School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Received 20 November 2019; Revised 4 February 2020
Foundation items: Supported by the National Natural Science Foundation of China (11871450)
Corresponding author: XIN Jialin, E-mail: xinjialin17@mails.ucas.ac.cn
Abstract: We present a construction of the complex Grassmannian G(2, n+2) as a quotient of some minimal submanifold Qn+1 of
Keywords: Grassmanniantotally real surfacehorizontal lift
复Grassmann流形中全实曲面的构造
焦晓祥, 辛嘉麟
中国科学院大学数学科学学院, 北京 100049
摘要: 给出复Grassmann流形G(2,n+2)的全实曲面的一种构造方法,也就是把G(2,n+2)看作
关键词: Grassmann流形全实曲面水平提升
The theory of minimal surfaces is an important part of modern differential geometry. The theory is particularly fruitful when the ambient space is a symmetric space. Calabi[1] proved a rigidity theorem for minimal two-spheres of constant curvature in Sn. Bolton et al.[2] constructed all the minimal two-spheres of constant curvature in
In this paper, we present a construction of the complex Grassmannian G(2, n+2) due to Berndt[4], which considers G(2, n+2) as a quotient of some minimal submanifold Qn+1 of
Our result is a special case of Ref.[5], where the author considered a general Riemannian submersion N→B, and characterized the existence of horizontal lifts of a submanifold of B using a family J of (1, 1)-tensors on B. In our paper, we make use of the fact that the projection Qn+1→G(2, n+2) is a principal bundle, thus obtain a characterization by a first order PDE. Our method is largely inspired by Ref.[3], where the authors considered the Riemannian submersion S4n+3→
1 PreliminariesWe denote by
$\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=-1,$ |
$\mathrm{ij}=\mathrm{k}=-\mathrm{ji}, \mathrm{jk}=\mathrm{i}=-\mathrm{kj}, \mathrm{ki}=\mathrm{j}=-\mathrm{ik} .$ |
$\mathbb{R}=\mathbb{R} \cdot 1 \subset \mathbb{H}, \quad \mathbb{C}=\mathbb{R} \cdot 1 \oplus \mathbb{R} \cdot \mathrm{i} \subset \mathbb{H},$ |
Conjugation is defined for quaternions:
$\overline{a+b \mathrm{i}+c \mathrm{j}+d \mathrm{k}}=a-b \mathrm{i}-c \mathrm{j}-d \mathrm{k}(a, b, c, d \in \mathbb{R}).$ |
$\overline{z+w \mathrm{j}}=\bar{z}-w \mathrm{j}(z, w \in \mathbb{C}).$ |
Let
$\langle\boldsymbol{p}, \boldsymbol{q}\rangle_{\mathbb{H}}=\sum\limits_{l} \bar{p}_{l} q_{l},\langle\boldsymbol{p}, \boldsymbol{q}\rangle_{\mathbb{R}}=\operatorname{Re}\langle\boldsymbol{p}, \boldsymbol{q}\rangle_{\mathbb{H}}.$ |
$\langle\boldsymbol{p} x, \boldsymbol{q} y\rangle_{\mathbb{H}} =\bar{x}\langle\boldsymbol{p}, \boldsymbol{q}\rangle_{\mathbb{H}} y, $ |
$\langle\boldsymbol{p}, \boldsymbol{q}\rangle_{\mathbb{H}} =\overline{\langle\boldsymbol{q}, \boldsymbol{p}\rangle}_{\mathbb{H}},$ |
Similarly, for z=(z1, …, zn)t, w=(w1, …, wn)t∈
$\langle \boldsymbol{z}, \boldsymbol{w}\rangle_{\mathbb{C}}=\sum\limits_{1} \overline{\mathrm{z}}_{1} \mathrm{w}_{1},\langle \boldsymbol{z}, \boldsymbol{w}\rangle_{\mathbb{R}}=\operatorname{Re}\langle \boldsymbol{z}, \boldsymbol{w}\rangle_{\mathbb{C}}.$ |
Next we consider the quaternion projective space
2 The submanifold Qn+1?
SU(n+2) acts on S4n+7?
