删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Uncertainty equalities and uncertainty relation in weak measurement

本站小编 Free考研考试/2021-12-25

宋秋成, 乔从丰
中国科学院大学物理学院, 北京 100049
摘要: 不确定原理是量子力学的基本原理之一.我们导出2个不确定等式, 适用于2个不相容的可观测量.同时得到一个弱测量中的不确定关系, 适用于2个不相容可观测量对应的非厄米算符.它指出了制备前选择和后选择系综的极限.
关键词: 不确定等式不确定关系弱值方差
Uncertainty principle is one of the basic tenets of quantum mechanics. The initial spirit of uncertainty principle was postulated by Heisenberg [1]. Kennard[2] first mathematically derived the Heisenberg uncertainty relation . The most famous and popular form is the Heisenberg-Robertson uncertainty relation [3]
$\Delta {{A}^{2}}\Delta {{B}^{2}}\ge {{\left| \frac{1}{2}\langle \psi \left| \left[ A, B \right] \right|\psi \rangle \right|}^{2}}, $ (1)
for any observables A and B and any state |ψ>, where the variance of an observable X in state |ψ> is defined as ΔX2=〈ψ|X2|ψ〉-〈ψ|X|ψ2 and the commutator is defined as [A, B]=AB-BA. A stronger extension of the Heisenberg-Robertson uncertainty relation (1) was made by Schr?dinger[4], which is generally formulated as
$\begin{align} & \Delta {{A}^{2}}\Delta {{B}^{2}}\ge {{\left| \frac{1}{2}\langle \left[ A, B \right]\rangle \right|}^{2}}+ \\ & {{\left| \frac{1}{2}\langle \left\{ A, B \right\}\rangle -\left\langle A \right\rangle \left\langle B \right\rangle \right|}^{2}}, \\ \end{align}$ (2)
where the anticommutator is defined as {A, B}=AB+BA, and 〈X〉 is defined as the expectation value 〈ψ|X|ψ〉 for any operator X with respect to the normalized state |ψ〉.
However, the above two uncertainty relations have the problem that they may be trivial even when A and B are incompatible on the state |ψ〉. In order to correct this problem, Maccone and Pati [5] presented two stronger uncertainty relations based on the sum of variances. The first uncertainty relation reads
$\begin{align} & \Delta {{A}^{2}}+\Delta {{B}^{2}}\ge \pm i\left\langle \left[ A, B \right] \right\rangle + \\ & \left| \langle \psi \right|A\pm iB|{{\psi }^{\bot }}\rangle {{|}^{2}}, \\ \end{align}$ (3)
which is valid for arbitrary states |ψ〉 orthogonal to the state of the system |ψ〉, where the sign should be chosen so that ±i〈[A, B]〉 (a real quantity) is positive. The second uncertainty relation is
$\Delta {{A}^{2}}+\Delta {{B}^{2}}\ge \frac{1}{2}|\langle \psi _{A+B}^{\bot }\left| A+B \right|\psi \rangle {{|}^{2}}.$ (4)
Here |ψA+B〉∝(A+B-〈A+B〉)|ψ〉 is a state orthogonal to |ψ〉. Maccone and Pati also derived an amended Heisenberg-Robertson uncertainty relationΔAΔB≥±i12〈[A, B]〉1-12|〈ψ|iBΔB|ψ〉|2,
$\Delta A\Delta B\ge \frac{\pm i\frac{1}{2}\left\langle \left[ A, B \right] \right\rangle }{1-\frac{1}{2}\left| \langle \psi \right|\frac{A}{\Delta A}\pm i\frac{B}{\Delta B}|{{\psi }^{\bot }}\rangle {{|}^{2}}}, $ (5)
which is stronger than the Heisenberg-Robertson uncertainty relation (1).
