删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

On a two-parameter Hilbert-type integral operator and its applications

本站小编 Free考研考试/2021-12-25

孙文兵, 刘琼
邵阳学院理学与信息科学系, 湖南 邵阳 422000
摘要: 引入两个参数λ1和λ2,利用权函数方法和泛函分析技巧,定义一个双参数Hilbert型积分算子,并给出算子的范数.作为应用,获得一些改进的结果,并得到一些具有特殊核的新的Hilbert型积分不等式.
关键词: 双参数的Hilbert型积分算子范数权函数最佳常数因子Hilbert型积分不等式
If p>1, $\frac{1}{p}+\frac{1}{q}$=1, f, g≥0, fLp(0, ∞), gLq(0, ∞), ‖fp={∫0fp(x)dx}1p>0, ‖gq>0, then we have the following famous Hardy-Hilbert integral inequality and its equivalent form[1]:
$\int_{0}^{\infty }{{}}\int_{0}^{\infty }{{}}\frac{f\left( x \right)g\left( y \right)}{x+y}dxdy<\frac{\pi }{sin\left( \frac{\pi }{p} \right)}\|f{{\|}_{p}}\|g{{\|}_{q}},$ (1)
${{\left\{ \int_{0}^{\infty }{{}}{{\left[ \int_{0}^{\infty }{{}}\frac{f\left( x \right)}{x+y}dx \right]}^{p}}dy \right\}}^{\frac{1}{p}}}<\frac{\pi }{sin\left( \frac{\pi }{p} \right)}\|f{{\|}_{p}}\|g{{\|}_{q}},$ (2)
where the constant factor π/sin(π/p) is the best possible. Inequalities (1) and (2) are important in analysis and its applications[1-2]. Define the Hardy-Hilbert’s integral operator T:Lp(0, ∞)→Lp(0, ∞) as follows. For fLp(0, ∞), corresponding to the only
$T\left( f \right)\left( y \right):=\int\limits_{0}^{\infty }{{}}\frac{f\left( x \right)}{x+y}dx,y\in \left( 0,\infty \right),$ (3)
by (2), we have ‖Tfp<π/sin(π/p)‖fp and ‖T‖≤π/sin(π/p). Since the constant factor in (2) is the best possible, we find that ‖T‖=π/sin(π/p)[3].
In recent years, the relevant operators were defined by using bilinear function k(x, y)(≥0) to replace $\frac{1}{x+y}$ in (3) by Yang et al. and they obtained two equivalent inequalities similar to (1) and (2)[4-9]. In this work, we use the nonnegative measurable function h(x1λy2λ) instead of the kernel $\frac{1}{x+y}$, and a Hilbert-type integral operator with the two-parameter kernels is defined. By using the method of weight function and the techniques of real analysis and functional analysis, the norm of the integral operator is found and two equivalent inequalities related to the norm of the operator are given. As applications, some new inequalities with the particular kernels are obtained.
1 Definitions and lemmasWe need the following special functions[10]:
Beta-function
$\begin{align} & B\left( u,v \right)=\int_{0}^{\infty }{{}}\frac{{{t}^{u-1}}dt}{{{\left( 1+t \right)}^{u+v}}} \\ & =\int_{0}^{1}{{}}{{\left( 1-t \right)}^{u-1}}{{t}^{v-1}}dt\left( u,v>0 \right) \\ \end{align}$ (4)
Γ-function
$\Gamma \left( z \right)=\int_{0}^{\infty }{{}}{{e}^{-u}}{{u}^{z-1}}du\left( z>0 \right),$ (5)
Riemann’s zeta-function
$\zeta \left( x \right)=\sum\limits_{k=1}^{\infty }{{}}\frac{1}{{{k}^{x}}}\left( x>1 \right),$ (6)
and the extended ζ-function
$\zeta \left( s,a \right)=\sum\limits_{k=0}^{\infty }{{}}\frac{1}{{{\left( k+a \right)}^{s}}},$ (7)
where Re(s)>1, a is not equal to zero or negative integer. Obviously, ζ(s, 1)=ζ(s).
If a is not equal to zero or negative integer, 0<s≤1, we define the following value of the convergent series as.
$S\left( s,a \right)=\sum\limits_{k=0}^{\infty }{{}}\frac{{{\left( -1 \right)}^{k}}}{{{\left( k+a \right)}^{s}}},$ (8)
Lemma 1.1? If s>0, a is not equal to zero or negative integer, we have the summation formula as
$\begin{array}{l}C\left( {s,a} \right) = \sum\limits_{k = 0}^\infty {} \frac{{{{\left( { - 1} \right)}^k}}}{{{{\left( {k + a} \right)}^s}}} = \\\left\{ \begin{array}{l}S\left( {s,a} \right),0 < s \le 1\\\frac{1}{{{2^s}}}\left[ {\zeta \left( {s,\frac{a}{2}} \right) - \zeta \left( {s,\frac{{a + 1}}{2}} \right),} \right]{\rm{ }}s > 1.\end{array} \right.\end{array}$ (9)
Proof? When 0<s≤1, clearly, $\sum\nolimits_{k=0}^{\infty }{{}}\frac{{{\left( -1 \right)}^{k}}}{\left( k+a \right)}$=S(s, a), and when s>1 , we have
$\begin{align} & \sum\limits_{k=0}^{\infty }{{}}\frac{{{\left( -1 \right)}^{k}}}{{{\left( k+a \right)}^{s}}}~=\sum\limits_{k=0}^{\infty }{{}}\frac{1}{{{\left( 2k+a \right)}^{s}}}-\sum\limits_{k=0}^{\infty }{{}}\frac{1}{{{\left( 2k+1+a \right)}^{s}}} \\ & =\frac{1}{{{2}^{s}}}\left[ \sum\limits_{k=0}^{\infty }{{}}\frac{1\text{ }}{{{\left( k+\frac{a}{2} \right)}^{s}}}-\text{ }\sum\limits_{k=0}^{\infty }{{}}\frac{1}{{{\left( k+\frac{a+1}{2} \right)}^{s}}} \right] \\ & =\frac{1}{{{2}^{s}}}\left[ \zeta \left( s,\frac{a}{2} \right)-\zeta \left( s,\frac{a+1}{2} \right) \right]. \\ \end{align}$