$S U(n+2) \times S^{4 n+7} \rightarrow S^{4 n+7}, $ |
$(\boldsymbol{A}, \boldsymbol{z}+\boldsymbol{v} \mathrm{j}) \mapsto \boldsymbol{A} \boldsymbol{z}+(\boldsymbol{A} \boldsymbol{v}) \mathrm{j},$ |
By some straightforward calculations, we find that this SU(n+2)-action on
$\mathbb{C} P^{n+1}=\left\{\boldsymbol{\tau}(\boldsymbol{z}+0 \cdot \mathrm{j}) \mid \boldsymbol{z} \in S^{2 n+3}\right\},$ | (1) |
$\begin{aligned}Q^{n+1} &=\{\boldsymbol{\tau}((1 / \sqrt{2})(\boldsymbol{z}+\boldsymbol{v} \mathrm{j})) \mid \boldsymbol{z},\\\boldsymbol{v} &\left.\in S^{2 n+3},\langle \boldsymbol{z}, \boldsymbol{v}\rangle=0\right\},\end{aligned}$ | (2) |
We have the following proposition from Ref.[4]:
Proposition 2.1??The singular orbits of the SU(n+2)-action on
Now consider an action of U(1) on Qn+1:
$U(1) \times Q^{n+1} \rightarrow Q^{n+1},\left(\mathrm{e}^{\mathrm{i} t}, \boldsymbol{\tau}(\boldsymbol{q})\right) \mapsto \boldsymbol{\tau}\left(\mathrm{e}^{\mathrm{i} t} \boldsymbol{q}\right),$ |
$\begin{aligned}\boldsymbol{\xi}_{\boldsymbol{\tau}(\boldsymbol{q})} &=\left.\frac{\mathrm{d}}{\mathrm{d} t}\right|_{t=0} \mathrm{e}^{\mathrm{i} t} \cdot \boldsymbol{\tau}(\boldsymbol{q})=\left.\frac{\mathrm{d}}{\mathrm{d} t}\right|_{t=0} \boldsymbol{\tau}\left(\mathrm{e}^{\mathrm{i} t} \boldsymbol{q}\right) \\&=\mathrm{d} \boldsymbol{\tau}_{\boldsymbol{q}}(\mathrm{i} \boldsymbol{q})=\boldsymbol{\tau}_{\boldsymbol{q}}(\mathrm{i} \boldsymbol{q}).\end{aligned}$ | (3) |
Let Bn+1=Qn+1/U(1). Since U(1) acts on Qn+1 isometrically, there is a unique Riemannian metric on Bn+1 such that the natural projection π: Qn+1→Bn+1 is a Riemannian submersion.
For τ(q)∈Qn+1, let
$\boldsymbol{\tau}_{\boldsymbol{q}}^{-1} \mathcal{H}_{\boldsymbol{\tau}(\boldsymbol{q})}=\left\{\boldsymbol{X} \in \mathbb{H}^{n+2} \mid\langle\boldsymbol{X}, \boldsymbol{q}\rangle=\langle\boldsymbol{X}, \mathrm{i} \boldsymbol{q}\rangle=0\right\}.$ | (4) |
$\varphi X= \begin{cases}0, & \boldsymbol{X}=\boldsymbol{\xi}, \\ \boldsymbol{\tau}_{\boldsymbol{q}}\left(-\mathrm{i} \cdot \boldsymbol{\tau}_{\boldsymbol{q}}^{-1}(\boldsymbol{X})\right), & \boldsymbol{X} \in \mathcal{H}_{\boldsymbol{\tau}(\boldsymbol{q})} .\end{cases}$ | (5) |
Finally, notice that φ commutes with the U(1)-action on Qn+1. In other words, if Lt denotes the map Qn+1→Qn+1,
$G(2, n+2)=U(n+2) / U(2) \times U(n),$ |
$\langle\boldsymbol{X}, \boldsymbol{Y}\rangle=-\frac{1}{4} \operatorname{tr}(\boldsymbol{X} \boldsymbol{Y}),(\boldsymbol{X}, \boldsymbol{Y} \in \mathfrak{U}(n+2)).$ |
Remark??The isometry between G(2, n+2) and Bn+1 can be explicitly given as
$G(2, n+2) \rightarrow B^{n+1},$ |
$\mathbb{C} \boldsymbol{z} \oplus \mathbb{C} \boldsymbol{v} \mapsto \boldsymbol{\pi}\left(\boldsymbol{\tau}\left(\frac{1}{\sqrt{2}}(\boldsymbol{z}+\boldsymbol{v} \mathrm{j})\right)\right),$ |
3 The main theoremDefinition 3.1??Suppose N is a Hermitian manifold, J is its complex structure, f: M→N is an immersion from a surface M to N. Then f is called totally real if J Im f*p⊥Imf*p for all p∈M.
