsymbol{Z}_{x}\right\rangle+\left\langle\boldsymbol{V}_{y}, \boldsymbol{V}_{x}\right\rangle .$ (11)
Thus we obtain
Lemma 3.2??Suppose $ \psi=\pi \circ \tau\left(\frac{1}{\sqrt{2}}(\boldsymbol{Z}+\right.\boldsymbol{V}\text{ j) ) }$: MBn+1 is an immersion. Then ψ has local horizontal lifts to Qn+1 if and only if (11) holds.
Step 3??Let $\psi=\pi \circ \tau \circ q: M \rightarrow B^{n+1}$, where q=$\frac{1}{\sqrt{2}}(\boldsymbol{Z}+\boldsymbol{V} \mathrm{j}): M \rightarrow \tau^{-1}\left(Q^{n+1}\right) \subset S^{4 n+7}$. We shall find out the equation for ψ to be totally real.
We have
$\begin{aligned}\mathrm{d} \psi &=\mathrm{d} \pi \mathrm{d} \boldsymbol{\tau} \mathrm{d} \boldsymbol{q} \\&=\mathrm{d} \pi \mathrm{d} \boldsymbol{\tau}(\mathrm{d} \boldsymbol{q}-\boldsymbol{q}\langle\boldsymbol{q}, \mathrm{d} \boldsymbol{q}\rangle-\mathrm{i} \boldsymbol{q}\langle\mathrm{i} \boldsymbol{q}, \mathrm{d} \boldsymbol{q}\rangle) \\&=\mathrm{d} \pi \mathrm{d} \boldsymbol{\tau}\left(\mathrm{d} \boldsymbol{q}^{\mathcal{H}}\right),\end{aligned}$ (12)
where $\mathrm{d} \boldsymbol{q}^{\mathcal{H}}=\mathrm{d} \boldsymbol{q}-\boldsymbol{q}\langle\boldsymbol{q}, \mathrm{d} \boldsymbol{q}\rangle-\mathrm{i} \boldsymbol{q}\langle\mathrm{i} \boldsymbol{q}, \mathrm{d} \boldsymbol{q}\rangle$ is the orthogonal projection of dq onto $\tau_{\boldsymbol{q}}^{-1} \mathcal{H}_{\tau(\boldsymbol{q})}$. In other words, $\mathrm{d} \boldsymbol{q}^{\mathcal{H}}=\tau_{\boldsymbol{q}}^{-1} {\pi}_{\tau(\boldsymbol{q})}^{-1}(\mathrm{~d} \psi)$.
Choose a local coordinate (x, y) on M. Then, using the definitions of the tensors φ, J (see (5)), and the fact that τ, π are Riemannian submersions, we obtain
ψ is totally real
$\begin{aligned}\Leftrightarrow 0 &=\left\langle\psi_{x}, J \psi_{y}\right\rangle_{B^{n+1}} \\&=\left\langle\pi_{\boldsymbol{\tau}(\boldsymbol{q})}^{-1} \psi_{x}, \pi_{\boldsymbol{\tau}(\boldsymbol{q})}^{-1} J \psi_{y}\right\rangle_{Q^{n+1}} \\&=\left\langle{\pi}_{\boldsymbol{\tau}(\boldsymbol{q})}^{-1} \psi_{x}, {\varphi} \pi_{\boldsymbol{\tau}(\boldsymbol{q})}^{-1} \psi_{y}\right\rangle_{Q^{n+1}} \\&=\left\langle\boldsymbol{\tau}_{\boldsymbol{q}}^{-1} \pi_{\boldsymbol{\tau}(\boldsymbol{q})}^{-1} \psi_{x}, \boldsymbol{\tau}_{\boldsymbol{q}}^{-1} \varphi \pi_{\boldsymbol{\tau}(\boldsymbol{q})}^{-1} \psi_{y}\right\rangle_{\mathbb{R}} \\&=\left\langle\boldsymbol{\tau}_{\boldsymbol{q}}^{-1} \pi_{\boldsymbol{\tau}(\boldsymbol{q})}^{-1} \psi_{x},-\mathrm{i} \cdot \boldsymbol{\tau}_{\boldsymbol{q}}^{-1} \pi_{\boldsymbol{\tau}(\boldsymbol{q})}^{-1} \psi_{y}\right\rangle_{\mathbb{R}} \\&=\left\langle\boldsymbol{q}_{x}^{\mathcal{H}},-\mathrm{i} \boldsymbol{q}_{y}^{\mathcal{H}}\right\rangle_{\mathbb{R}} .\end{aligned}$ (13)