Recently, two stronger Schr?dinger-like uncerta-inty relations[6] have been proved which go beyond the Maccone and Pati’s uncertainty relation. The new relations provide stronger bounds whenever the observables are incompatible on the state |ψ〉. The first uncertainty relation is
$\begin{align} & \Delta {{A}^{2}}+\Delta {{B}^{2}}\ge \left| \left\langle \left[ A, B \right] \right\rangle +\left\langle \left\{ A, B \right\} \right\rangle -2\left\langle A \right\rangle \left\langle B \right\rangle \right| \\ & +\left| <\psi \right|A-{{e}^{i\alpha }}B|{{\psi }^{\bot }}>{{|}^{2}}, \\ \end{align}$ (6)
which is valid for arbitrary states |ψ〉 orthogonal to the state of the system |ψ〉 and stronger than the Maccone and Pati’s uncertainty relation (3). In(6), α is a real constant. If 〈{A, B}〉-2〈A〉〈B〉>0, then α=arctan-i〈[A, B]〉〈{A, B}〉-2〈A〉〈B〉. If 〈{A, B}〉-2〈A〉〈B〉 <0, then α=π+arctan-i〈[A, B]〉〈{A, B}〉-2〈A〉〈B〉. While 〈{A, B}〉-2〈A〉〈B〉=0, the relation (6) reduces to (3) . The second uncertainty relation is
$\begin{align} & \Delta {{A}^{2}}\Delta {{B}^{2}}\ge \\ & \frac{{{\left| \frac{1}{2}\left\langle \left[ A, B \right] \right\rangle \right|}^{2}}+{{\left| \frac{1}{2}\left\langle \left\{ A, B \right\} \right\rangle -\left\langle A \right\rangle \left\langle B \right\rangle \right|}^{2}}}{{{(1-\frac{1}{2}\left| \langle \psi \right|\frac{A}{\Delta A}-{{e}^{i\alpha }}\frac{B}{\Delta B}|{{\psi }^{\bot }}\rangle {{|}^{2}})}^{2}}} \\ \end{align}$ (7)
which is stronger than the Schr?dinger uncertainty relation (2).
These new state-dependent uncertainty relations have some problem[7], but some state-independent uncertainty relations[8-9] are immune from the drawback. Maccone and Pati’s uncertainty relations[5] are still very important and have some generalizations. Two variance-based uncertainty equalities were proved recently by Yao et al.[10] on the trend of stronger uncertainty relations[5], for all pairs of incompatible observables A and B. Meanwhile, two uncertainty relations in weak measurement were derived by Pati and Wu[11] for variances of two non-Hermitian operators corresponding to two noncommuting observables.
In this work we derive and prove two uncertainty equalities, which hold for all pairs of incompatible observables A and B. We also give an uncertainty relation in weak measurement for two non-Hermitian operators corresponding to two non-commuting observables.
1 Uncertainty equalitiesIn this section, we construct and prove two uncertainty equalities, which imply the uncertainty inequalities (6) and (7).
Uncertainty relation 1.
$\begin{align} & \Delta {{A}^{2}}+\Delta {{B}^{2}}= \\ & \left| \left\langle \left[ A, B \right] \right\rangle +\left\langle \left\{ A, B \right\} \right\rangle -2\left\langle A \right\rangle \left\langle B \right\rangle \right| \\ & +\sum\limits_{n=1}^{d-1}{\left| \langle \psi \right|A-{{e}^{i\alpha }}B|{{\psi }^{\bot }}_{n}\rangle {{|}^{2}}}, \\ \end{align}$ (8)
where {|ψ〉, |ψnn=1d-1} comprise an orthonormal complete basis in the d-dimensional Hilbert space.
Proof To prove our uncertainty relation, let us define the operators Π=I-|ψ〉〈ψ|, A-=AAI, and B=BBI and the state |φ〉=(A-eB)|ψ〉. We have 〈φ|Π|φ〉=〈ψ|(A-e-iτB)|(I-|ψ