If we choose a local frame X, Y for M, then fis totally real if and only if Jf*X⊥f*Y everywhere. This follows easily from the Hermitian condition 〈Ju, Jv〉=〈u, v〉, J2=-1, where 〈, 〉 is the Riemannian metric on N.
Now we can state our main result.
Theorem 3.1??Suppose M is a surface, ψ: M→Bn+1 an immersion, then the following are equivalent:
1) ψ is totally real;
2) ψ has local horizontal lifts to Qn+1, that is, for any p∈M, there is a neighborhood U of p, and an immersion η: U→Qn+1, such that
Furthermore, η is minimal in Qn+1 if and only if ψ is minimal in Bn+1.
We prove the theorem step by step.
Step 1??Let U be an open subset of M, η: U→Qn+1 an immersion, we shall find a sufficient and necessary condition for η to be horizontal.
First, since τ: S4n+7→
$\begin{aligned}\mathrm{d} \eta &=\mathrm{d} \boldsymbol{\tau} \mathrm{d} \boldsymbol{q} \\&=\mathrm{d} \boldsymbol{\tau}(\mathrm{d} \boldsymbol{q}-\boldsymbol{q}\langle\boldsymbol{q}, \mathrm{d} \boldsymbol{q}\rangle),\end{aligned}$ | (6) |
Recall from the last section that
η is horizontal with respect to π
For the last equivalence note that q∈τ-1(Qn+1) implies 〈q, iq〉=0.
Write
$\left\{\begin{array}{l}\langle\mathrm{d} \boldsymbol{V}, \boldsymbol{V}\rangle+\langle\boldsymbol{V}, \mathrm{d} \boldsymbol{V}\rangle=0, \\\langle\mathrm{d} \boldsymbol{Z}, \boldsymbol{V}\rangle+\langle\boldsymbol{Z}, \mathrm{d} \boldsymbol{V}\rangle=0.\end{array}\right.$ |
$\begin{aligned}\langle&\mathrm{d} \boldsymbol{q}, \mathrm{i} \boldsymbol{q}\rangle=0 \\\Leftrightarrow 0=&\langle\mathrm{d} \boldsymbol{Z}+\mathrm{d} \boldsymbol{V} \cdot \mathrm{j}, \boldsymbol{Z} \mathrm{i}+\boldsymbol{V} \boldsymbol{\mathrm { k }}\rangle \\=&(\langle\mathrm{d} \boldsymbol{Z}, \boldsymbol{Z}\rangle-\langle\boldsymbol{V}, \mathrm{d} \boldsymbol{V}\rangle) \mathrm{i}+\\&(\langle\boldsymbol{Z}, \mathrm{d} \boldsymbol{V}\rangle+\langle\mathrm{d} \boldsymbol{Z}, \boldsymbol{V}\rangle) \mathrm{k} \\=&(\langle\mathrm{d} \boldsymbol{Z}, \boldsymbol{Z}\rangle+\langle\mathrm{d} \boldsymbol{V}, \boldsymbol{V}\rangle) \mathrm{i} .\end{aligned}$ |
Lemma 3.1??Suppose
$\langle\mathrm{d} \boldsymbol{Z}, \boldsymbol{Z}\rangle+\langle\mathrm{d} \boldsymbol{V}, \boldsymbol{V}\rangle=0.$ | (7) |
Let
$\eta_{0}=\lambda \cdot \eta=\boldsymbol{\tau}\left(\frac{1}{\sqrt{2}}(\lambda \boldsymbol{Z}+\lambda \boldsymbol{V} \mathrm{j})\right).$ | (8) |
