删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

交换p群的整群环以及它的极大序的K1群

本站小编 Free考研考试/2021-12-25

杨全李, 唐国平
中国科学院大学数学科学学院, 北京 100049
2019年1月16日 收稿; 2019年5月6日 收修改稿
基金项目: 国家自然科学基金(11771422)资助
通信作者: 杨全李, E-mail:yangquanli16@mails.ucas.ac.cn

摘要: 整群环是代数乃至许多数学分支中很重要的一类环,也是代数K理论主要的研究对象之一。对几类交换pp为素数)群G的整群环$\mathbb{Z}$G,作为半单代数$\mathbb{Q}$G的一个$\mathbb{Z}$-序,通过将其嵌入到极大$\mathbb{Z}$-序Γ之中,然后利用核群的性质研究K1$\mathbb{Z}$G)在K1(Γ)中的指数问题。主要结果有:首先对几类交换pG给出[(Γp×:($\mathbb{Z}$pG×]的确切表达式,然后用来确定[K1(Γ):K1$\mathbb{Z}$G)]的具体数值。
关键词: 整群环$\mathbb{Z}$-序极大序核群K1
The K1 group of integral group ring and its maximal order for a commutative p group
YANG Quanli, TANG Guoping
School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China


Abstract: Group rings are very important rings in algebra and many other branches of mathematics. It is also one of the main research subjects of algebraic K-theory. In this work, we mainly deal with integral group rings $\mathbb{Z}$G for some abelian p(p is prime) groups G. We can regard $\mathbb{Z}$G as a $\mathbb{Z}$-order of the semi-simple algebra $\mathbb{Q}$G and embed it into the maximal $\mathbb{Z}$-order Γ. Then we use the properties of the kernel group to study the exponential problem of K1($\mathbb{Z}$G) in K1(Γ). In this paper, there are two main results. First, the explicit formula of[(Γp)×:($\mathbb{Z}$pG)×] is obtained for some abelian p groups. Secondly, by using the formula, we get the specific result of[K1(Γ):K1($\mathbb{Z}$G)] for some abelian p groups.
Keywords: integral group ring$\mathbb{Z}$-ordermaximal orderkernel groupK1 group
G为有限交换群时,K1($\mathbb{Z}$G)$\cong $SK1($\mathbb{Z}$G)$ \oplus $($\mathbb{Z}$G)×是代数K理论中众所周知的结果。然而,通常情况下SK1($\mathbb{Z}$G)的结构十分复杂。后面要列出的引理1.3说明在很多我们关心的情形下SK1($\mathbb{Z}$G)平凡。通常将$\mathbb{Z}$G视为半单代数$\mathbb{Q}$G的一个$\mathbb{Z}$-序,由引理1.4,可将$\mathbb{Z}$G嵌入到一个极大$\mathbb{Z}$-序Γ中。定义:$\mathbb{Z}$Gp=$\mathbb{Z}$pG=$\mathbb{Z}$G?$\mathbb{Z}$$\mathbb{Z}$p,Γp=Γ?$\mathbb{Z}$$\mathbb{Z}$p,其中p为素数,$\mathbb{Z}$pp-adic整数环。对几类特殊的有限交换pG,本文给出指数[(Γp)×:($\mathbb{Z}$pG)×]的确切公式。然后利用核群D($\mathbb{Z}$G)的相关性质得到当p=2时有关[K1(Γ):K1($\mathbb{Z}$G)]的部分结果。
1 预备知识定义1.1 ??对阶为素数p的幂的交换群G,由有限生成交换群的结构定理可将G唯一地表示为某些pki阶循环群的直和,i=1, 2, …, n,且k1k2≤…≤kn, 数组(k1, k2, …, kn)p称为群G的型。
引理1.1??令p是一个素数,群G的型为(k1, k2, …, kn)p。为方便起见记k0=0,对任意整数h,0 < hkn,记vh是满足kvh < hkvh+1的非负整数,且记${a_h} = \sum\limits_{\mu = 0}^{{v_h}} {{k_\mu }} $。则G的阶为ph的循环子群的个数是
$t({p^h}) = \frac{{{p^{n - {v_h}}} - 1}}{{p - 1}}{p^{(n - {v_h} - 1)(h - 1) + {a_h}}}.$
证明??见文献[1-3]。
引理1.2??对代数数域F的代数整数环OF,有SK1(OF)=1。
证明??见文献[4]。
引理1.3??对任一有限交换群GSK1($\mathbb{Z}$G)=1当且仅当$G \cong {\left({{C_2}} \right)^n}$或者G的每一Sylow-p子群形如Cpn或者Cp×Cpn
证明??见文献[5]。