$\begin{align} & \left\langle \phi \left| \Pi \right|\phi \right\rangle =\left\langle \psi \left| \left( \bar{A}-{{e}^{-i\tau }}\bar{B} \right) \right|\left( I-|\psi \right) \right\rangle \\ & \langle \psi |)\left| \left( \bar{A}-{{e}^{-i\tau }}\bar{B} \right) \right|\psi \rangle \\ & =\langle \psi |\left( \bar{A}-{{e}^{-i\tau }}\bar{B} \right)\left( \bar{A}-{{e}^{-i\tau }}\bar{B} \right)|\psi \rangle \\ & =\Delta {{A}^{2}}+\Delta {{B}^{2}}-2Re({{e}^{i\tau }}\langle \psi \left| \bar{A}\bar{B} \right|\psi \rangle ) \\ \end{align}$ (9)
There exists τ=-α so that e〈ψ|AB|ψ〉 is real, and it can be written as |〈ψ|A-B-|ψ〉|. we obtain〈ψ|(A-eB)|Π|(A-e-iαB)|ψ
$\begin{align} & \langle \psi |(\bar{A}-{{e}^{i\alpha }}\bar{B})|\Pi |(\bar{A}-{{e}^{-i\alpha }}\bar{B})|\psi \rangle \\ & =\Delta {{A}^{2}}+\Delta {{B}^{2}}-2\left| \langle \psi \right|\bar{A}\bar{B}\left| \psi \rangle \right| \\ & =\Delta {{A}^{2}}+\Delta {{B}^{2}}-|\left\langle \left[ A, B \right] \right\rangle + \\ & \left\langle \left\{ A, B \right\} \right\rangle -2\left\langle A \right\rangle \left\langle B \right\rangle |. \\ \end{align}$ (10)
Since Π is the orthogonal complement to |ψ〉〈ψ|, we can choose an arbitrary orthogonal decomposition of the projector Π,
$\Pi =\sum\limits_{n=1}^{d-1}{|\psi _{_{n}}^{^{\bot }}}\rangle \langle {{\psi }^{\bot }}_{n}|, $ (11)
where {|ψ>, |ψn>d-1n=1} comprise an orthonormal complete basis in the d-dimensional Hilbert space. Whence, Eq. (10) can be rewritten as
$\begin{align} & \sum\limits_{n=1}^{d-1}{\left| \langle \psi \right|}(\bar{A}-{{e}^{i\alpha }}\bar{B})|\psi _{n}^{\bot }>{{|}^{2}} \\ & =\sum\limits_{n=1}^{d-1}{\left| \langle \psi \right|}A-{{e}^{i\alpha }}B|{{\psi }^{\bot }}_{n}\rangle {{|}^{2}} \\ & =\Delta {{A}^{2}}+\Delta {{B}^{2}}-|\langle \left[ A, B \right]\rangle + \\ & \langle \left\{ A, B \right\}\rangle -2\langle A\rangle \langle B\rangle |, \\ \end{align}$ (12)
which is equivalent to (8).
Uncertainty relation 2.
$\begin{align} & \Delta {{A}^{2}}\Delta {{B}^{2}}= \\ & \frac{{{\left| \frac{1}{2}{{\left\langle \left[ A, B \right] \right\rangle }^{2}}+12\left\langle \left\{ A, B \right\} \right\rangle -\left\langle A \right\rangle \left\langle B \right\rangle \right|}^{2}}}{{{(1-\frac{1}{2}\sum\nolimits_{n=1}^{d-1}{\left| \langle \psi \right|}\frac{A}{\Delta A}-{{e}^{i\alpha }}\frac{B}{\Delta B}|\psi _{n}^{\bot }\rangle {{|}^{2}})}^{2}}}, \\ \end{align}$ (13)
where {|ψ〉, |ψnd-1n=1} comprise an orthonormal complete basis in the d-dimensional Hilbert space.
Proof To prove our uncertainty equality, let us define the operators Π=I-|ψ〉〈ψ|, A=AAI, and B=BBI and the unnormalized state $\left| \varphi \rangle =\frac{{\bar{A}}}{\Delta A}-{{e}^{i\tau }}\frac{{\bar{B}}}{\Delta B} \right|\psi \rangle $. We have
$\begin{align} & \langle \phi |\Pi |\phi \rangle \\ & =\langle \psi |(\frac{{\bar{A}}}{\Delta A}-{{e}^{-i\tau }}\frac{{\bar{B}}}{\Delta B})\left| \left( I \right.-\left| \psi \right\rangle \left. \left\langle \psi \right| \right) \right| \\ & (\frac{{\bar{A}}}{\Delta A}-{{e}^{-i\tau }}\frac{{\bar{B}}}{\Delta B})|\psi \\ & =\langle \psi |(\frac{{\bar{A}}}{\Delta A}-{{e}^{-i\tau }}\frac{{\bar{B}}}{\Delta B})(\frac{{\bar{A}}}{\Delta A}-{{e}^{-i\tau }}\frac{{\bar{B}}}{\Delta B})|\psi \rangle \\ & =2-2\frac{Re({{e}^{i\tau }}\langle \psi \left| A-\bar{B} \right|\psi \rangle )}{\Delta A\Delta B}, \\ \end{align}$ (14)