Since $\left\langle\boldsymbol{q}_{x}^{\mathcal{H}}, \mathrm{i} \boldsymbol{q}_{y}^{\mathcal{H}}\right\rangle_{\mathbb{R}}=\operatorname{Re}\left\langle\boldsymbol{q}_{x}^{\mathcal{H}}, \mathrm{i} \boldsymbol{q}_{y}^{\mathcal{H}}\right\rangle$, let us calculate $\left\langle\boldsymbol{q}_{x}^{\mathcal{H}}, \mathrm{i} \boldsymbol{q}_{y}^{\mathcal{H}}\right\rangle$ first. Now
For the second step note that qτ-1(Qn+1) implies 〈q, iq〉=0. Differentiating〈q, q〉=1 yields
$\begin{aligned}0 &=\left\langle\boldsymbol{q}_{x}, \boldsymbol{q}\right\rangle+\left\langle\boldsymbol{q}, \boldsymbol{q}_{x}\right\rangle \\&=\left\langle\boldsymbol{q}_{x}, \boldsymbol{q}\right\rangle+\overline{\left\langle\boldsymbol{q}_{x}, \boldsymbol{q}\right\rangle},\end{aligned}$
i.e., 〈qx, q〉∈Im$\mathbb{H}$. Similarly, differentiating 〈q, iq〉=0 yields
$\begin{aligned}0 &=\left\langle\boldsymbol{q}_{y}, \mathrm{i} \boldsymbol{q}\right\rangle+\left\langle\boldsymbol{q}, \mathrm{i} \boldsymbol{q}_{y}\right\rangle \\&=-\left\langle\mathrm{i} \boldsymbol{q}_{y}, \boldsymbol{q}\right\rangle+\left\langle\boldsymbol{q}, \mathrm{i} \boldsymbol{q}_{y}\right\rangle \\&=-\overline{\left\langle\boldsymbol{q}, \mathrm{i} \boldsymbol{q}_{y}\right\rangle}+\left\langle\boldsymbol{q}, \mathrm{i} \boldsymbol{q}_{y}\right\rangle,\end{aligned}$
i.e., 〈q, iqy〉∈$\mathbb{R}$. Therefore〈qx, q〉〈q, iqy〉∈Im$\mathbb{H}$. Similarly 〈qx, iq〉〈iq, iqy〉∈Im$\mathbb{H}$. Thus we get
$\begin{aligned}& 2\left\langle\boldsymbol{q}_{x}^{\mathcal{H}}, \mathrm{i} \boldsymbol{q}_{y}^{\mathcal{H}}\right\rangle_{\mathbb{R}} \\=& 2 \operatorname{Re}\left\langle\boldsymbol{q}_{x}^{\mathcal{H}}, \mathrm{i} \boldsymbol{q}_{y}^{\mathcal{H}}\right\rangle \\=& 2 \operatorname{Re}\left\langle\boldsymbol{q}_{x}, \mathrm{i} \boldsymbol{q}_{y}\right\rangle \\=& \operatorname{Re}\left\langle\boldsymbol{Z}_{x}+\boldsymbol{V}_{x} \mathrm{j}, \boldsymbol{Z}_{y} \mathrm{i}+\boldsymbol{V}_{y} \mathrm{k}\right\rangle \\=& \operatorname{Re}\left(\left\langle\boldsymbol{Z}_{x}, \boldsymbol{Z}_{y}\right\rangle \mathrm{i}-\left\langle\boldsymbol{V}_{y}, \boldsymbol{V}_{x}\right\rangle \mathrm{i}\right) \\=& \operatorname{Im}\left(\left\langle\boldsymbol{V}_{y}, \boldsymbol{V}_{x}\right\rangle-\left\langle\boldsymbol{Z}_{x}, \boldsymbol{Z}_{y}\right\rangle\right) .\end{aligned}$ (14)
Finally, from (13) and (14) we obtain
Lemma 3.3??$\psi=\pi \circ \tau\left(\frac{1}{\sqrt{2}}(\boldsymbol{Z}+\boldsymbol{V} \mathrm{j})\right): \boldsymbol{M}$Bn+1 is totally real if and only if
$\operatorname{Im}\left(\left\langle\boldsymbol{V}_{y}, \boldsymbol{V}_{x}\right\rangle-\left\langle\boldsymbol{Z}_{x}, \boldsymbol{Z}_{y}\right\rangle\right)=0,$
or equivalently,
$\left\langle\boldsymbol{V}_{y}, \boldsymbol{V}_{x}\right\rangle-\left\langle\boldsymbol{Z}_{x}, \boldsymbol{Z}_{y}\right\rangle=\left\langle\boldsymbol{V}_{x}, \boldsymbol{V}_{y}\right\rangle-\left\langle\boldsymbol{Z}_{y}, \boldsymbol{Z}_{x}\right\rangle$ (15)
Comparing with Lemma 3.2, we find that ψ have a local horizontal lift to Qn+1 if and only if it is totally real.
Step 4??We need a simple lemma.