If λ1, λ2>0, writing down α=$\frac{{{\lambda }_{1}}+{{\lambda }_{2}}}{{{\lambda }_{1}}{{\lambda }_{2}}}$, h(u) is a nonnegative measurable function in (0, ∞), we define k λ1, λ2as
${{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}:=\int_{0}^{\infty }{{}}h\left( u \right){{u}^{\alpha -1}}du,$ (10)
assuming that kλ1, λ2(≥0) is a limited number. Setting u=xλ1yλ2, we have
$\begin{align} & {{\omega }_{{{\lambda }_{1}},{{\lambda }_{2}}}}\left( x \right):={{\lambda }_{2}}{{x}^{\frac{{{\lambda }_{1}}}{{{\lambda }_{2}}}+1}}\int_{0}^{\infty }{{}}~h({{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}}){{y}^{\frac{{{\lambda }_{2}}}{{{\lambda }_{1}}}}}dy \\ & ={{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}},\left( x\in \left( 0,\infty \right) \right), \\ \end{align}$ (11)
$\begin{align} & {{\omega }_{{{\lambda }_{1}},{{\lambda }_{2}}}}\left( y \right):={{\lambda }_{1}}{{y}^{^{\frac{{{\lambda }_{1}}}{{{\lambda }_{2}}}+1}}}\int_{0}^{\infty }{{}}h({{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}}){{x}^{\frac{{{\lambda }_{1}}}{{{\lambda }_{2}}}}}dx \\ & ={{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}},\left( y\in \left( 0,\infty \right) \right), \\ \end{align}$ (12)
Lemma 1.2? Suppose that p>1, $\frac{1}{p}+\frac{1}{q}$=1, λ1, λ2>0, h(u) is a nonnegative measurable function in (0, ∞), kλ1 , λ2 (see (10)) is a nonnegative and limited number, f, g≥0, satisfying $\int_{0}^{\infty }{{}}{{x}^{-\frac{p{{\lambda }_{1}}}{{{\lambda }_{2}}}-1}}$fp(x)dx<∞, $\int_{0}^{\infty }{{}}{{y}^{-\frac{q{{\lambda }_{1}}}{{{\lambda }_{2}}}-1}}$gq(y)dy<∞, then we have the following equivalent inequalities:
$\begin{align} & {{I}_{{{\lambda }_{1}},{{\lambda }_{2}}}}:=\int_{0}^{\infty }{{}}{{y}^{\frac{\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}+1}{q-1}}}{{\left\{ \int_{0}^{\infty }{{}}h({{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}})f\left( x \right)dx \right\}}^{p}}dy \\ & \le {{\left[ \frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}} \right]}^{p}}\int_{0}^{\infty }{{}}{{x}^{-\frac{p{{\lambda }_{1}}}{{{\lambda }_{2}}}-1}}{{f}^{p}}\left( x \right)dx, \\ \end{align}$ (13)
$\begin{align} & {{J}_{{{\lambda }_{1}},{{\lambda }_{2}}}}:=\int_{0}^{\infty }{{}}\int_{0}^{\infty }{{}}h({{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}})f\left( x \right)g\left( y \right)dxdy \\ & \le \frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}}{{\left\{ \int_{0}^{\infty }{{}}{{x}^{-\frac{p{{\lambda }_{1}}}{{{\lambda }_{2}}}-1}}{{f}^{p}}\left( x \right)dx \right\}}^{\frac{1}{p}}}\times \\ & \left\{ \int_{0}^{\infty }{{}}{{y}^{-\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}-1}}{{g}^{q}}\left( y \right)d{{y}^{\frac{1}{q}}} \right\}. \\ \end{align}$ (14)
Proof? By the weighted Holder's inequality[11] and (12), we find
$\begin{align} & {{\left\{ \int_{0}^{\infty }{{}}h({{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}})f\left( x \right)dx \right\}}^{p}} \\ & ={{\left\{ \int_{0}^{\infty }{{}}h({{x}^{\lambda 1}}{{y}^{{{\lambda }_{2}}}})\text{ }\left[ \frac{{{y}^{\frac{{{\lambda }_{2}}}{p{{\lambda }_{1}}}}}}{{{x}^{\frac{{{\lambda }_{1}}}{q{{\lambda }_{2}}}}}}f\left( x \right) \right]\text{ }\left[ \frac{{{x}^{\frac{{{\lambda }_{1}}}{q{{\lambda }_{2}}}}}}{{{y}^{\frac{{{\lambda }_{2}}}{p{{\lambda }_{1}}}}}}~ \right]dx \right\}}^{p}} \\ & \le \int_{0}^{\infty }{{}}h({{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}})\frac{{{y}^{\frac{{{\lambda }_{2}}}{{{\lambda }_{1}}}}}}{~{{x}^{\frac{\left( p-1 \right){{\lambda }_{1}}}{{{\lambda }_{2}}}}}}~{{f}^{p}}\left( x \right)dx\times \\ & {{\left\{ \int_{0}^{\infty }{{}}h({{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}})\frac{{{x}^{\frac{{{\lambda }_{1}}}{{{\lambda }_{2}}}}}~}{{{y}^{\frac{\left( q-1 \right){{\lambda }_{2}}}{{{\lambda }_{1}}}}}}dx \right\}}^{p-1}} \\ & =\frac{k_{{{\lambda }_{1}},{{\lambda }_{2}}}^{p-1}}{\lambda _{1}^{p-1}}{{y}^{\left( 1-p \right)\left( \frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}+1 \right)}}\int_{0}^{\infty }{{}}h({{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}})\frac{{{y}^{\frac{{{\lambda }_{2}}}{{{\lambda }_{1}}}}}}{{{x}^{\frac{\left( p-1 \right){{\lambda }_{1}}}{{{\lambda }_{2}}}}}}~{{f}^{p}}\left( x \right)dx. \\ \end{align}$