$\begin{aligned}0 &=\langle\mathrm{d}(\lambda \boldsymbol{Z}), \lambda \boldsymbol{Z}\rangle+\langle\mathrm{d}(\lambda \boldsymbol{V}), \lambda \boldsymbol{V}\rangle \\&=\langle\mathrm{d} \lambda \cdot \boldsymbol{Z}+\lambda \mathrm{d} \boldsymbol{Z}, \lambda \boldsymbol{Z}\rangle+\langle\mathrm{d} \lambda \cdot \boldsymbol{V}+\lambda \mathrm{d} \boldsymbol{V}, \lambda \boldsymbol{V}\rangle \\&=\lambda \mathrm{d} \bar{\lambda}(\langle\boldsymbol{Z}, \boldsymbol{Z}\rangle+\langle\boldsymbol{V}, \boldsymbol{V}\rangle)+\lambda \bar{\lambda}(\langle\mathrm{d} \boldsymbol{Z}, \boldsymbol{Z}\rangle+\langle\mathrm{d} \boldsymbol{V}, \boldsymbol{V}\rangle) \\&=-2 \bar{\lambda} \mathrm{d} \lambda+\langle\mathrm{d} \boldsymbol{Z}, \boldsymbol{Z}\rangle+\langle\mathrm{d} \boldsymbol{V}, \boldsymbol{V}\rangle.\end{aligned}$ |
$2 \mathrm{~d}(\log \lambda)=\langle\mathrm{d} \boldsymbol{Z}, \boldsymbol{Z}\rangle+\langle\mathrm{d} \boldsymbol{V}, \boldsymbol{V}\rangle.$ | (9) |
$\left\{\begin{array}{l}2 \frac{\partial \log {\lambda}}{\partial x}=\left\langle\boldsymbol{Z}_{x}, \boldsymbol{Z}\right\rangle+\left\langle\boldsymbol{V}_{x}, \boldsymbol{V}\right\rangle, \\2 \frac{\partial \log \lambda}{\partial y}=\left\langle\boldsymbol{Z}_{y}, \boldsymbol{Z}\right\rangle+\left\langle\boldsymbol{V}_{y}, \boldsymbol{V}\right\rangle,\end{array}\right.$ | (10) |
$\frac{\partial}{\partial y}\left(\frac{\partial \log \lambda}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial \log \lambda}{\partial y}\right),$ |
$\frac{\partial}{\partial y}\left(\left\langle\boldsymbol{Z}_{x}, \boldsymbol{Z}\right\rangle+\left\langle\boldsymbol{V}_{x}, \boldsymbol{V}\right\rangle\right)=\frac{\partial}{\partial x}\left(\left\langle\boldsymbol{Z}_{y}, \boldsymbol{Z}\right\rangle+\left\langle\boldsymbol{V}_{y}, \boldsymbol{V}\right\rangle\right)$ |
$\left\langle\boldsymbol{Z}_{x}, \boldsymbol{Z}_{y}\right\rangle+\left\langle\boldsymbol{V}_{x}, \boldsymbol{V}_{y}\right\rangle=\left\langle\boldsymbol{Z}_{y}, \boldsymbol{Z}_{x}\right\rangle+\left\langle\boldsymbol{V}_{y}, \boldsymbol{V}_{x}\right\rangle .$ | (11) |
Lemma 3.2??Suppose
Step 3??Let
We have
$\begin{aligned}\mathrm{d} \psi &=\mathrm{d} \pi \mathrm{d} \boldsymbol{\tau} \mathrm{d} \boldsymbol{q} \\&=\mathrm{d} \pi \mathrm{d} \boldsymbol{\tau}(\mathrm{d} \boldsymbol{q}-\boldsymbol{q}\langle\boldsymbol{q}, \mathrm{d} \boldsymbol{q}\rangle-\mathrm{i} \boldsymbol{q}\langle\mathrm{i} \boldsymbol{q}, \mathrm{d} \boldsymbol{q}\rangle) \\&=\mathrm{d} \pi \mathrm{d} \boldsymbol{\tau}\left(\mathrm{d} \boldsymbol{q}^{\mathcal{H}}\right),\end{aligned}$ | (12) |
Choose a local coordinate (x, y) on M. Then, using the definitions of the tensors φ, J (see (5)), and the fact that τ, π are Riemannian submersions, we obtain
ψ is totally real
