删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

An iterative construction of Riemann mappings

本站小编 Free考研考试/2021-12-25

DENG Fusheng, JIANG Weiwen, ZHANG Xujun
School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Received 16 July 2019; Revised 30 September 2019
Foundation items: Supported by National Nature Science Foundation of China (11871451) and University of Chinese Academy of Sciences (Y8540XX112)
Corresponding author: DENG Fusheng, E-mail: fshdeng@ucas.ac.cn

Abstract: In this note, we give an explicit construction of iterative approximation of Riemann mappings. Our method is motivated by Koebe's proof of the Riemann mapping theorem.
Keywords: Riemann mappingMontel's TheoremHurwitz's Lemma
Riemann映照的一种迭代构造
邓富声, 姜炜文, 张旭俊
中国科学院大学数学科学学院, 北京 100049
摘要: 给出Riemann映照递归逼近的一个显示构造,该方式是受Koebe证明Riemann映照定理的思想的启发。
关键词: Riemann映照Montel定理Hurwitz引理
Conformal mapping is the key object of studying in geometric function theory of one complex variable. In this area, the most important and fundamental result is the Riemann mapping theorem, which states that any proper simply connected domain D on $\mathbb{C}$ is conformal to the unit disk Δ. The Riemann mapping theorem is originally discovered by Riemann and a complete proof was first given by Koebe. Since then, the explicit construction of the Riemann mapping become a basic problem in complex analysis and other related area such as fluid mechanics and computational conformal geometry.
For polygon areas, Riemann mappings have some special forms, known as the Schwarz-Christoffel formula[1]. In Ref.[2], Thurston gave a geometric approach to the construction of Riemann mappings. Thurston's method was further developed in Ref.[3]. Based on Bishop's methods[4], Cheng[5] studied explicit construction of Riemann mapping, by considering a condition called mappability.
In this note, we give a different explicit construction of iterative approximation of Riemann mappings. Our method is motivated by Koebe's proof of the Riemann mapping theorem, as presented in Ahlfors' classic Ref.[1]. The construction in the present note can be easily realized as a computer program, except the choices of the points wk (see section 2 for details) which will be further studied in forthcoming works.
1 Proof of Riemann mapping theoremIn this section, we present a proof of the Riemann mapping theorem which is due to Koebe (see Ahlfors[1]). Inspired by the idea in this proof, we will give an explicit iterative construction of conformal mappings from simply connected domains onto the unit disc.
Theorem 1.1??Let D?$\mathbb{C}$ be a simply connected domain, for any z0D, there exists a unique biholomorphic mapping f:D→Δ such that f(z0)=0, f'(z0)>0.
Proof??The proof is taken from Ref.[1]. The analytic property encoded by the simply connectedness that will be used in the proof is the existence of square root of any holomorphic function on D without zeros. The uniqueness part follows easily from Schwarz Lemma. We give a proof of the existence of f, which is divided into several steps as follows.
Step 1. After a translation, we may assume 0?D. Since D is simply connected, $\sqrt{z}$ has two single-valued branches on D, which are denoted by σ+ and σ. It is clear that
${\sigma _ + }(D) \cap {\sigma _ - }(D) = \varnothing .$