By Fubini’s theorem[12] and (11), we have
$\begin{align} & {{I}_{{{\lambda }_{1}},{{\lambda }_{2}}}} \\ & \le \frac{k_{{{\lambda }_{1}},{{\lambda }_{2}}}^{p-1}}{\lambda _{1}^{p-1}}\int_{0}^{\infty }{{}}\int_{0}^{\infty }{{}}h({{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}})\frac{{{y}^{\frac{{{\lambda }_{2}}}{{{\lambda }_{1}}}}}}{{{x}^{\frac{\left( p-1 \right){{\lambda }_{1}}}{{{\lambda }_{2}}}}}}{{f}^{p}}\left( x \right)dxdy \\ & =\frac{k_{{{\lambda }_{1}},{{\lambda }_{2}}}^{p-1}}{\lambda _{1}^{p-1}}\int_{0}^{\infty }{{}}\left[ \int_{0}^{\infty }{{}}h({{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}})\frac{{{y}^{\frac{{{\lambda }_{2}}}{{{\lambda }_{1}}}}}}{{{x}^{\frac{\left( p-1 \right){{\lambda }_{1}}}{{{\lambda }_{2}}}}}}dy \right]{{f}^{p}}\left( x \right)dx \\ & =\frac{k_{{{\lambda }_{1}},{{\lambda }_{2}}}^{p-1}}{\lambda _{1}^{p-1}}\int_{0}^{\infty }{{}}{{\omega }_{{{\lambda }_{1}},{{\lambda }_{2}}}}\left( y \right){{x}^{-\frac{p{{\lambda }_{1}}}{{{\lambda }_{2}}}-1}}{{f}^{p}}\left( x \right)dx \\ \end{align}$
By H?lder’s inequality, we have
$\begin{align} & {{J}_{{{\lambda }_{1}},{{\lambda }_{2}}}}=\int_{0}^{\infty }{{}}\left\{ {{y}^{\frac{\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}+1}{p(q-1)}}}\int_{0}^{\infty }{{}}h({{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}})f\left( x \right)dx \right\}\times \\ & \left\{ {{y}^{\frac{\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}-1}{p(q-1)}}}g\left( y \right) \right\}dy \\ & \le I_{{{\lambda }_{1}},{{\lambda }_{2}}}^{\frac{1}{p}}{{\left\{ \int_{0}^{\infty }{{}}{{y}^{-\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}-1}}{{g}^{q}}\left( y \right)dy \right\}}^{\frac{1}{q}}}. \\ \end{align}$ (15)
By (15) and (13), we obtain (14).
On the contrary, if (14) is true, for y>0, setting the function as
$g\left( y \right):={{y}^{\frac{\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}+1}{q-1}}}{{\left[ ~\int_{0}^{\infty }{{}}h({{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}})f\left( x \right)dx \right]}^{p-1}},$
by (14) we obtain
$\begin{align} & 0\le \int_{0}^{\infty }{{}}{{y}^{-\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}-1}}{{g}^{q}}\left( y \right)dy \\ & =\int_{0}^{\infty }{{}}{{y}^{\frac{\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}+1}{q-1}}}{{\left\{ \int_{0}^{\infty }{{}}h({{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}})f\left( x \right)dx \right\}}^{p}}dy \\ & ={{I}_{{{\lambda }_{1}},{{\lambda }_{2}}}}={{J}_{{{\lambda }_{1}},{{\lambda }_{2}}}} \\ & \le \frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}}{{\left\{ \int_{0}^{\infty }{{}}{{x}^{-\frac{p{{\lambda }_{1}}}{{{\lambda }_{2}}}-1}}{{f}^{p}}\left( x \right)dx \right\}}^{\frac{1}{p}}}\times \\ & {{\left\{ \int_{0}^{\infty }{{}}{{y}^{-\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}-1}}{{g}^{q}}\left( y \right)dy \right\}}^{\frac{1}{q}}}. \\ \end{align}$ (16)
By (15), we have that Iλ1, λ2<∞. If Iλ1, λ2=0, (13) is tenable naturally. If 0<Iλ1, λ2<∞, by (16) we have
$\begin{align} & {{\left\{ \int_{0}^{\infty }{{}}{{y}^{-\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}-1}}{{g}^{q}}\left( y \right)dy \right\}}^{\frac{1}{p}}}=I_{{{\lambda }_{1}},{{\lambda }_{2}}}^{\frac{1}{p}} \\ & \le \frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}}{{\left\{ \int_{0}^{\infty }{{}}{{x}^{-\frac{p{{\lambda }_{1}}}{{{\lambda }_{2}}}-1}}{{f}^{p}}\left( x \right)dx \right\}}^{\frac{1}{p}}}, \\ \end{align}$
namely,
$\begin{align} & \int_{0}^{\infty }{{}}{{y}^{\frac{\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}+1}{q-1}}}{{\left\{ \int_{0}^{\infty }{{}}h({{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}})f\left( x \right)dx \right\}}^{p}}dy \\ & \le {{\left[ \frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}} \right]}^{p}}\int_{0}^{\infty }{{}}{{x}^{-\frac{p{{\lambda }_{1}}}{{{\lambda }_{2}}}-1}}{{f}^{p}}\left( x \right)dx. \\ \end{align}$
So (13) and (14) are equivalent. The lemma is proved.