Lemma 3.4??Suppose $\pi: \bar{N} \rightarrow N$ is a Riemannian submersion, $\bar{M} \subset \bar{N}$ is a horizontal submanifold, and $M=\pi(\bar{M}) \subset N$. Then
$\boldsymbol{H}_{M}(\pi(p))=\pi_{*}\left(\boldsymbol{H}_{\bar{M}}(p)\right)$
for any pM. Furthermore, HM is horizontal. Here HM, HM are the mean curvature vectors of M, M, respectively.
Proof??Let e1, …, em be an orthonormal frame on M, then, since $\left.\pi\right|_{\bar{M}}: \bar{M} \rightarrow M$ is an isometry, e1=π*(e1), , em=π*(em) is an orthonormal frame on M. By O'Neil's formula, $\nabla_{\bar{\boldsymbol{e}}_{i}}^{\bar{N}} \bar{\boldsymbol{e}}_{i}$ is the horizontal lift of $\nabla_{\boldsymbol{e}_{i}}^{N} \boldsymbol{e}_{i}$, hence horizontal, and $\boldsymbol{B}_{\bar{M}}\left(\overline{\boldsymbol{e}}_{i}, \overline{\boldsymbol{e}}_{i}\right)$=$\nabla_{\overline{\boldsymbol{e}}_{i}}^{\bar{N}} \overline{\boldsymbol{e}}_{i}-\nabla_{\overline{\boldsymbol{e}}_{i}}^{\bar{M}} \overline{\boldsymbol{e}}_{i}$ is also horizontal. Thus HM=$\sum\limits_{i} \boldsymbol{B}_{\bar{M}}\left(\overline{\boldsymbol{e}}_{i}, \overline{\boldsymbol{e}}_{i}\right)$ is horizontal. On the other hand,
$\begin{aligned}\nabla_{\boldsymbol{e}_{i}}^{N} \boldsymbol{e}_{i} &=\pi_{*}\left(\nabla_{\bar{\boldsymbol{e}}_{i}}^{\bar{N}} \overline{\boldsymbol{e}}_{i}\right) \\&=\pi_{*}\left(\nabla_{\bar{\boldsymbol{e}}}^{\bar{M}} \overline{\boldsymbol{e}}_{i}+\boldsymbol{B}_{\bar{M}}\left(\overline{\boldsymbol{e}}_{i}, \overline{\boldsymbol{e}}_{i}\right)\right) \\&=\nabla_{\boldsymbol{e}_{i}}^{M} \boldsymbol{e}_{i}+\pi_{*}\left(\boldsymbol{B}_{\bar{M}}\left(\overline{\boldsymbol{e}}_{i}, \overline{\boldsymbol{e}}_{i}\right)\right).\end{aligned}$ (16)
Comparing with the Gauss equation in N, we find that
$\boldsymbol{B}_{M}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{i}\right)=\pi_{*}\left(\boldsymbol{B}_{\bar{M}}\left(\overline{\boldsymbol{e}}_{i}, \overline{\boldsymbol{e}}_{i}\right)\right).$ (17)
The conclusion follows immediately.
From the above lemma, we see that HM=$0 \Leftrightarrow \boldsymbol{H}_{\bar{M}}=0$. That is, $M {\rm { minimal }} \Leftrightarrow \bar{M} \rm { minimal }$. This applies to our situation and the main theorem is fully proved.

References
[1] Calabi E. Minimal immersions of surfaces in Euclidean spheres[J]. Journal of Differential Geometry, 1967, 1(1): 111-125.
[2] Bolton J, Jensen G R, Rigoli M, et al. On conformal minimal immersions of S2 into $\mathbb{C}$Pn[J]. Mathematische Annalen, 1988, 279(4): 599-620. DOI:10.1007/BF01458531
[3] He Y, Wang C. Totally real minimal 2-spheres in quaternionic projective space[J]. Science in China. Series A. Mathematics, 2005, 48(3): 341-349. DOI:10.1360/03ys0295
[4] Berndt J. Riemannian geometry of complex two-plane Grassmannians[J]. Rendiconti del Seminario Matematico. Università e Politecnico Torino, 1997, 55(1): 19-83.
[5] Reckziegel H. Horizontal lifts of isometric immersions into the bundle space of a pseudo-Riemannian submersion[C]//Ferus D, Gardner R B, Helgason S, et al. Global differential geometry and global analysis 1984. Berlin: Springer, 1985: 264-279.
[6] Petersen P. Riemannian geometry[M]. 3rd ed. Berlin: Springer, 2016.


相关话题/北京 科学学院 数学 中国科学院大学 流形

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 北京市怀沙河污染现状及主要污染源分析
    李昶,吴丽,何裕建中国科学院大学化学科学学院,北京1000492019年5月29日收稿;2019年9月11日收修改稿基金项目:国家重点研究发展计划(2016YFF0203700)、国家自然科学基金(51772289,21778054,51972302)、中国科学院化学研究所科教融合资金(Y52902 ...