In fact, if the formula does not hold, then there exist z, wD such that σ+(z)=σ(w), and then z=σ+2(z)=σ2(w)=w. This implies σ+(z)=σ(w)=-σ+(z) and z=0. We get a contradiction since 0?D.
It is also clear that σ+ and σ are injective, hence we have σ+(D)$\cong $D.
For a point aσ(D), we can find r>0 such that $\overline{\Delta \left(a, r \right)}\subseteq {{\sigma }_{-}}(D)$. Consider the function $\tau (z)=\frac{1}{z-a}$ on σ+(D), we have |τ(z)| < $\frac{1}{r}$ for all zσ+(D). Hence τ$\circ $σ+ is injective and its image τ$\circ $σ+(D)?Δ(0, $\frac{1}{r}$) is a bounded domain. Thus D is biholomorphic to a bounded domain.
Step 2. We consider the set: $\mathcal{F}$={g$\mathcal{O}$(D)|g:D→Δ is injective, g(z0)=0}. From Step 1 we know that $\mathcal{F}$ is not empty. Let λ=sup{|g'(z0)| |g∈$\mathcal{F}$}. From the Cauchy inequality we have λ < +∞. Take a sequence gj$\mathcal{F}$, such that $\underset{j\to +\infty }{\mathop{\text{lim}}}\, $|g'j(a)|=λ. By Montel's theorem, we may assume {gj} converge to a holomorphic function f$\mathcal{O}$(D) on every compact subset K of D. We have
$\left| {{f^\prime }\left( {{z_0}} \right)} \right| = \mathop {\lim }\limits_{j \to + \infty } \left| {g_j^\prime \left( {{z_0}} \right)} \right| = \lambda > 0.$
Hence f is injective by the Hurwitz's lemma. Note that f(D)?Δ, we can get f$\mathcal{F}$.
Step 3. The last step is to show that f is surjective. We argue by contradiction. If f is not subjective, there exists a point w0∈Δ\f(D). Set
${\psi _{{w_0}}}(z) = \frac{{z - {w_0}}}{{1 - \overline {{w_0}}z }},$
then ψw0Aut(Δ) and 0≠ψw0$\circ $f(D). Let h=$\sqrt{z} $ be a branch of the square root of z on ψw0$\circ $f(D). Then
$\tilde f = {\psi _{h\left( { - {w_0}} \right)}} \circ h \circ {\psi _{{w_0}}} \in \widetilde {\cal F}.$
A straightforward calculation shows:
$\left| {{{\tilde f}^\prime }\left( {{z_0}} \right)} \right| = \frac{{1 + \left| {{w_0}} \right|}}{{2\sqrt {\mid {w_0}} \mid }}\left| {{f^\prime }\left( {{z_0}} \right)} \right| > \left| {{f^\prime }\left( {{z_0}} \right)} \right| = \lambda .$
This leads to a contradiction by the definition of λ.
After a gyration, we have f'(z0)>0.
The mapping in the above theorem is called a Riemann mapping.
2 Iterative construction of Riemann mappingMotived by the proof of existence of Riemann mappings presented in the previous section, we give an iterative construction of Riemann mapping on a bounded domain D. More precisely, given a bounded domain D?$\mathbb{C}$ and aD, we construct a sequence of holomorphic injective mappings {fj:D→Δ} with fj(a)=0. Then we will prove that {fj} converges to the Riemann mapping. The construction divides into several steps as follows.
Step 1. We imbed D into the unit disk Δ by complex affine mapping. There exists r>0 such that f1(z)=r(za) maps D into Δ with f1(z)=0 and f'1(a)>0. If D is a disc, then we get our results because f is clearly surjective for suitable r; if D is not a disc, we continue our construction.
Step 2. Choose a point w1∈Δ\f1(D) such that $|{{w}_{1}}| < \frac{1+d(0, \partial {{f}_{1}}(D))}{2}$. We set
${f_2}(z) = {\alpha _1}{\psi _{h\left( { - {w_1}} \right)}} \circ h \circ {\psi _{{w_1}}} \circ {f_1}(z),$