Lemma 1.3? If p>1, $\frac{1}{p}+\frac{1}{q}$=1, λ1, λ2>0, writing down α=$\frac{{{\lambda }_{1}}+{{\lambda }_{2}}}{{{\lambda }_{1}}{{\lambda }_{2}}}$, h(u) is a nonnegative measurable function in (0, ∞), satisfying that kλ1, λ2 (see (12)) is a nonnegative and finite number. If there is δ>0, such that kλ1, λ2, δ=∫0h(u)ua+δ-1 du is still a nonnegative and limited number. For 0<ε<min {, }, and ε is small enough, we define the following real function
$\begin{array}{l}\tilde f\left( x \right): = \left\{ \begin{array}{l}0,x \in \left( {0,1} \right)\\{x^{\frac{{\frac{{p{\lambda _1}}}{{{\lambda _2}}} - {\lambda _1}\varepsilon }}{p}}},x \in \left[ {1,\infty } \right)\end{array} \right.,\\\tilde g\left( y \right): = \left\{ \begin{array}{l}0,y \in \left( {1,\infty } \right)\\{y^{\frac{{\frac{{q{\lambda _2}}}{{{\lambda _1}}} + {\lambda _2}\varepsilon }}{q}}},y \in \left( {0,1} \right]\end{array} \right..\end{array}$
Then we have
$\begin{align} & {{{\tilde{J}}}_{{{\lambda }_{1}},{{\lambda }_{2}}}}\varepsilon ={{\left[ \int_{0}^{\infty }{{}}{{x}^{-\frac{p{{\lambda }_{1}}}{{{\lambda }_{2}}}-1}}{{{\tilde{f}}}^{p}}\left( x \right)dx \right]}^{\frac{1}{p}}}\times \\ & {{\left[ \int_{0}^{\infty }{{}}{{y}^{-\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}-1}}{{{\tilde{g}}}^{q}}\left( y \right)dy \right]}^{\frac{1}{q}}}\varepsilon \\ & =\frac{1}{\lambda _{1}^{\frac{1}{p}}\lambda _{2}^{\frac{1}{q}}}, \\ \end{align}$ (17)
and
$\begin{align} & {{{\tilde{I}}}_{{{\lambda }_{1}},{{\lambda }_{2}}}}\varepsilon =\varepsilon \int_{0}^{\infty }{{}}h({{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}})\tilde{f}\left( x \right)\tilde{g}\left( y \right)dxdy \\ & =\frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{{{\lambda }_{1}}{{\lambda }_{2}}}+o\left( 1 \right)(\varepsilon \to {{0}^{+}}). \\ \end{align}$ (18)
Proof? We easily get
$\begin{align} & \tilde{J}\varepsilon ={{\left[ \int_{0}^{\infty }{{}}{{x}^{-\frac{p{{\lambda }_{1}}}{{{\lambda }_{2}}}-1}}{{{\tilde{f}}}^{p}}\left( x \right)dx \right]}^{\frac{1}{p}}}~{{\left[ \int_{0}^{\infty }{{}}{{y}^{-\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}-1}}{{{\tilde{g}}}^{q}}\left( y \right)dy~ \right]}^{\frac{1}{q}}}\varepsilon \\ & ={{\left[ \int_{1}^{\infty }{{}}{{x}^{-1-{{\lambda }_{1}}\varepsilon }}dx \right]}^{\frac{1}{p}}}{{\left[ \int_{0}^{1}{{}}{{y}^{-1+{{\lambda }_{2}}\varepsilon }}dy \right]}^{\frac{1}{q}}}\varepsilon \\ & =\frac{1}{\lambda _{1}^{\frac{1}{p}}}\lambda _{2}^{\frac{1}{q}}. \\ \end{align}$
Setting u=xλ1yλ2, by Fubini’s theorem, we have
$\begin{array}{l}\tilde I\varepsilon = \varepsilon \int_0^\infty {} \int_0^\infty {} h({x^{{\lambda _1}}}{y^{{\lambda _2}}})\tilde f\left( x \right)\tilde g\left( y \right)dxdy\\ = \varepsilon \int_1^\infty {} {x^{\frac{{\frac{{p{\lambda _1}}}{{{\lambda _2}}} - {\lambda _1}\varepsilon }}{p}}}dx{\rm{ }}\left[ {\int_0^1 {} h({x^{{\lambda _1}}}{y^{{\lambda _2}}}){y^{\frac{{\frac{{q{\lambda _2}}}{{{\lambda _1}}} + {\lambda _2}\varepsilon }}{q}}}dy} \right]\\ = \frac{\varepsilon }{{{\lambda _2}}}\int_1^\infty {} {x^{ - 1 - {\lambda _1}\varepsilon }}dx{\rm{ }}\left[ {\int_1^{{x^{{\lambda _1}}}} {} h\left( u \right){u^{\alpha + \frac{\varepsilon }{q} - 1}}du} \right]\\ = \frac{\varepsilon }{{{\lambda _2}}}\int_1^\infty {} {x^{ - 1 - {\lambda _1}\varepsilon }}dx\left[ \begin{array}{l}\int_0^1 {} {\rm{ }}h\left( u \right){u^{\alpha + \frac{\varepsilon }{q} - 1}}du + \\\int_1^{{x^{{\lambda _1}}}} {} h\left( u \right){u^{\alpha + \frac{\varepsilon }{q} - 1}}du\end{array} \right]\\ = \frac{1}{{{\lambda _1}{\lambda _2}}}\int_0^1 {} h\left( u \right){u^{\alpha + \frac{\varepsilon }{q} - 1}}du + \\\frac{\varepsilon }{{{\lambda _2}}}\int_1^\infty {} {x^{ - 1 - {\lambda _1}\varepsilon }}dx{\rm{ }}\left[ {\int_1^{{x^{{\lambda _1}}}} {} h\left( u \right){u^{\alpha + \frac{\varepsilon }{q} - 1}}du} \right]\\ = \frac{1}{{{\lambda _1}{\lambda _2}}}\int_0^1 {} h\left( u \right){u^{\alpha + \frac{\varepsilon }{q} - 1}}du + \\\frac{\varepsilon }{{{\lambda _2}}}\int_1^\infty {} \left( {\int_u^\infty {} {x^{ - 1 - {\lambda _1}\varepsilon }}dx} \right)h\left( u \right){u^{\alpha + \frac{\varepsilon }{q} - 1}}du\\ = \frac{1}{{{\lambda _1}{\lambda _2}}}\int_0^1 {} h\left( u \right){u^{\alpha + \frac{\varepsilon }{q} - 1}}du + \\\frac{1}{{{\lambda _1}{\lambda _2}}}\int_1^\infty {} h\left( u \right){u^{\alpha - \frac{\varepsilon }{p} - 1}}du.\end{array}$ (19)
Since h(u)uα+$\frac{\varepsilon }{q}$-1h(u)uα-1, u∈(0, 1), h(u)uα-$\frac{\varepsilon }{q}$-1h(u)uα+δ-1, u∈(1, ∞), kλ1, λ2 and kλ1, λ2, δ are limited numbers, by Lebesgue's dominated convergence theorem[12], when ε→0+, we obtain
$\int_{0}^{1}{{}}h\left( u \right){{u}^{\alpha +\frac{\varepsilon }{q}-1}}du=\int_{0}^{1}{{}}h\left( u \right){{u}^{\alpha -1}}du+{{o}_{1}}\left( 1 \right)$ (20)
$\int_{1}^{\infty }{{}}h\left( u \right){{u}^{\alpha -\frac{\varepsilon }{q}-1}}du=\int_{1}^{\infty }{{}}h\left( u \right){{u}^{\alpha -1}}du+{{o}_{2}}\left( 1 \right).$ (21)
Putting (20) and (21) into (19), we get (18).