There exists τ=-α so that eψ|A B|ψ〉 is real, and it can be written as |〈ψ|A B|ψ〉|. We obtain
$\begin{align} & \langle \psi |(\frac{{\bar{A}}}{\Delta A}-{{e}^{i\alpha }}\frac{{\bar{B}}}{\Delta B})|\Pi |(\frac{{\bar{A}}}{\Delta A}-{{e}^{i\alpha }}\frac{{\bar{B}}}{\Delta B})|\psi \rangle \\ & =2-2\frac{\left| \langle \psi \right|\bar{A}\bar{B}\left| \psi \rangle \right|}{\Delta A\Delta B}. \\ \end{align}$ (15)
$\Pi =\sum\limits_{n=1}^{d-1}{\left| \psi _{n}^{\bot } \right\rangle \left\langle \psi _{n}^{\bot } \right|}.$ (16)
Then Eq. (15) can be rewritten as
$\begin{align} & \sum\limits_{n=1}^{d-1}{\left\langle \psi \right|}\left( \frac{{\bar{A}}}{\Delta A}-{{e}^{i\alpha }}\frac{{\bar{B}}}{\Delta B} \right){{\left| \psi _{n}^{\bot } \right\rangle }^{2}} \\ & ={{\sum\limits_{n=1}^{d-1}{\left| \left\langle \psi \right|\frac{A}{\Delta A}-{{e}^{i\alpha }}\frac{B}{\Delta B}\left| \psi _{n}^{\bot } \right\rangle \right|}}^{2}} \\ & =2-2\frac{\left| \frac{1}{2}\left\langle \left[ A, B \right] \right\rangle +12\left\langle \left\{ A, B \right\} \right\rangle -\left\langle A \right\rangle \left\langle B \right\rangle \right|}{\Delta A\Delta B} \\ \end{align}$ (17)
which is equivalent to (13).
The two uncertainty equalities (8) and (13) hold for all pairs of incompatible observables. If we retain only the term associated with |ψ〉∈{|ψnd-1n=1} in the summation and discard the rest, the uncertainty equalities (8) and (13) reduce to the uncertainty relations (6) and (7), respectively.
2 Uncertaintyrelationinweakmeasurement
First proposed by Aharonov et al. [12], weak values are complex numbers so that one can define the weak value of A using two states: an initial state |ψ〉 called the pre-selection and a final state |φ〉 called the post-selection. The weak value of A has the form
${{\left\langle A \right\rangle }_{w}}=\frac{\langle \varphi \left| A \right|\psi \rangle }{\langle \varphi |\psi \rangle }.$ (18)
For a given pre-selected and post-selected ensemble, we define the operator Aw as
${{A}_{w}}=\frac{{{\Pi }_{\varphi }}A}{p}, $ (19)
where Πφ=|φ〉〈φ| and p=|〈φ|ψ〉|2. The non-Hermitian operator has many properties [11] and is very useful in duality quantum computer [13-14].
Here, we construct an uncertainty relation in weak measurement for variances of two non-Hermitian operators Aw and Bw corresponding to two noncommuting observables A and B. The uncertainty relation quantitatively expresses the impossibility of jointly sharp preparation of pre- and post-selected (PPS) quantum states |ψ〉 and |φ〉 for the weak measurement of incompatible observables.
Uncertainty relation 3.
$\begin{align} & \Delta A_{w}^{2}+\Delta B_{w}^{2}\ge \left| \frac{1}{p}\langle \varphi \right|\left[ A, B \right]|\varphi \rangle + \\ & \frac{1}{p}\langle \varphi \left| \left\{ A, B \right\} \right|\varphi \rangle -2\langle {{A}_{w}}\rangle \langle {{B}_{w}}{{\rangle }^{*}}|+ \\ & \langle \psi |{{A}_{w}}-{{e}^{i\alpha }}{{B}_{w}}|{{\psi }^{\bot }}{{\rangle }^{2}}, \\ \end{align}$ (20)
which is valid for two non-Hermitian operators Aw and Bw, where p is equivalent to |〈φ|ψ〉|2.