引理1.4??对有限交换群G$\mathbb{Z}$G是半单代数$\mathbb{Q}$G的一个$\mathbb{Z}$-序,且$\mathbb{Q}$G只有唯一极大$\mathbb{Z}$-序Γ,Γ?$\mathbb{Z}$G。如果$\mathbb{Q}G \cong \prod\nolimits_{i = 1}^r {\mathbb{Q}\left({{\xi _{{l_i}}}} \right)} $(其中ξlili次本原单位根),则Γ=∏i=1r$\mathbb{Z}$[ξli]。
证明??见文献[6]。
引理1.5??在上述引理条件下,($\mathbb{Z}$G)×的挠部分为{±g|gG},且($\mathbb{Z}$G)×与Γ×的自由部分的秩相同。特别有,[Γ×:($\mathbb{Z}$G)×] < ∞。
证明??见文献[7]。
定义1.2??对任意素数p,记$\mathbb{Z}$Gp=$\mathbb{Z}$pG=$\mathbb{Z}$G?$\mathbb{Z}$$\mathbb{Z}$p,Γp=Γ?$\mathbb{Z}$$\mathbb{Z}$p,其中$\mathbb{Z}$pp-adic整数环。$\mathbb{Z}$中的素理想(p)称为$\mathbb{Z}$G-奇异的,若Γp$\mathbb{Z}$Gp。记S($\mathbb{Z}$G)为所有$\mathbb{Z}$G奇异素理想之集。
定义1.3??令G是有限群,对$\mathbb{Q}$G中任一$\mathbb{Z}$-序Λ及素数p,用Λ(p)表示Λ在$\mathbb{Z}$的素理想(p)处的局部化,则有K0(Λ)→K0(p)), [M]→[Λ(p)?ΛM]。局部自由类群CL(Λ)定义为映射K0(Λ)→∏pK0(p))的核,其中p取遍所有素数。
在上述定义的条件下,若$\mathbb{Q}$G中存在包含Λ的极大$\mathbb{Z}$-序,任取其中一个并记为Γ(注:当G非交换时Γ不唯一)。由文献[8],映射[M]→[Γ?ΛM]给出一个满同态CL(Λ)→CL(Γ),该满同态的核称为核群, 记为D(Λ)。于是有交换群的正合列
$0 \to D(\Lambda ) \to CL(\Lambda ) \to CL(\Gamma ) \to 0.$
而由文献[9]可知(在同构意义下)D(Λ)与极大$\mathbb{Z}$-序Γ的选取无关。在上述意义下,特别当G是一个交换群时,取Λ=$\mathbb{Z}$G。由引理1.4知这种情形下上述意义下的极大序唯一,而且引理1.4给出了这个极大序。根据文献[10]有
引理1.6??有正合序列
$\begin{array}{*{20}{c}}{1 \to {\Gamma ^ \times }/{{(\mathbb{Z}G)}^ \times } \to \prod\limits_{S(\mathbb{Z}G)} {{{({\Gamma _{{p_0}}})}^ \times }} /{{(\mathbb{Z}{G_{{p_0}}})}^ \times }}\\{ \to CL(\mathbb{Z}G) \to CL(\Gamma ) \to 1.}\end{array}$
且有
$\begin{array}{l}\left( {\rm{i}} \right){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} |D(\mathbb{Z}G)| \cdot [{\Gamma ^ \times }:{(\mathbb{Z}G)^ \times }] = {\kern 1pt} \prod\limits_{S\left( {\mathbb{Z}G} \right)} {[{{({\Gamma _{{p_0}}})}^ \times }:{{(\mathbb{Z}{G_{{p_0}}})}^ \times }]} .\end{array}$
(ⅱ) $\left[\left(\Gamma_{p_{0}}\right)^{x}:\left(\mathbb{Z} G_{p_{0}}\right)^{\times}\right]=l_{p_{0}} \cdot m_{p_{0}}$,这里
$\begin{array}{*{20}{l}}{{l_{{p_0}}} = \frac{{|{{({\Gamma _{{p_0}}}/{J_{{p_0}}})}^ \times }|}}{{|{{\{ \mathbb{Z}{G_{{p_0}}}/({J_{{p_0}}} \cap \mathbb{Z}{G_{{p_0}}})\} }^ \times }|}}, }\\{{m_{{p_0}}} = [{J_{{p_0}}}:(\mathbb{Z}{G_{{p_0}}} \cap {J_{{p_0}}})]}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \frac{{[{\Gamma _{{p_0}}}:\mathbb{Z}{G_{{p_0}}}][\mathbb{Z}{G_{{p_0}}}:({J_{{p_0}}} \cap \mathbb{Z}{G_{{p_0}}})]}}{{[{\Gamma _{{p_0}}}:{J_{{p_0}}}]}}, }\end{array}$
其中Jp0是Γp0的Jacobson根。
证明??见文献[10]。
特别地,当G是阶为pn的有限交换群时,S($\mathbb{Z}$G)={(p)},引理1.6中的正合列变得简单了。设$\mathbb{Q}$G=∏i=1mFi是分圆域的直和,记diFi的判别式,则引理1.6有如下的简单形式
引理1.7?? |D($\mathbb{Z}$G)|是p的幂,更确切地说有
$|D(\mathbb{Z}G)| = [{({\Gamma _p})^ \times }:{(\mathbb{Z}{G_p})^ \times }]/[{\Gamma ^ \times }:{(\mathbb{Z}G)^ \times }]$

${[{({\Gamma _p})^ \times }:{(\mathbb{Z}{G_p})^ \times }]^2} = {p^{n{p^n} - 2t}}/\prod\limits_{i = 1}^m | {d_i}|, $
其中t=t(G)=m-1是G的非平凡循环子群的个数。
证明??见文献[10]。