where ${{\psi }_{{{w}_{1}}}}(z)=\frac{z-{{w}_{1}}}{1-\overline{{{w}_{1}}z}}, h(z)=\sqrt{z}$, and α1S1 is a constant chosen so that f'2(a)>0. Then f2 is a holomorphic injective mapping on D such that f2(a)=0 and f'2(a)>0.The computation shows that
$\left| {f_2^\prime (a)} \right| = \left| {f_1^\prime (a)} \right|\frac{{1 + \left| {{w_1}} \right|}}{{2\sqrt {\left| {{w_1}} \right|} }}.$
Note that f2 is not surjective since $-\sqrt{-{{w}_{1}}}\notin {{f}_{2}}(D)$.
Step 3. We construct fj+1 inductively, by repeating the method in Step 2. Assume that we have constructed fj. Choose wj∈Δ\fj(D) such that $|{{w}_{j}}| < \frac{1+d(0, \partial f(D))}{2}.$ We set
${f_{j + 1}}(z) = {\alpha _j}{\psi _{h\left( { - {w_j}} \right)}} \circ h \circ {\psi _{{w_j}}} \circ {f_j}(z),$
where ${{\psi }_{{{w}_{j}}}}(z)=\frac{z-{{w}_{j}}}{1-\overline{{{w}_{j}}z}}, h=\sqrt{z}$, and α1S1 is a constant chosen so that f'j+1(a)>0. Then fj+1 is a holomorphic injective on D such that fj+1(a)=0 and f'j+1(a)>0. A computation shows that
$\left| {f_{j + 1}^\prime (a)} \right| = \left| {f_j^\prime (a)} \right|\frac{{1 + \left| {{w_j}} \right|}}{{2\sqrt {\left| {{w_j}} \right|} }}.$
From the above steps we get a sequence of holomorphic injective mappings {fj:D→Δ} with
${f_j}(a) = 0,f_j^\prime (a) > 0.$
Theorem 2.1??Let {fj} be the sequence constructed above. Then {fj} converges to a biholomorhpic mapping g from D to the unit disk Δ such that g(a)=0 and g'(a)>0, uniformly on compact subsets of D.
Proof??By the uniqueness of the Riemann mapping f:D→Δ with f(a)=0 and f'(a)>0, it suffices to show that any subsequence of {fj} has a subsequence that converges to the Riemann mapping f uniformly on compact sets of Δ.
By the Cauchy's inequality, there exists b>0 such that |f'j(a)|≤b$\mathbb{R}$ for all j. Note that
$\left| {f_{j + 1}^\prime (a)} \right| = \left| {f_1^\prime (a)} \right|\prod\limits_{k = 1}^j {\frac{{1 + \left| {{w_k}} \right|}}{{2\sqrt {\left| {{w_k}} \right|} }}} ,$
we get $\frac{1+|{{w}_{j}}|}{2\sqrt{\left| {{w}_{j}} \right|}}\to 1$, and hence
$\left| {{w_j}} \right| \to 1.$
Recall that we have
$\left| {{w_j}} \right| < \frac{{1 + d\left( {0,\partial {f_j}(D)} \right)}}{2} \le 1$
thus we can obtain that
$d\left( {0,\partial {f_j}(D)} \right) \to 1.$
By Montel's theorem, any subsequence of {fj} has a subsequence, say {fjk}, that converges to a holomorphic function $\tilde{f}$ on D. By construction, it is clear that $\tilde{f}$(a)=0 and $\tilde{f}$'(a)>0. By Hurwitz's lemma, $\tilde{f}$ is injective and hence $\tilde{f}$(D)?Δ. To prove that $\tilde{f}$=f, it suffices to show that $\tilde{f}$:D→Δ is surjective.
Set gj=fj-1. By Montel's theorem again, we may assume {gjk} converges to a holomorphic function g on Δ uniformly on compact sets of Δ. Note that $g'\left(0 \right)=\underset{k\to +\infty }{\mathop{\text{lim}}}\, |{{{g}'}_{{{j}_{k}}}}\left(0 \right)|=\underset{k\to +\infty }{\mathop{\text{lim}}}\, \frac{1}{|f{{'}_{{{j}_{k}}}}\left(a \right)|}=\frac{1}{f'\left(a \right)}>0, g$ is nonconstant. For any w∈Δ, let z=g(w). For any small neighborhood U of w in Δ, by Rouché's theorem and the fact that d(0, ?fjk(D))→1, there is wkU such that gjk(wk)=z, that is fjk(z)=wk, for k large enough. We have wkw as k→+∞. Hence
$\tilde f(z) = \mathop {\lim }\limits_{h \to + \infty } {f_{{j_k}}}(z) = \mathop {\lim }\limits_{h \to + \infty } {w_k} = w.$
Since w∈Δ is arbitrary, $\tilde{f}$ is surjective.