2 Main results and applicationsIf θ(x)(>0) is a measurable function, ρ≥1, the function space is set as
$\begin{align} & L_{\theta }^{\rho }\left( 0,\infty \right):= \\ & \left\{ h\ge 0;\|h{{\|}_{\rho ,\theta }}:={{\left\{ \int_{0}^{\infty }{{}}\theta \left( x \right){{h}^{\rho }}\left( x \right)dx \right\}}^{\frac{1}{p}}}<\infty \right\}. \\ \end{align}$
If p>1, $\frac{1}{p}+\frac{1}{q}$=1, λ1, λ2>0, writing down α=$\frac{{{\lambda }_{1}}+{{\lambda }_{2}}}{{{\lambda }_{1}}{{\lambda }_{2}}}$, h(u) is a nonnegative measurable function in (0, ∞), satisfying that kλ1, λ2(see (10)) is a nonnegative and finite number, setting φ(x):=x$-\frac{p{{\lambda }_{1}}}{{{\lambda }_{2}}}-1$, ψ(y):=y$-\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}-1$, x, y∈(0, ∞), and ψ1-p(y)=y$\frac{\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}+1}{q-1}$, we define an operator
$\begin{align} & T:L_{\varphi }^{p}\left( 0,\infty \right)\to L_{{{\psi }^{1-p}}}^{p}\left( 0,\infty \right),\text{ }for\text{ }f\in L_{\varphi }^{p}\left( 0,\infty \right) \\ & \left( Tf \right)\left( y \right):=\int_{0}^{\infty }{{}}h({{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}})f\left( x \right)dx,\left( y\in \left( 0,\infty \right) \right). \\ \end{align}$ (22)
In view of (13), it follows TfLψ1-pp. For gLψq(0, ∞), we define the formal inner of Tf and g
$\left( Tf,g \right):=\int_{0}^{\infty }{{}}\int_{0}^{\infty }{{}}h({{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}})f\left( x \right)g\left( y \right)dxdy.$ (23)
Hence the equivalent inequalities (13) and (14) may be rewritten in the following abstract forms
$\|Tf\|_{p,{{\psi }^{1-p}}}^{p}\le \text{ }{{\left[ \frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}} \right]}^{p}}\|f\|_{p,\varphi }^{p},$ (24)
$\left( Tf,g \right)\le \frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}}\|f{{\|}_{p,\varphi }}\|g{{\|}_{q,\psi }}.$ (25)
T is obviously bounded[13], and ‖T‖≤$\frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}}$. We call that T is two-parameters Hilbert-type integral operator.
Theorem 2.1? If p>1, $\frac{1}{p}+\frac{1}{q}$=1, λ1, λ2>0, h(u) is a nonnegative measurable function in (0, ∞), kλ1, λ2(see (10)) is a nonnegative and limited number , φ(x)=x$-\frac{p{{\lambda }_{1}}}{{{\lambda }_{2}}}-1$, ψ(y)=y$-\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}-1$, fLφp(0, ∞), gLψq(0, ∞), ‖fp, φ, ‖gq, ψ>0, then we have ‖T‖=$\frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}}$, and the constant factors in (24) and (25) are the best possible.
Proof? Assuming that the constant factor $\frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}}$ in (25) is not the best possible, then there exists a positive k<$\frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}}$, such that inequality (25) is still valid if we replace $\frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}}$ by k. Specially, putting f(x) and g(y) in Lemma 1.3 instead of f(x) and g(y), then by (17) and (18) we have
$\frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{{{\lambda }_{1}}{{\lambda }_{2}}}+o\left( 1 \right)<\frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}}.$
Letting ε→0+, we get k$\frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}}$, which contradicts the fact that k<$\frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}}$. So the constant factor $\frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}}$ in (25) is the best possible one. If the constant factor ${{\left[ \frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}} \right]}^{p}}$ in (24) is not the best possible, then by (15) we get a contradictory conclusion that the constant factor $\frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}}$ in (25) is not the best possible. So, ‖T‖=$\frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}}$.
$\begin{align} & \|Tf\|_{p,{{\psi }^{1-p}}}^{p}=\int_{0}^{\infty }{{}}{{y}^{\frac{\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}+1}{q-1}}}{{\left\{ \int_{0}^{\infty }{{}}h({{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}})f\left( x \right)dx \right\}}^{p}}dy \\ & <{{\left[ \frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}} \right]}^{p}}\|f\|_{p,\varphi }^{p}, \\ \end{align}$ (26)
$\begin{align} & \left( Tf,g \right)=\int_{0}^{\infty }{{}}\int_{0}^{\infty }{{}}h({{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}})f\left( x \right)g\left( y \right)dxdy \\ & <\frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}}\|f{{\|}_{p,\varphi }}\|g{{\|}_{q,\psi }}, \\ \end{align}$ (27)
where the constant factors ${{\left[ \frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}} \right]}^{p}}$ and $\frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}}$ are the best possible ones.