引理1.8??若G是指数为m的有限交换群, 则$\mathbb{Q}G = \mathop \oplus \limits_{d|m} t(d)\mathbb{Q}\left({{\xi _d}} \right)$(ξdd次本原单位根),其中t(d)是Gd阶循环子群的个数。
证明??见文献[11]。
2 主要结果我们的第一个主要结果是对G=Cpn1×Cpn2, 0≤n1n2,给出[(Γp)×:($\mathbb{Z}$pG)×]的具体公式,为此分别考虑以下情形。
定理2.1??若G=Cpn, (n≥0),则
$[{({\Gamma _p})^ \times }:{({\mathbb{Z}_p}G)^ \times }] = {p^{\frac{{{p^n} - 1}}{{{p^{ - 1}}}} - n}}.$
证明??由引理1.1, G的型为(n)p。这时,对任意0 < hnG有唯一的阶为ph的循环子群, 于是t=n。由引理1.8知$\mathbb{Q}$G=$\mathbb{Q}$$ \oplus $Q(ξp)$ \oplus $$ \oplus $$\mathbb{Q}$(ξpn)。文献[12]给出分圆域$\mathbb{Q}$(ξS)的判别式
$d(\mathbb{Q}({\xi _s})) = {( - 1)^{\varphi (s)/2}}{s^{\varphi (s)}}/\prod\limits_{p|s} {{p^{\varphi (s)/(p - 1)}}} .$
故|di|=|d($\mathbb{Q}$(ξpi))|=ppi-1(ip-i-1), 从而
$\begin{array}{l}\prod\nolimits_{i = 1}^n {\left| {{d_i}} \right|} = \prod\nolimits_{i = 1}^n {{p^{{p^{i - 1}}(ip - i - 1)}}} \\{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \begin{array}{*{20}{l}}{ = {p^{\mathop \Sigma \limits_{i = 1}^n [{p^{i - 1}}(ip - i - 1)]}}}\\{ = {p^{n{p^n} - \frac{{2({p^n} - 1)}}{{p - 1}}}}.}\end{array}\end{array}$
于是由引理1.7得
$\begin{array}{*{20}{l}}{{{[{{({\Gamma _p})}^ \times }:{{({\mathbb{Z}_p}G)}^ \times }]}^2} = {p^{n{p^n} - 2t}}/\prod\nolimits_{i = 1}^n {\left| {{d_i}} \right|} }\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {p^{\frac{{2({p^n} - 1)}}{{p - 1}} - 2n}}, }\end{array}$
$\left[ {{{\left( {{\Gamma _p}} \right)}^ \times }:{{\left( {{\mathbb{Z}_p}G} \right)}^ \times }} \right] = {p^{\frac{{{p^n} - 1}}{{p - 1}} - n}}.$
n=0时,上式显然成立。
定理2.2??当G=Cpn×Cpn,(0≤n)时,则
$[{({\Gamma _p})^ \times }:{({\mathbb{Z}_p}G)^ \times }] = {p^q}, $
其中$q = \frac{n}{2}{p^{2n}} + \frac{{(p + 2)\left({{p^{2n}} - 1} \right)}}{{2\left({{p^2} - 1} \right)}} - \frac{{(p + 1)\left({{p^n} - 1} \right)}}{{p - 1}}.$
证明??此时|G|=p2n, G的型为,(n, n)p, 则当1≤hn时,${v_h} = 0, \; {a_h} = \sum\limits_{\mu = 0}^{{v_h}} {{k_\mu }} = 0$。由引理1.1有
$\begin{array}{*{20}{l}}{t({p^h}) = \frac{{{p^{2 - {v_h}}} - 1}}{{p - 1}}{p^{(2 - {v_h} - 1)(h - 1) + {a_h}}}}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = (p + 1){p^{h - 1}}.}\end{array}$
于是$t = t(G) = \sum\limits_{h = 1}^n {(p + 1)} {p^{h - 1}} = \frac{{(p + 1)\left({{p^n} - 1} \right)}}{{p - 1}}$, 再由引理1.8知t(pi)(1≤in)就是$\mathbb{Q}$G=$\mathbb{Q}$$ \oplus $t1$\mathbb{Q}$(ξp)$ \oplus $$ \oplus $tn$\mathbb{Q}$(ξpn)中ti的值。于是有
$\begin{array}{*{20}{c}}{\mathbb{Q}G = \mathbb{Q} \oplus (p + 1)\mathbb{Q}({\xi _p}) \oplus (p + 1)p\mathbb{Q}({\xi _{{p^2}}}) \oplus }\\{ \cdots \oplus (p + 1){p^{n - 1}}\mathbb{Q}({\xi _{{p^n}}}).}\end{array}$
根据文献[12]有关分圆域的判别式的计算公式
$d(\mathbb{Q}({\xi _s})) = {( - 1)^{\varphi (s)/2}}{s^{\varphi (s)}}/\prod\limits_{\left. p \right|s} {{p^{\varphi (s)/(p - 1)}}} , $
于是在这种情形下有