Proof To prove this relation we define the variance for any general (non-Hermitian) operator X in a state |ψ〉 which can be defined as in Refs.[15-16]
$\Delta {{X}^{2}}=\langle \psi |\left( X-\langle X\rangle \right)({{X}^{\dagger }}-\langle {{X}^{\dagger }}\rangle )|\psi \rangle .$ (21)
The variance of the non-Hermitian operation Aw in the quantum state |ψ> can be defined as
$\Delta A_{w}^{2}=\langle \psi |({{A}_{w}}-\langle {{A}_{w}}\rangle )(A_{w}^{\dagger }-\langle A_{w}^{\dagger }\rangle )|\psi \rangle , $ (22)
where 〈Aw〉=〈ψ|Aw|ψ〉 and 〈Aw?〉=〈ψ|Aw?|ψ〉=〈Aw*. ΔAw2 can also be expressed as
$\begin{align} & \Delta A_{w}^{2}=\langle \psi |{{A}_{w}}A_{w}^{\dagger }\left| \psi \rangle -\langle \psi \right|{{A}_{w}}|\psi \rangle \\ & \langle \psi |{{A}^{\dagger }}_{w}|\psi \rangle . \\ \end{align}$ (23)
Similarly, for Hermitian operator B, we can define the operator
${{B}_{w}}=\frac{{{\Pi }_{\varphi }}B}{p}.$ (24)
Then, the uncertainty for Bw can also be defined as
$\begin{align} & \Delta {{B}^{2}}_{w}=\langle \psi |{{B}_{w}}B_{w}^{\dagger }\left| \psi \rangle -\langle \psi \right|{{B}_{w}}|\psi \rangle \\ & \langle \psi |B_{w}^{\dagger }|\psi \rangle . \\ \end{align}$ (25)
To prove our uncertainty relation in weak measurement, we introduce a general inequality
$\|{{C}^{\dagger }}|\psi \rangle -{{e}^{i\tau }}{{D}^{\dagger }}\left| \psi \rangle +k( \right|\psi \rangle -|\bar{\psi }\rangle ){{\|}^{2}}\ge 0, $ (26)
where C?Aw?-〈Aw?〉 and D?Bw?-〈Bw?〉. By expanding the square modulus, we have
$\Delta A_{w}^{2}+\Delta B_{w}^{2}\ge -\lambda {{k}^{2}}-\beta k+\pi , $ (27)
where λ≡2(1-Re[〈ψ|ψ〉]), π≡2Re[eψ|CD?|ψ〉], and β≡2Re[〈ψ|(-C+e-iτD)|ψ〉]. By choosing the value of k that maximizes the right-hand-side of (27), namely k=-β/2λ, we get
$\Delta A_{w}^{2}+\Delta B_{w}^{2}\ge \frac{{{\beta }^{2}}}{4\lambda }+\pi $ (28)
The above inequality can be rewritten as
$\begin{align} & \Delta A_{w}^{2}+\Delta B_{w}^{2}\ge \frac{Re{{[\langle \psi |(-C+{{e}^{-i\tau }}D)|\bar{\psi }\rangle ]}^{2}}}{2(1-Re\left[ \langle \psi |\bar{\psi }\rangle \right])}+ \\ & 2Re[{{e}^{i\tau }}\langle \psi |C{{D}^{\dagger }}|\psi \rangle ]. \\ \end{align}$ (29)
Suppose |ψ〉=cosθ|ψ〉+esinθ|ψ〉, where |ψ〉 is orthogonal to |ψ〉. By taking the limit θ→0, the state |ψ〉 reduces to |ψ〉 and then the above inequality can be reexpressed as ΔAw2+ΔBw2
$\begin{align} & \Delta A_{w}^{2}+\Delta B_{w}^{2}\ge \\ & Re{{[{{e}^{i\varphi }}\langle \psi |(-{{A}_{w}}+{{e}^{-i\tau }}{{B}_{w}})|{{\psi }^{\bot }}\rangle ]}^{2}}+ \\ & 2Re[{{e}^{i\tau }}\langle \psi |C{{D}^{\dagger }}|\psi \rangle ]. \\ \end{align}$ (30)
There exists τ=-α so that e〈ψ|CD?|ψ〉 is real, and it can be written as |〈ψ|CD?|ψ〉| . Then the second term becomes {Re[e〈ψ|-Aw+eBw〉]}2. We can choose φ so that the term in square brackets is real and this term can be expressed as |〈ψ|Aw-eBw〉|2. Whence, inequality (30) becomes
$\begin{align} & \Delta A_{w}^{2}+\Delta B_{w}^{2}\ge \left| \langle \psi \right|{{A}_{w}}-{{e}^{i\alpha }}{{B}_{w}}|{{\psi }^{\bot }}\rangle {{|}^{2}}+ \\ & 2\left| \langle \psi \right|C{{D}^{\dagger }}\left| \psi \rangle \right|. \\ \end{align}$ (31)
The last term can be rewritten as
$2|\langle C{{D}^{\dagger }}\rangle \left| = \right|\langle C{{D}^{\dagger }}+D{{C}^{\dagger }}+C{{D}^{\dagger }}-D{{C}^{\dagger }}\rangle |, $ (32)
where