Proof? If inequality (25) keeps the form of an equality, by Lemma1.2 there exist two constants A and B such that they are not all zeroes[11], and they satisfy
$A\frac{{{y}^{\frac{{{\lambda }_{2}}}{{{\lambda }_{1}}}}}}{{{x}^{\frac{p{{\lambda }_{1}}}{q{{\lambda }_{2}}}}}}{{f}^{p}}\left( x \right)=B\frac{{{x}^{\frac{{{\lambda }_{1}}}{{{\lambda }_{2}}}}}}{{{y}^{\frac{q{{\lambda }_{2}}}{p{{\lambda }_{1}}}}}}{{g}^{q}}\left( y \right)a.e.in\left( 0,\infty \right)\times \left( 0,\infty \right).$
It follows that Ax$-\frac{p{{\lambda }_{1}}}{{{\lambda }_{2}}}$fp(x)=By$-\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}$gq(y)a.e. in (0, ∞)×(0, ∞). Assuming that A≠0, there exists y>0, such that x$-\frac{p{{\lambda }_{1}}}{{{\lambda }_{2}}}-1$fp(x)=[By$-\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}$gq(y)]$\frac{1}{Ax}$ a.e. in (0, ∞), which contradicts the fact that 0<‖fp, φ<∞. Then inequality (25) keeps the strict form. So (27) is true. Since inequalities (24) and (25) are equivalent, inequality (24) keeps the strict form too. So (26) is true.By Theorem 2.1, the constant factors ${{\left[ \frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}} \right]}^{p}}$ and $\frac{{{k}_{{{\lambda }_{1}},{{\lambda }_{2}}}}}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}}$ are the best possible ones.
Assuming that p>1, $\frac{1}{p}+\frac{1}{q}$=1, λ1, λ2>0, α=$\frac{{{\lambda }_{1}}+{{\lambda }_{2}}}{{{\lambda }_{1}}{{\lambda }_{2}}}$, φ(x)=x$-\frac{p{{\lambda }_{1}}}{{{\lambda }_{2}}}-1$, ψ(y)=y$-\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}-1$, fLφp(0, ∞), gLψq(0, ∞), ‖fp, φ, ‖gq, ψ>0, we obtain some useful inequalities by selecting some special kernels in (24) and (25).
1) If h(u)=$\frac{1}{{{\left( 1+u \right)}^{\beta }}}$, β>α, such that kλ1, λ2=$\int_{0}^{\infty }{{}}\frac{1}{{{\left( 1+u \right)}^{\beta }}}$uα-1du=B(β-α, α), by Theorem 2.2 we have the following equivalent inequalities with the best constant factors
$\begin{align} & \int_{0}^{\infty }{{}}{{y}^{\frac{\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}+1}{q-1}}}\int_{0}^{\infty }{{}}{{\left[ \frac{f\left( x \right)dx}{{{(1+{{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}})}^{\beta }}} \right]}^{p}}dy \\ & <\left[ \frac{B\left( \beta -\alpha ,\alpha \right)}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}} \right]\left\| f \right\|_{p,\varphi }^{p}, \\ \end{align}$ (28)
$\int_{0}^{\infty }{{}}\int_{0}^{\infty }{{}}\frac{f\left( x \right)g(y)dxdy}{{{\left( 1+{{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}} \right)}^{\beta }}}\frac{B\left( \beta -\alpha ,\alpha \right)}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}}\left\| f \right\|_{p,\varphi }^{{}}\left\| g \right\|_{q,\varphi }^{{}}.$ (29)
2) If h(u)=$\frac{1}{{{(max~\left\{ 1,u \right\})}^{\beta }}}$, β>α, such that kλ1, λ2=$\int_{0}^{\infty }{{}}\frac{1}{{{(max~\left\{ 1,u \right\})}^{\beta }}}$uα-1du=$\frac{1}{\alpha \left( \beta -\alpha \right)}$, by Theorem 2.2 we have the following equivalent inequalities with the best constant factors as
$\begin{align} & \int_{0}^{\infty }{{}}{{y}^{\frac{\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}+1}{q-1}}}~\left[ \int_{0}^{\infty }{{}}\frac{f\left( x \right)dx}{{{(max~\{1,{{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}}\})}^{\beta }}} \right]{{~}^{p}}dy \\ & <{{\left[ \frac{1}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}a\left( \beta -a \right)} \right]}^{p}}\|f{{\|}^{p}}_{p,\varphi }, \\ \end{align}$ (30)
$\begin{align} & \int_{0}^{\infty }{{}}\int_{0}^{\infty }{{}}\frac{f\left( x \right)g\left( y \right)dxdy}{{{(max~\{1,{{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}}\})}^{\beta }}} \\ & <\frac{1}{\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}a\left( \beta -a \right)}\|f{{\|}_{p,\varphi }}\|g{{\|}_{q,\psi }}. \\ \end{align}$ (31)
3) If h(u)=sechu, by Lemma 1.1 we get that kλ1, λ2=∫0(sechu)uα-1du=2$\int_{0}^{\infty }{{}}\frac{{{e}^{-u}}}{1+{{e}^{-2u}}}$uα-1du=2∑k=0(-1)k0e-(2k+1)uuα-1du=2Γ(α)∑k=0(-1)k$\frac{{{\left( -1 \right)}^{k}}}{{{\left( 2k+1 \right)}^{\alpha }}}=\frac{1}{{{2}^{\alpha -1}}}\Gamma \left( \alpha \right)C\left( \alpha ,\frac{1}{2} \right)$, and by Theorem 2.2 we have the following equivalent inequalities with the best constant factor
$\begin{align} & \int_{0}^{\infty }{{}}{{y}^{\frac{\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}+1}{q-1}}}~{{\left[ \int_{0}^{\infty }{{}}(sech{{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}})f\left( x \right)dx \right]}^{p}}dy \\ & <{{\left[ \frac{\Gamma \left( \alpha \right)C\left( \alpha ,\frac{1}{2} \right)}{{{2}^{\alpha -1}}\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}} \right]}^{p}}\|f\|_{p,\varphi }^{p}, \\ \end{align}$ (32)