$\begin{array}{*{20}{l}}{\prod\nolimits_{i = 1}^m {\left| {{d_i}} \right|} = {p^{\mathop \Sigma \limits_{i = 1}^n (p + 1){p^{2i - 2}}(ip - i - 1)}}}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {p^{n{p^{2n}} - \frac{{(p + 2)({p^{2n}} - 1)}}{{{p^2} - 1}}}}.}\end{array}$
由引理1.7得
$\begin{array}{*{20}{c}}{{{[{{({\Gamma _p})}^ \times }:{{({\mathbb{Z}_p}G)}^ \times }]}^2} = }\\{{p^{2n{p^{2n}} - \frac{{2(p + 1)({p^n} - 1)}}{{p - 1}}}}/{p^{n{p^{2n}} - \frac{{{p^{2n + 1}} + 2{p^{2n}} - p - 2}}{{{p^2} - 1}}}}}\\{ = {p^{2q}}, }\end{array}$
从而[(Γp)×:($\mathbb{Z}$pG)×]=pq.
上式对n=0情形显然成立。
定理2.3??当$G = {C_{{p^{{n_1}}}}} \times {C_{{p^{{n_2}}}}}, 0 < {n_1} < {n_2}$时,有
$[{({\Gamma _p})^ \times }:{({\mathbb{Z}_p}G)^ \times }] = {p^q}.$
其中
$\begin{array}{l}q = \frac{{{n_1}}}{2}{p^{{n_1} + {n_2}}} - ({n_2} - {n_1}){p^{{n_1}}} - \\{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{{(p + 1)({p^{{n_1}}} - 1) + ({p^{{n_1}}} - {p^{{n_2}}}){p^{{n_1}}}}}{{p - 1}} + \\{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{{(p + 2)({p^{2{n_1}}} - 1)}}{{2({p^2} - 1)}}.\end{array}$
证明??此时|G|=pn1+n2, G的型为(n1, n2)p。则当1≤hn1时,${v_h} = 0, \; {a_h} = \sum\limits_{\mu = 0}^{{v_h}} {{k_\mu }} = 0, $, 于是此时有
$\begin{array}{*{20}{l}}{t({p^h}) = \frac{{{p^{2 - {v_h}}} - 1}}{{p - 1}}{p^{(2 - {v_h} - 1)(h - 1) + {a_h}}}}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = (p + 1){p^{h - 1}}.}\end{array}$
n1 < hn2时,${v_h} = 1, \; {a_h} = \sum\limits_{\mu = 0}^{{v_h}} {{k_\mu }} = {n_1}$,此时有
$\begin{array}{*{20}{l}}{t({p^h}) = \frac{{{p^{2 - {v_h}}} - 1}}{{p - 1}}{p^{(2 - {v_h} - 1)(h - 1) + {a_h}}}}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {p^{{n_1}}}.}\end{array}$
综上所得有
$t({p^h}) = \left\{ {\begin{array}{*{20}{l}}{(p + 1){p^{h - 1}}, }&{{\rm{ 若 }}0 < h \le {n_1}}\\{{p^{{n_1}}}, }&{{\rm{ 若 }}{n_1} < h \le {n_2}}\end{array}} \right..$
于是
$\begin{array}{*{20}{c}}{t = t(G) = \mathop \Sigma \limits_{h = 1}^{{n_2}} t({p^h}) = \mathop \Sigma \limits_{h = 1}^{{n_1}} t({p^h}) + \mathop \Sigma \limits_{h = {n_1} + 1}^{{n_2}} t({p^h})}\\{ = \frac{{(p + 1)({p^{{n_1}}} - 1)}}{{p - 1}} + ({n_2} - {n_1}){p^{{n_1}}}.}\end{array}$
类似上面定理叙述可求得对应于引理1.7中的
$\begin{array}{l}\prod\nolimits_{i = 1}^m {\left| {{d_i}} \right|} \\\prod\nolimits_{i = 1}^m {\left| {{d_i}} \right|} = {p^{[{n_2}{p^{{n_2}}} - {n_1}{p^{{n_1}}} + \frac{{2({p^{{n_1}}} - {p^{{n_2}}})}}{{p - 1}}]{p^{{n_1}}} + {n_1}{p^{{2^n}1}} - \frac{{(p + 2)({p^{{2^n}1}} - 1)}}{{{p^2} - 1}}}}.\end{array}$
由引理1.7
$\begin{array}{*{20}{l}}{{{[{{({\Gamma _p})}^ \times }:{{({\mathbb{Z}_p}G)}^ \times }]}^2} = {p^{({n_1} + {n_2}){p^{{n_1} + {n_2}}} - 2t}}/\prod\nolimits_{i = 1}^m {\left| {{d_i}} \right|} }\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {p^{2q}}.}\end{array}$
于是[(Γp)×:($\mathbb{Z}$pG)×]=pq.