$\begin{aligned}\Leftrightarrow 0 &=\left\langle\psi_{x}, J \psi_{y}\right\rangle_{B^{n+1}} \\&=\left\langle\pi_{\boldsymbol{\tau}(\boldsymbol{q})}^{-1} \psi_{x}, \pi_{\boldsymbol{\tau}(\boldsymbol{q})}^{-1} J \psi_{y}\right\rangle_{Q^{n+1}} \\&=\left\langle{\pi}_{\boldsymbol{\tau}(\boldsymbol{q})}^{-1} \psi_{x}, {\varphi} \pi_{\boldsymbol{\tau}(\boldsymbol{q})}^{-1} \psi_{y}\right\rangle_{Q^{n+1}} \\&=\left\langle\boldsymbol{\tau}_{\boldsymbol{q}}^{-1} \pi_{\boldsymbol{\tau}(\boldsymbol{q})}^{-1} \psi_{x}, \boldsymbol{\tau}_{\boldsymbol{q}}^{-1} \varphi \pi_{\boldsymbol{\tau}(\boldsymbol{q})}^{-1} \psi_{y}\right\rangle_{\mathbb{R}} \\&=\left\langle\boldsymbol{\tau}_{\boldsymbol{q}}^{-1} \pi_{\boldsymbol{\tau}(\boldsymbol{q})}^{-1} \psi_{x},-\mathrm{i} \cdot \boldsymbol{\tau}_{\boldsymbol{q}}^{-1} \pi_{\boldsymbol{\tau}(\boldsymbol{q})}^{-1} \psi_{y}\right\rangle_{\mathbb{R}} \\&=\left\langle\boldsymbol{q}_{x}^{\mathcal{H}},-\mathrm{i} \boldsymbol{q}_{y}^{\mathcal{H}}\right\rangle_{\mathbb{R}} .\end{aligned}$ | (13) |
$\begin{aligned}0 &=\left\langle\boldsymbol{q}_{x}, \boldsymbol{q}\right\rangle+\left\langle\boldsymbol{q}, \boldsymbol{q}_{x}\right\rangle \\&=\left\langle\boldsymbol{q}_{x}, \boldsymbol{q}\right\rangle+\overline{\left\langle\boldsymbol{q}_{x}, \boldsymbol{q}\right\rangle},\end{aligned}$ |
$\begin{aligned}0 &=\left\langle\boldsymbol{q}_{y}, \mathrm{i} \boldsymbol{q}\right\rangle+\left\langle\boldsymbol{q}, \mathrm{i} \boldsymbol{q}_{y}\right\rangle \\&=-\left\langle\mathrm{i} \boldsymbol{q}_{y}, \boldsymbol{q}\right\rangle+\left\langle\boldsymbol{q}, \mathrm{i} \boldsymbol{q}_{y}\right\rangle \\&=-\overline{\left\langle\boldsymbol{q}, \mathrm{i} \boldsymbol{q}_{y}\right\rangle}+\left\langle\boldsymbol{q}, \mathrm{i} \boldsymbol{q}_{y}\right\rangle,\end{aligned}$ |
$\begin{aligned}& 2\left\langle\boldsymbol{q}_{x}^{\mathcal{H}}, \mathrm{i} \boldsymbol{q}_{y}^{\mathcal{H}}\right\rangle_{\mathbb{R}} \\=& 2 \operatorname{Re}\left\langle\boldsymbol{q}_{x}^{\mathcal{H}}, \mathrm{i} \boldsymbol{q}_{y}^{\mathcal{H}}\right\rangle \\=& 2 \operatorname{Re}\left\langle\boldsymbol{q}_{x}, \mathrm{i} \boldsymbol{q}_{y}\right\rangle \\=& \operatorname{Re}\left\langle\boldsymbol{Z}_{x}+\boldsymbol{V}_{x} \mathrm{j}, \boldsymbol{Z}_{y} \mathrm{i}+\boldsymbol{V}_{y} \mathrm{k}\right\rangle \\=& \operatorname{Re}\left(\left\langle\boldsymbol{Z}_{x}, \boldsymbol{Z}_{y}\right\rangle \mathrm{i}-\left\langle\boldsymbol{V}_{y}, \boldsymbol{V}_{x}\right\rangle \mathrm{i}\right) \\=& \operatorname{Im}\left(\left\langle\boldsymbol{V}_{y}, \boldsymbol{V}_{x}\right\rangle-\left\langle\boldsymbol{Z}_{x}, \boldsymbol{Z}_{y}\right\rangle\right) .\end{aligned}$ | (14) |
Lemma 3.3??