$\begin{align} & \int_{0}^{\infty }{{}}\int_{0}^{\infty }{{}}(sech{{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}})f\left( x \right)g\left( y \right)dxdy \\ & <{{\left[ \frac{\Gamma \left( \alpha \right)C\left( \alpha ,\frac{1}{2} \right)}{{{2}^{\alpha -1}}\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}} \right]}^{p}}\|f{{\|}_{p,\varphi }}\|g{{\|}_{q,\psi }}. \\ \end{align}$ (33)
4) If h(u)=cschu, α>1(λ1+λ2>λ1λ2), by (7) we get that kλ1, λ2=∫0(cschu)uα-1du=2 $\int_{0}^{\infty }{{}}\frac{{{e}^{-u}}}{1+{{e}^{-2u}}}$uα-1du=2 $\sum\limits_{k=0}^{\infty }{{}}$0e-(2k+1)uuα-1du=2Γ(α)$\sum\limits_{k=0}^{\infty }{{}}\frac{1}{{{\left( 2k+1 \right)}^{\alpha }}}=\frac{\Gamma \left( \alpha \right)\zeta \left( \alpha ,\frac{1}{2} \right)}{{{2}^{\alpha -1}}}$, and by Theorem 2.2 we have the following equivalent inequalities with the best constant factors
$\begin{align} & \int_{0}^{\infty }{{}}{{y}^{\frac{\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}+1}{q-1}}}{{\left[ \int_{0}^{\infty }{{}}(csch{{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}})f\left( x \right)dx \right]}^{p}}dy \\ & <{{\left[ \frac{\Gamma \left( \alpha \right)\zeta \left( \alpha ,\frac{1}{2} \right)}{{{2}^{\alpha -1}}\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}} \right]}^{p}}\|f\|_{p,\varphi }^{p}, \\ \end{align}$ (34)
$\begin{align} & \int_{0}^{\infty }{{}}\int_{0}^{\infty }{{}}(csch{{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}})f\left( x \right)g\left( y \right)dxdy \\ & <\frac{\Gamma \left( \alpha \right)\zeta \left( \alpha ,\frac{1}{2} \right)}{{{2}^{\alpha -1}}\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}}\|f{{\|}_{p,\varphi }}\|g{{\|}_{q,\psi }}. \\ \end{align}$ (35)
5) If h(u)=ln(1+e-u), by Lemma 1.1 we get that kλ1, λ2=∫0 ln(1+e-u)uα-1du=∑k=0$\frac{{{\left( -1 \right)}^{k}}}{k+1}$0e-(k+1)uua-1du=Γ(α)∑k=0$\frac{{{\left( -1 \right)}^{k}}}{{{\left( k+1 \right)}^{\alpha +1}}}=\frac{\Gamma \left( \alpha \right)}{{{2}^{\alpha +1}}}~\left[ \zeta \left( \alpha +1,\frac{1}{2} \right)-\zeta \left( \alpha +1,\frac{3}{2} \right) \right]$, and by Theorem 2.2 we have the following equivalent inequalities with the best constant factors
$\begin{align} & \int_{0}^{\infty }{{}}{{y}^{\frac{\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}+1}{q-1}}}{{\left\{ \int_{0}^{\infty }{{}}\left[ ln(1+{{e}^{-{{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}}}}) \right]f\left( x \right)dx \right\}}^{p}}dy \\ & <{{\frac{\Gamma \left( \alpha \right)\left[ \zeta \left( \alpha +1,\frac{1}{2} \right)-\text{ }\zeta \left( \alpha +1,\frac{3}{2} \right) \right]}{{{2}^{\alpha +1}}\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}}}^{p}}\|f{{\|}^{p}}_{p,\varphi } \\ \end{align}$ (36)
$\begin{align} & \int_{0}^{\infty }{{}}\int_{0}^{\infty }{{}}\left[ ln(1+{{e}^{-{{x}^{{{\lambda }_{1}}}}{{y}^{{{\lambda }_{2}}}}}}) \right]f\left( x \right)g\left( y \right)dxdy \\ & <{{\frac{\Gamma \left( \alpha \right)\left[ \zeta \left( \alpha +1,\frac{1}{2} \right)-\text{ }\zeta \left( \alpha +1,\frac{3}{2} \right) \right]}{{{2}^{\alpha +1}}\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}}}^{p}}\|f{{\|}_{p,\varphi }}\|g{{\|}_{q,\psi }}. \\ \end{align}$ (37)
6) If h(u)=arctan(e-u), by Lemma 1.1 we get that kλ1, λ2=∫0 arctan(e-u)uα-1du=∑k=0$\frac{{{\left( -1 \right)}^{k}}}{{{\left( 2k+1 \right)}^{\alpha +1}}}$0e-uuα-1du=$\frac{\Gamma \left( \alpha \right)}{{{4}^{\alpha +1}}}\left[ \zeta \left( \alpha +1,\frac{1}{4} \right)-\text{ }\zeta \left( \alpha +1,\frac{3}{4} \right) \right]$, 34, and by Theorem 2.2 we have the following equivalent inequalities with the best constant factors as
$\begin{align} & \int_{0}^{\infty }{{}}{{y}^{\frac{\frac{q{{\lambda }_{2}}}{{{\lambda }_{1}}}+1}{q-1}}}{{\left\{ \int_{0}^{\infty }{{}}[arctan({{e}^{-{{x}^{{{\lambda }_{1}}}}}}{{y}^{{{\lambda }_{2}}}})]f\left( x \right)dx \right\}}^{p}}dy \\ & <{{\left\{ \frac{\Gamma \left( \alpha \right)\left[ \zeta \left( \alpha +1,\frac{1}{4} \right)-\text{ }\zeta \left( \alpha +1,\frac{3}{4} \right)\text{ } \right]}{{{4}^{\alpha +1}}\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}} \right\}}^{p}}\|f\|_{p,\varphi }^{p} \\ \end{align}$ (38)
$\begin{align} & \int_{0}^{\infty }{{}}\int_{0}^{\infty }{{}}[arctan({{e}^{-{{x}^{{{\lambda }_{1}}}}}}{{y}^{{{\lambda }_{2}}}})]f\left( x \right)g\left( y \right)dxdy \\ & <\frac{\Gamma \left( \alpha \right)\left[ \zeta \left( \alpha +1,\frac{1}{4} \right)-\text{ }\zeta \left( \alpha +1,\frac{3}{4} \right)\text{ } \right]}{{{4}^{\alpha +1}}\lambda _{1}^{\frac{1}{q}}\lambda _{2}^{\frac{1}{p}}} \\ & \|\text{ }f{{\|}_{p,\varphi }}\|g{{\|}_{q,\psi }}. \\ \end{align}$ (39)

References
[1] Hardy G H, Littlewood J E, Pólya G. Inequalities[M].Cambridge: Cambridge Univ Press, 1952.
[2] Mintrinovi? D S, Pe?ari? J E, Kink A M. Inequalities involving functions and their integrals and derivertives[M].Boston: Kluwer Academic Publishers, 1991.