综合定理2.1~定理2.3的结果有
定理2.4??对$G = {C_{{p^{{n_1}}}}} \times {C_{{p^{{n_2}}}}}, 0 \le {n_1} \le {n_2}$,有
$[{({\Gamma _p})^ \times }:{({\mathbb{Z}_p}G)^ \times }] = {p^q}, $
其中
$\begin{array}{l}q = \frac{{{n_1}}}{2}{p^{{n_1} + {n_2}}} - ({n_2} - {n_1}){p^{{n_1}}} - \\{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{{(p + 1)({p^{{n_1}}} - 1) + ({p^{{n_1}}} - {p^{{n_2}}}){p^{{n_1}}}}}{{p - 1}} + \\{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{{(p + 2)({p^{2{n_1}}} - 1)}}{{2({p^2} - 1)}}.\end{array}$
对于任意(k1, k2, …, kn)p型的交换群,相应的计算公式非常难以给出,然而对下面特殊情形,有
定理2.5??当$G = {\left({{C_{{p^n}}}} \right)^l}, n \ge 0;\; l > 0$时有
$[{({\Gamma _p})^x}:{({\mathbb{Z}_p}G)^x}] = {p^q}, $
其中
$\begin{array}{l}q = \frac{{n(l - 1)}}{2}{p^{nl}} + \frac{{{p^{nl}} + p - 2}}{{2(p - 1)}} + \\{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{{{p^{nl}} - {p^l}}}{{2({p^l} - 1)}} - \frac{{({p^l} - 1)({p^{n(l - 1)}} - 1)}}{{({p^{l - 1}} - 1)(p - 1)}}.\end{array}$
证明??此时|G|=pnl, G的型为${\underbrace {\left({n, n, \cdots, n} \right)}_{共l项{\rm{ }}}}$p。当1≤hn时,${v_h} = 0, {a_h} = \sum\limits_{\mu = 0}^{{v_h}} {{k_\mu }}=0 $。于是此时有
$\begin{array}{*{20}{l}}{t({p^h}) = \frac{{{p^{l - {v_h}}} - 1}}{{p - 1}}{p^{(l - {v_h} - 1)(h - 1) + {a_h}}}}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \frac{{{p^l} - 1}}{{p - 1}}{p^{(l - 1)(h - 1)}}.}\end{array}$
$t = t(G) = \sum\limits_{h = 1}^n t \left({{p^h}} \right) = \frac{{\left({{p^l} - 1} \right)\left({{p^{n(l - 1)}} - 1} \right)}}{{\left({{p^{l - 1}} - 1} \right)(p - 1)}}$.类似上面定理的叙述可求得
$\begin{array}{*{20}{c}}{\prod\nolimits_{i = 1}^m {\left| {{d_i}} \right|} = \prod\nolimits_{h = 1}^n {{{({p^{{p^{h - 1}}(hp - h - 1)}})}^{t({p^h})}}} }\\{ = {p^{n{p^{nl}} - \frac{{pl}}{{p - 1}} + \frac{{{p^l} - {p^{nl}}}}{{{p^l} - 1}}}}.}\end{array}$
于是由引理1.7
$\begin{array}{*{20}{l}}{{{[{{({\Gamma _p})}^ \times }:{{({\mathbb{Z}_p}G)}^ \times }]}^2} = {p^{nl{p^{nl}} - 2t}}/\prod\nolimits_{i = 1}^m {\left| {{d_i}} \right|} }\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {p^{2q}}, }\end{array}$
故[(Γp)×:($\mathbb{Z}$pG)×]=pq.易验证当n=0时,上式依然成立。
推论2.1?? (ⅰ)若G=C2×C2,则[K1(Γ):K1($\mathbb{Z}$G)]=2,
(ⅱ)若G=C2×C22,则[K1(Γ):K1($\mathbb{Z}$G)]=24
(ⅲ)若G=C2×C23,则[K1(Γ):K1($\mathbb{Z}$G)]=212,
(ⅳ)若G=C2, 则[K1(Γ):K1($\mathbb{Z}$G)]=1,
(ⅴ)若G=C22,则[K1(Γ):K1($\mathbb{Z}$G)]=2,
(ⅵ)若G=C23,则[K1(Γ):K1($\mathbb{Z}$)]=24,
(ⅶ)若G=C24,则[K1(Γ):K1($\mathbb{Z}$G)]=210
证明??由文献[4]有
${{K_1}(\Gamma ) = {{(\Gamma )}^ \times } \oplus S{K_1}(\Gamma ), }$
${{K_1}(\mathbb{Z}G) = {{(\mathbb{Z}G)}^ \times } \oplus S{K_1}(\mathbb{Z}G).}$
由引理1.4知Γ是一些代数整数环的直和,于是由引理1.2知SK1(Γ)=1, 而由引理1.3知在上述(i)-(vii)情况下均有SK1($\mathbb{Z}$G)=1, 于是对于(i)-(vii),下式总是成立的