$\operatorname{Im}\left(\left\langle\boldsymbol{V}_{y}, \boldsymbol{V}_{x}\right\rangle-\left\langle\boldsymbol{Z}_{x}, \boldsymbol{Z}_{y}\right\rangle\right)=0,$ |
$\left\langle\boldsymbol{V}_{y}, \boldsymbol{V}_{x}\right\rangle-\left\langle\boldsymbol{Z}_{x}, \boldsymbol{Z}_{y}\right\rangle=\left\langle\boldsymbol{V}_{x}, \boldsymbol{V}_{y}\right\rangle-\left\langle\boldsymbol{Z}_{y}, \boldsymbol{Z}_{x}\right\rangle$ | (15) |
Step 4??We need a simple lemma.
Lemma 3.4??Suppose
$\boldsymbol{H}_{M}(\pi(p))=\pi_{*}\left(\boldsymbol{H}_{\bar{M}}(p)\right)$ |
Proof??Let e1, …, em be an orthonormal frame on M, then, since
$\begin{aligned}\nabla_{\boldsymbol{e}_{i}}^{N} \boldsymbol{e}_{i} &=\pi_{*}\left(\nabla_{\bar{\boldsymbol{e}}_{i}}^{\bar{N}} \overline{\boldsymbol{e}}_{i}\right) \\&=\pi_{*}\left(\nabla_{\bar{\boldsymbol{e}}}^{\bar{M}} \overline{\boldsymbol{e}}_{i}+\boldsymbol{B}_{\bar{M}}\left(\overline{\boldsymbol{e}}_{i}, \overline{\boldsymbol{e}}_{i}\right)\right) \\&=\nabla_{\boldsymbol{e}_{i}}^{M} \boldsymbol{e}_{i}+\pi_{*}\left(\boldsymbol{B}_{\bar{M}}\left(\overline{\boldsymbol{e}}_{i}, \overline{\boldsymbol{e}}_{i}\right)\right).\end{aligned}$ | (16) |
$\boldsymbol{B}_{M}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{i}\right)=\pi_{*}\left(\boldsymbol{B}_{\bar{M}}\left(\overline{\boldsymbol{e}}_{i}, \overline{\boldsymbol{e}}_{i}\right)\right).$ | (17) |
From the above lemma, we see that HM=
References
[1] | Calabi E. Minimal immersions of surfaces in Euclidean spheres[J]. Journal of Differential Geometry, 1967, 1(1): 111-125. |
[2] | Bolton J, Jensen G R, Rigoli M, et al. On conformal minimal immersions of S2 into |
[3] | He Y, Wang C. Totally real minimal 2-spheres in quaternionic projective space[J]. Science in China. Series A. Mathematics, 2005, 48(3): 341-349. DOI:10.1360/03ys0295 |
[4] | Berndt J. Riemannian geometry of complex two-plane Grassmannians[J]. Rendiconti del Seminario Matematico. Università e Politecnico Torino, 1997, 55(1): 19-83. |
[5] | Reckziegel H. Horizontal lifts of isometric immersions into the bundle space of a pseudo-Riemannian submersion[C]//Ferus D, Gardner R B, Helgason S, et al. Global differential geometry and global analysis 1984. Berlin: Springer, 1985: 264-279. |
[6] | Petersen P. Riemannian geometry[M]. 3rd ed. Berlin: Springer, 2016. |