    本站小编 Free考研考试 2021-12-25
  • 城市河岸带的斑块组成和空间分布对小气候的影响——以北京永定河河岸带为例
    王昕1,张娜1,2,乐荣武1,郑潇柔1,31.中国科学院大学资源与环境学院,北京101408;2.燕山地球关键带与地表通量观测研究站,北京101408;3.中国科学院深圳先进技术研究院空间信息研究中心,广东深圳5180552019年3月22日收稿;2019年5月8日收修改稿基金项目:北京市自然科学基 ...
    本站小编 Free考研考试 2021-12-25
  • 2015年田径锦标赛和大阅兵活动期间北京市NOx浓度特征
    程念亮1,2,3,张大伟1,李云婷1,陈添4,孙峰1,李令军1,程兵芬2,31.北京市环境保护监测中心大气颗粒物监测技术北京市重点实验室,北京100048;2.北京师范大学水科学研究院,北京100875;3.中国环境科学研究院,北京100012;4.北京市环境保护局,北京1000482016年01月 ...
    本站小编 Free考研考试 2021-12-25
  • 复Grassman流形中齐性三维球面的一种构造
    何思,肖良中国科学院大学数学科学学院,北京1000492014年11月14日收稿;2015年03月17日收修改稿基金项目:国家自然科学基金(11331002)资助通信作者:E-mail:hesi12@mails.ucas.ac.cnE-mail:lxiao@ucas.ac.cn摘要:证明复Grass ...
    本站小编 Free考研考试 2021-12-25
  • 机动车燃油质量及尾气排放与北京市大气污染的相关性
    杨昆昊1,夏赞宇1,何芃2,吴丽1,龚玲玲1,钱越英3,侯琰霖1,何裕建11.中国科学院大学化学与化工学院,北京101408;2.同济大学化学系,上海200092;3.中国科学院理化技术研究所,北京1001902016年05月31日收稿;2016年12月01日收修改稿基金项目:国家自然科学基金(21 ...
    本站小编 Free考研考试 2021-12-25
  • 基于投入产出模型的北京市生产性服务业与制造业互动关系
    王红杰1,2,3,鲍超1,2,3,郭嘉颖3,41.中国科学院地理科学与资源研究所,北京100101;2.中国科学院区域可持续发展分析与模拟重点实验室,北京100101;3.中国科学院大学资源与环境学院,北京100049;4.中国科学院南京地理与湖泊研究所,南京2100082017年08月08日收稿; ...
    本站小编 Free考研考试 2021-12-25
  • 北京张坊地区中上元古界中岩溶发育与构造作用
    刘建明1,张玉修1,曾璐1,琚宜文1,芮小平2,乔小娟11.中国科学院大学地球与行星科学学院,北京100049;2.中国科学院大学资源与环境学院,北京1000492017年11月3日收稿;2018年3月23日收修改稿基金项目:北京岩溶水资源勘查评价工程项目(BJYRS-ZT-03)和中国科学院大学校 ...
    本站小编 Free考研考试 2021-12-25
  • 热力耦合问题数学均匀化方法的物理意义*
    复合材料具有比强度高、比刚度大等优点,广泛应用于航天、航空工业领域。众所周知,对于很多复合材料的宏观解,如低阶频率和模态,可以使用等应变模型或等应力模型[1]及其他均匀化方法[2]求解,但相对于宏观应力分析,细观结构分析要复杂很多。为了在计算精度和效率之间达到平衡,各种多尺度方法相继被提出,如数学均 ...
    本站小编 Free考研考试 2021-12-25
  • 民机横航向静稳定性适航符合性数学仿真评估*
    横航向静稳定性是评定飞机操稳特性的重要指标之一。横向静稳定性是指飞机在平衡状态受到外界非对称扰动产生小量滚转角Δ?后,具有自动恢复机翼水平姿态的趋势,判据为无量纲横向静稳定性导数Clβ<0。航向静稳定性是指飞机在平衡状态受到外界非对称扰动产生小量侧滑角Δβ后,具有自动消除侧滑运动的趋势,判据为无量纲 ...
    本站小编 Free考研考试 2021-12-25
  • 民机起飞爬升梯度适航符合性数学仿真评估*
    为了保障飞行安全,飞机起飞离地后需要迅速拉起爬升加速至起飞安全速度,达到10.5m的起飞安全高度,进入起飞爬升阶段并继续爬升至离地高度不低于450m。爬升梯度定义为飞机爬升的高度与飞过的水平距离的比值[1]。民机起飞阶段和起飞爬升阶段的爬升梯度反映了飞机超越地面障碍物并爬升到安全飞行高度的能力。根据 ...
    本站小编 Free考研考试 2021-12-25