$[{K_1}(\Gamma ):{K_1}(\mathbb{Z}G)] = [{(\Gamma )^ \times }:{(\mathbb{Z}G)^ \times }].$
(ⅰ)由文献[13]知,此时|D($\mathbb{Z}$G)|=1,由定理2.2得
$\begin{array}{*{20}{l}}{[{K_1}(\Gamma ):{K_1}(\mathbb{Z}G)] = [{{(\Gamma )}^ \times }:{{(\mathbb{Z}G)}^ \times }]}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = [{{({\Gamma _2})}^ \times }:{{({\mathbb{Z}_2}G)}^ \times }]/|D(\mathbb{Z}G)|}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = 2.}\end{array}$
(ⅱ)由文献[13]得知此时|D($\mathbb{Z}$G)|=2, 由定理2.3得
$\begin{array}{*{20}{l}}{[{K_1}(\Gamma ):{K_1}(\mathbb{Z}G)] = [{{(\Gamma )}^ \times }:{{(\mathbb{Z}G)}^ \times }]}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = [{{({\Gamma _2})}^ \times }:{{({\mathbb{Z}_2}G)}^ \times }]/|D(\mathbb{Z}G)|}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {2^4}.}\end{array}$
(ⅲ)由文献[13]知,此时|D($\mathbb{Z}$G)|=23, 由定理2.3得
$\begin{array}{*{20}{l}}{[{K_1}(\Gamma ):{K_1}(\mathbb{Z}G)] = [{{(\Gamma )}^ \times }:{{(\mathbb{Z}G)}^ \times }]}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = [{{({\Gamma _2})}^ \times }:{{({\mathbb{Z}_2}G)}^ \times }]/|D(\mathbb{Z}G)|}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {2^{12}}.}\end{array}$
(ⅳ)当G=C2时由文献[13]知|D($\mathbb{Z}$G)|=1,由定理2.1得
$\begin{array}{*{20}{l}}{[{K_1}(\Gamma ):{K_1}(\mathbb{Z}G)] = [{{(\Gamma )}^ \times }:{{(\mathbb{Z}G)}^ \times }]}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = [{{({\Gamma _2})}^ \times }:{{({\mathbb{Z}_2}G)}^ \times }]/|D(\mathbb{Z}G)|}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = 1.}\end{array}$
(ⅴ)当G=C22时由文献[13]知|D($\mathbb{Z}$G)|=1,由定理2.1得
$\begin{array}{*{20}{l}}{[{K_1}(\Gamma ):{K_1}(\mathbb{Z}G)] = [{{(\Gamma )}^ \times }:{{(\mathbb{Z}G)}^ \times }]}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = [{{({\Gamma _2})}^ \times }:{{({\mathbb{Z}_2}G)}^ \times }]/|D(\mathbb{Z}G)|}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = 2.}\end{array}$
(ⅵ)当G=C23时由文献[13]知|D($\mathbb{Z}$G)|=1,由定理2.1得
$\begin{array}{*{20}{l}}{[{K_1}(\Gamma ):{K_1}(\mathbb{Z}G)] = [{{(\Gamma )}^ \times }:{{(\mathbb{Z}G)}^ \times }]}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = [{{({\Gamma _2})}^ \times }:{{({\mathbb{Z}_2}G)}^ \times }]/|D(\mathbb{Z}G)|}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {2^4}.}\end{array}$
(ⅶ)当G=C24时由文献[13]知|D($\mathbb{Z}$G)|=2,由定理2.1得
$\begin{array}{*{20}{l}}{[{K_1}(\Gamma ):{K_1}(\mathbb{Z}G)] = [{{(\Gamma )}^ \times }:{{(\mathbb{Z}G)}^ \times }]}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = [{{({\Gamma _2})}^ \times }:{{({\mathbb{Z}_2}G)}^ \times }]/|D(\mathbb{Z}G)|}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {2^{10}}.}\end{array}$
推论2.2?? (i)当G=C2×C2×C2时,[K1(Γ):K1($\mathbb{Z}$G)]=24
(ii) 当G=C2×C2×C2×C2时,[K1(Γ):K1($\mathbb{Z}$G)]=211