References
[1] Ahlfors L. Complex analysis. An introduction to the theory of analytic functions of one com-plex variable[M]. 3rd ed. International Series International Series in Pure and Applied Mathematics. New York: McGraw-Hill Book Co, 1978.
[2] Thurston W. Three-dimensional geometry and topology. Vol. 1[M]. Levy S. Princeton Mathematical Series, 35. Princeton: Princeton University Press, NJ, 1997.
[3] He Z X, Schramm O. The C-convergence of hexagonal disk packings to the Riemann map[J]. Acta Math, 1998, 180: 219-245. DOI:10.1007/BF02392900
[4] Bishop E. Foundations of constructive analysis[M]. New York: McGraw-Hill, 1967.
[5] Cheng H. A constructive Riemann Mapping theorem[J]. Pacific J Math, 1973, 144: 435-454.


相关话题/北京 科学学院 数学 中国科学院大学 定理

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 北京市怀沙河污染现状及主要污染源分析
    李昶,吴丽,何裕建中国科学院大学化学科学学院,北京1000492019年5月29日收稿;2019年9月11日收修改稿基金项目:国家重点研究发展计划(2016YFF0203700)、国家自然科学基金(51772289,21778054,51972302)、中国科学院化学研究所科教融合资金(Y52902 ...
    本站小编 Free考研考试 2021-12-25
  • 城市河岸带的斑块组成和空间分布对小气候的影响——以北京永定河河岸带为例
    王昕1,张娜1,2,乐荣武1,郑潇柔1,31.中国科学院大学资源与环境学院,北京101408;2.燕山地球关键带与地表通量观测研究站,北京101408;3.中国科学院深圳先进技术研究院空间信息研究中心,广东深圳5180552019年3月22日收稿;2019年5月8日收修改稿基金项目:北京市自然科学基 ...
    本站小编 Free考研考试 2021-12-25
  • 2015年田径锦标赛和大阅兵活动期间北京市NOx浓度特征
    程念亮1,2,3,张大伟1,李云婷1,陈添4,孙峰1,李令军1,程兵芬2,31.北京市环境保护监测中心大气颗粒物监测技术北京市重点实验室,北京100048;2.北京师范大学水科学研究院,北京100875;3.中国环境科学研究院,北京100012;4.北京市环境保护局,北京1000482016年01月 ...
    本站小编 Free考研考试 2021-12-25
  • HCMU度量的一个存在性定理和能量积分公式
    魏志强,吴英毅中国科学院大学数学科学学院,北京1014082014年10月08日收稿;2015年03月06日收修改稿基金项目:国家自然科学基金(11471308)资助通信作者:E-mail:wuyy@ucas.ac.cn摘要:HCMU度量是紧黎曼面上带奇点的extremalK?hler度量.本文给出 ...
    本站小编 Free考研考试 2021-12-25
  • 机动车燃油质量及尾气排放与北京市大气污染的相关性
    杨昆昊1,夏赞宇1,何芃2,吴丽1,龚玲玲1,钱越英3,侯琰霖1,何裕建11.中国科学院大学化学与化工学院,北京101408;2.同济大学化学系,上海200092;3.中国科学院理化技术研究所,北京1001902016年05月31日收稿;2016年12月01日收修改稿基金项目:国家自然科学基金(21 ...
    本站小编 Free考研考试 2021-12-25
  • 基于投入产出模型的北京市生产性服务业与制造业互动关系
    王红杰1,2,3,鲍超1,2,3,郭嘉颖3,41.中国科学院地理科学与资源研究所,北京100101;2.中国科学院区域可持续发展分析与模拟重点实验室,北京100101;3.中国科学院大学资源与环境学院,北京100049;4.中国科学院南京地理与湖泊研究所,南京2100082017年08月08日收稿; ...
    本站小编 Free考研考试 2021-12-25
  • 北京张坊地区中上元古界中岩溶发育与构造作用
    刘建明1,张玉修1,曾璐1,琚宜文1,芮小平2,乔小娟11.中国科学院大学地球与行星科学学院,北京100049;2.中国科学院大学资源与环境学院,北京1000492017年11月3日收稿;2018年3月23日收修改稿基金项目:北京岩溶水资源勘查评价工程项目(BJYRS-ZT-03)和中国科学院大学校 ...
    本站小编 Free考研考试 2021-12-25
  • 不确定理论下竞争失效系统的可靠性分析*
    在许多复杂系统中,设备同时遭受了内部的自然退化和外部的随机冲击[1]。这种模型的可靠性已经有很多****在研究,Wei和Ronald[2]分析了系统经历相互独立的灾难性失效和退化过程,Li和Pham[3]研究了系统遭受随机冲击和2种退化过程失效模型的可靠性,Wang等[4]研究了相依竞争失效过程的可 ...
    本站小编 Free考研考试 2021-12-25
  • 热力耦合问题数学均匀化方法的物理意义*
    复合材料具有比强度高、比刚度大等优点,广泛应用于航天、航空工业领域。众所周知,对于很多复合材料的宏观解,如低阶频率和模态,可以使用等应变模型或等应力模型[1]及其他均匀化方法[2]求解,但相对于宏观应力分析,细观结构分析要复杂很多。为了在计算精度和效率之间达到平衡,各种多尺度方法相继被提出,如数学均 ...
    本站小编 Free考研考试 2021-12-25
  • 民机横航向静稳定性适航符合性数学仿真评估*
    横航向静稳定性是评定飞机操稳特性的重要指标之一。横向静稳定性是指飞机在平衡状态受到外界非对称扰动产生小量滚转角Δ?后,具有自动恢复机翼水平姿态的趋势,判据为无量纲横向静稳定性导数Clβ<0。航向静稳定性是指飞机在平衡状态受到外界非对称扰动产生小量侧滑角Δβ后,具有自动消除侧滑运动的趋势,判据为无量纲 ...
    本站小编 Free考研考试 2021-12-25