[3] Carleman T. Sur les equations integrals singulieres a noyau real et symetrique[M].Uppsala: Uppsala Univ Arsskrift, 1923.
[4] Yang B C. On the norm of an integral operator and applications[J].J Math Anal Appl, 2006, 321:182–192.DOI:10.1016/j.jmaa.2005.07.071
[5] Yang B C. On the norm of a Hilbert's type linear operator and applications[J].J Math Anal Appl, 2007, 325:529–541.DOI:10.1016/j.jmaa.2006.02.006
[6] Yang B C. On the norm of a certain self-adjoint integral operator and applications to bilinear integral inequalities[J].Taiwanese Journal of Mathematics, 2008, 12(2):315–324.
[7] Yang B C, Rassias T M. On a Hilbert-type integral inequality in the subinterval and its operator expression[J].Banach Journal of Mathematical and Analysis, 2010, 4(2):100–110.DOI:10.15352/bjma/1297117244
[8] Yang B C. A new Hilbert-type operator and applications[J].Publ Math Debrecen, 2010, 76(1/2):147–156.
[9] Yang B C. The norm of operator and Hilbert-type inequalities[M].Beijing: Science Press, 2009.
[10] Huang Z S, Guo D R. An intruction to special function[M].Beijing: Peking University Press, 2000.
[11] Kuang J C. Applied inequalities[M].Jinan: Shandong Science and Technology Press, 2004.
[12] Kuang J C. Introduction to real analysis[M].Changsha: Hunan Education Press, 1996.
[13] Taylor A E, Lay D C. Introduction to functional analysis[M].New York: John Wiley and Sone, 1979.


相关话题/邵阳学院 理学 信息科学 湖南 原文

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于力、能量、动量和作用量框架的物理学基础理论结构统一性探讨
    doi:10.12202/j.0476-0301.2019169曹盛林,北京师范大学天文系,100875,北京详细信息通讯作者:曹盛林(1937-),教授,学士.研究方向:相对论天体物理和宇宙学.e-mail:78108@bnu.edu.cn中图分类号:O41计量文章访问数:280HTML全文浏览量 ...
    本站小编 Free考研考试 2021-12-25
  • 一种复合营养素制剂的毒理学研究
    路子佳,谢瑶.一种复合营养素制剂的毒理学研究[J].北京理工大学学报(自然科学版),2019,39(S1):153~158.LUZi-jia,XIEYao.ToxicologicalStudyonthePreparationofCompoundNutrients[J].TransactionsofB ...
    本站小编 Free考研考试 2021-12-21
  • 姜黄灵芝中药保健食品毒理学研究
    路子佳,石萌萌,谢瑶.姜黄灵芝中药保健食品毒理学研究[J].北京理工大学学报(自然科学版),2017,37(s1):161~168.LUZi-jia,SHIMeng-meng,XIEYao.ToxicologlicalStudyontheChineseMedicineHealthFoodofCurc ...
    本站小编 Free考研考试 2021-12-21
  • 南宋《乐记》理学化阐释的两种路向——朱熹与杨简《乐记》中礼乐思想比较
    南宋《乐记》理学化阐释的两种路向——朱熹与杨简《乐记》中礼乐思想比较1中国人民大学艺术学院;2西北工业大学艺术教育中心出版日期:2020-11-16发布日期:2020-11-11作者简介:刘琉:艺术学博士,中国人民大学艺术学院副教授(北京100872);孙小迪(通讯作者):艺术学博士,西北工业大学艺 ...
    本站小编 Free考研考试 2021-12-21
  • 德性伦理学的基本特征及其与道义论、功利论伦理学的根本区别
    德性伦理学的基本特征及其与道义论、功利论伦理学的根本区别龚群#br#中国人民大学哲学院出版日期:2019-07-16发布日期:2019-07-10作者简介:龚群:哲学博士,中国人民大学哲学院教授,博士生导师,中国人民大学伦理学与道德建设研究中心研究员(北京100872)基金资助:中国人民大学2019 ...
    本站小编 Free考研考试 2021-12-21
  • 湖南新宁崀山丹霞红层天然半导体矿物的矿物学特征研究
    湖南新宁崀山丹霞红层天然半导体矿物的矿物学特征研究肖育雄,黎晏彰,丁竑瑞,李艳,鲁安怀?造山带与地壳演化教育部重点实验室,环境矿物功能北京市重点实验室,北京大学地球与空间科学学院,北京100871收稿日期:2018-12-14修回日期:2019-05-01出版日期:2019-09-20基金资助:国家 ...
    本站小编 Free考研考试 2021-12-20
  • 事理、事理系统工程与事理学
    文献详情事理、事理系统工程与事理学文献类型:期刊期刊名称:系统科学学报年:2019期:01页码:32-40ISSN:1005-6408关键词:事理;事理系统工程;事理学;复杂性摘要:本文按照辩证唯物论和系统科学观点讨论了五个相关的问题:事理辨析,事的工程性,事理工程的系统性,事理系统工程的复杂性,事 ...
    本站小编 Free考研 2020-04-17
  • 1980-2016年气候变化对湖南省农业产量的影响
    文献详情1980-2016年气候变化对湖南省农业产量的影响外文标题:ImpactsofclimatevariabilityoncropyieldsinHunanProvinceduring1980-2016文献类型:期刊期刊名称:资源科学年:2019卷:41期:3页码:582-590ISSN:100 ...
    本站小编 Free考研 2020-04-17
  • “思无邪”的伦理学推论
    文献详情“思无邪”的伦理学推论外文标题:Siwuxie:TheEssenceoftheBookofOdesanditsEthicalImplication文献类型:期刊期刊名称:中国人民大学学报年:2019卷:33期:2页码:61-67ISSN:1000-5420关键词:思无邪;兴于诗;立于礼;成于 ...
    本站小编 Free考研 2020-04-17
  • 论安乐哲儒家角色伦理学思想
    文献详情论安乐哲儒家角色伦理学思想外文标题:OnRogerAmes'PhilosophyinConfucianRoleEthics文献类型:期刊期刊名称:中国文化研究年:2019期:1页码:41-48ISSN:1005-3247关键词:安乐哲;儒家;角色;伦理学;role所属部门:哲学院链接地址:h ...
    本站小编 Free考研 2020-04-17