证明??由引理1.2~引理1.4知, 在(i), (ii)两种情况下均有SK1(ZG)=1和SK1(Γ)=1,于是均有[K1(Γ):K1($\mathbb{Z}$G)]=[(Γ)×:($\mathbb{Z}$G)×]。
(ⅰ)由定理2.5可得
$[{({\Gamma _p})^ \times }:{({\mathbb{Z}_p}G)^ \times }] = {2^5}.$
由文献[13],此时|D($\mathbb{Z}$G)|=2,于是由引理1.7
$\begin{array}{*{20}{l}}{[{{(\Gamma )}^ \times }:{{(\mathbb{Z}G)}^ \times }] = [{{({\Gamma _p})}^ \times }:{{({\mathbb{Z}_p}G)}^ \times }]/|D(\mathbb{Z}G)|}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {2^4}.}\end{array}$
(ⅱ)由定理2.5可得
$[{({\Gamma _p})^ \times }:{({\mathbb{Z}_p}G)^ \times }] = {2^{17}}.$
由文献[13],此时|D($\mathbb{Z}$G)|=26,于是由引理1.7
$\begin{array}{*{20}{l}}{[{{(\Gamma )}^ \times }:{{(\mathbb{Z}G)}^ \times }] = [{{({\Gamma _p})}^ \times }:{{({\mathbb{Z}_p}G)}^ \times }]/|D(\mathbb{Z}G)|}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {2^{11}}, }\end{array}$
故[K1(Γ):K1($\mathbb{Z}$G)]=211.

参考文献
[1] Miller G A. Number of the subgroups of any given abelian group[J]. Proceedings of the National Academy of Sciences, 1939, 25(5): 258-262. Doi:10.1073/pnas.25.5.258
[2] Miller G A. Independent generators of the subgroups of an abelian group[J]. Proceedings of the National Academy of Sciences, 1939, 25(7): 364-367. Doi:10.1073/pnas.25.7.364
[3] Yeh Y. On prime power abelian groups[J]. Bulletin of the American Mathematical Society, 1948, 54: 323-327. Doi:10.1090/S0002-9904-1948-08995-9
[4] Rosenberg J. Algebraic K-Theory and its applications[M].北京: 世界图书出版公司北京公司, 2010.
[5] Robert O. Whitehead groups of finite groups[M]. Cambridge: Cambridge University Press, 1988.
[6] Reiner I. Maximal orders[M]. London: Academic Press, 1975.
[7] Higman G. The units of group rings[J]. Proceeding of the London Mathematical Society, 1940, 2(1): 231-248.
[8] Swan R G. The Grothendieck ring of a finite group[J]. Topology, 1963, 2(1/2): 85-110.
[9] Jacobinski H. Genera and decompositions of lattices over orders[J]. Acta Mathematica, 1968, 121(1): 1-29.
[10] Fr?hlich A. On the classgroup of integral grouprings of finite abelian groups[J]. Mathematika, 1969, 16(2): 143-152. Doi:10.1112/S002557930000810X
[11] Ayoub R G, Ayoub C. On the group ring of a finite abelian group[J]. Bulletin of the Australian Mathematical Society, 1969, 1(2): 245-261. Doi:10.1017/S0004972700041496
[12] 冯克勤. 代数数论[M]. 北京: 高等教育出版社, 2001.
[13] Cassou-Nogues P. Classes d'idéaux de l'algèbre d'un groupe abélien[J]. Mémoires de la Société Mathématique de France, 1974, 37: 23-32.


相关话题/文献 交换 代数 北京 公司

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 城市河岸带的斑块组成和空间分布对小气候的影响——以北京永定河河岸带为例
    王昕1,张娜1,2,乐荣武1,郑潇柔1,31.中国科学院大学资源与环境学院,北京101408;2.燕山地球关键带与地表通量观测研究站,北京101408;3.中国科学院深圳先进技术研究院空间信息研究中心,广东深圳5180552019年3月22日收稿;2019年5月8日收修改稿基金项目:北京市自然科学基 ...
    本站小编 Free考研考试 2021-12-25
  • MIMO多向中继信道在完整数据交换模型下的自由度
    李勇1,2,3,袁晓军41.中国科学院上海微系统与信息技术研究所,上海200050;2.上海科技大学信息学院,上海201210;3.中国科学院大学,北京101408;4.电子科技大学通信抗干扰技术国家级重点实验室,成都6117312019年2月25日收稿;2019年4月28日收修改稿基金项目:国家自 ...
    本站小编 Free考研考试 2021-12-25
  • 2015年田径锦标赛和大阅兵活动期间北京市NOx浓度特征
    程念亮1,2,3,张大伟1,李云婷1,陈添4,孙峰1,李令军1,程兵芬2,31.北京市环境保护监测中心大气颗粒物监测技术北京市重点实验室,北京100048;2.北京师范大学水科学研究院,北京100875;3.中国环境科学研究院,北京100012;4.北京市环境保护局,北京1000482016年01月 ...
    本站小编 Free考研考试 2021-12-25
  • 机动车燃油质量及尾气排放与北京市大气污染的相关性
    杨昆昊1,夏赞宇1,何芃2,吴丽1,龚玲玲1,钱越英3,侯琰霖1,何裕建11.中国科学院大学化学与化工学院,北京101408;2.同济大学化学系,上海200092;3.中国科学院理化技术研究所,北京1001902016年05月31日收稿;2016年12月01日收修改稿基金项目:国家自然科学基金(21 ...
    本站小编 Free考研考试 2021-12-25
  • 基于投入产出模型的北京市生产性服务业与制造业互动关系
    王红杰1,2,3,鲍超1,2,3,郭嘉颖3,41.中国科学院地理科学与资源研究所,北京100101;2.中国科学院区域可持续发展分析与模拟重点实验室,北京100101;3.中国科学院大学资源与环境学院,北京100049;4.中国科学院南京地理与湖泊研究所,南京2100082017年08月08日收稿; ...
    本站小编 Free考研考试 2021-12-25
  • 几类有限交换群的整群环的K1群
    王祚恩,唐国平中国科学院大学数学科学学院,北京1000492018年1月29日收稿;2018年4月27日收修改稿基金项目:国家自然科学基金(11771422)资助通信作者:王祚恩,E-mail:wangzuoen15@mails.ucas.edu.cn摘要:令G为一个有限交换群,它的整群环ZG为QG ...
    本站小编 Free考研考试 2021-12-25
  • 北京张坊地区中上元古界中岩溶发育与构造作用
    刘建明1,张玉修1,曾璐1,琚宜文1,芮小平2,乔小娟11.中国科学院大学地球与行星科学学院,北京100049;2.中国科学院大学资源与环境学院,北京1000492017年11月3日收稿;2018年3月23日收修改稿基金项目:北京岩溶水资源勘查评价工程项目(BJYRS-ZT-03)和中国科学院大学校 ...
    本站小编 Free考研考试 2021-12-25
  • 考虑外包的货运航空公司货流分配问题*
    随着电子商务的飞速发展,航空货运企业快速扩张。一般来说,货运航空公司除了使用自有的货机运输外,还可以把部分货物外包给第三方企业运输。那么,对于货运航空公司而言,如何灵活安排自身的货机运力,对货物需求进行配流,将它们分配给不同的运输方式和运输路线是至关重要的问题。运力的配置关系到货运航空公司资源能否得 ...
    本站小编 Free考研考试 2021-12-25
  • 电子车钥匙环境下的口令认证密钥交换协议*
    随着汽车产业智能化的不断发展,电子车钥匙成为车联网生态链中的关键一环。但是,汽车电子模块频繁被攻击,使得电子车钥匙与汽车车锁之间的通信安全问题成为亟待解决的问题。口令认证密钥交换(PasswordAuthenticationKeyExchange,PAKE)协议可以有效实现身份认证和密钥交换。针对上 ...
    本站小编 Free考研考试 2021-12-25
  • 不确定需求下航空公司枢纽网络优化设计*
    随着航空管制的放松,各个航空公司都在重建自己的航线网络,由点对点航线网络向中枢辐射式航线网络转变。中枢辐射式航线网络通过短途汇运、分运和长途、大容量转运,使得运输成本更低,经济效益更好。但在构建枢纽网络时,始发地与目的地(OD)需求不确定是困扰航空公司战略决策的主要原因。研究需求不确定下的枢纽选址与 ...
    本站小编 Free考研考试 2021-12-25