$\begin{align} & \langle C{{D}^{\dagger }}+D{{C}^{\dagger }}\rangle = \\ & 1p\langle \varphi \left| \left\{ A, B \right\} \right|\varphi \rangle -\langle {{A}_{w}}\rangle \langle {{B}_{w}}{{\rangle }^{*}}-\langle {{A}_{w}}{{\rangle }^{*}}\langle {{B}_{w}}\rangle , \\ \end{align}$ (33)
and
$\begin{align} & \langle C{{D}^{\dagger }}-D{{C}^{\dagger }}\rangle = \\ & \frac{1}{p}\langle \varphi \left| \left[ A, B \right] \right|\varphi \rangle -\langle {{A}_{w}}\rangle \langle {{B}_{w}}{{\rangle }^{*}}+\langle {{A}_{w}}{{\rangle }^{*}}\langle {{B}_{w}}\rangle . \\ \end{align}$ (34)
We combine Eqs. (33) and (34), Eq. (32) becomes
$\begin{align} & 2|\langle C{{D}^{\dagger }}\rangle |= \\ & \left| \frac{1}{p} \right.\langle \varphi \left| \left[ A, B \right] \right|\varphi \rangle + \\ & \frac{1}{p}\langle \varphi \left| \left\{ A, B \right\} \right|\varphi \rangle -2\langle {{A}_{w}}\rangle \left. \langle {{B}_{w}}{{\rangle }^{*}} \right|. \\ \end{align}$ (35)
Combining Eqs. (32) and (35), we obtain the uncertainty relation (20).
3 ConclusionsIn this work, we derived two new uncertainty equalities for the sum and product of variances of a pair of incompatible observables, which hold for all pairs of incompatible observables A and B. In fact, one can obtain a series of inequalities by retaining 1 to (d-2) terms within the set {|ψnd-1n=1}. We also derived an uncertainty relation in weak measurement for two non-Hermitian operators Aw and Bw corresponding to two non-commuting observables A and B. The uncertainty relation quantitatively expresses the impossibility of jointly sharp preparation of PPS quantum states |ψ〉 and |φ〉 for measuring incompatible observables in weak measurement.
References
[1] Heisenberg W. über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik[J].Zeit Phys, 1927, 43:172–198.DOI:10.1007/BF01397280
[2] Kennard. E. Quantenmechanik einfacher Bewegungstypen[J].Z Phys, 1927, 44:326–352.DOI:10.1007/BF01391200
[3] Robertson H P. The uncertainty principle[J].Phys Rev, 1929, 34:163–164.DOI:10.1103/PhysRev.34.163
[4] Schr?dinger E. Sitzungsberichte der preussischen akademie der wissenschaften, physikalisch-mathematische klasse[J]. 1930, 14:296.
[5] Maccone L, Pati A K. Stronger uncertainty relations for all incompatible observables[J].Phys Rev Lett, 2014, 113:260401.DOI:10.1103/PhysRevLett.113.260401
[6] Song Q C, Qiao C F. Stronger Schr?dinger-like uncertainty relations[J].arXiv, 1504:01137.
[7] Bannur V M. Comments on "stronger uncertainty relations for all incompatible observables"[J].arXiv, 1502:04853.
[8] Li J L, Qiao C F. Reformulating the quantum uncertainty relation[J].Scientific Reports, 2015, 5:12708.DOI:10.1038/srep12708
[9] Huang Y. Variance-based uncertainty relations[J].Phys Rev A, 2012, 86:024101.DOI:10.1103/PhysRevA.86.024101
[10] Yao Y, Xiao X, Wang X G, et al. Implications and applications of the variance-based uncertainty equalities[J].Physics Review A, 2015, 91:062113.DOI:10.1103/PhysRevA.91.062113
[11] Pati A K, Wu J. Uncertainty and complementarity relations in weak measurement[J].arXiv, 1411:7218.
[12] Aharonov Y, Albert D Z, Vaidman L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100[J].Phys Rev Lett, 1988, 60:1351–1354.DOI:10.1103/PhysRevLett.60.1351
[13] Long G L. General quantum interference principle and duality computer[J].Commun Theor Phys, 2006, 45(5):825–844.DOI:10.1088/0253-6102/45/5/013
[14] Long G L. Duality quantum computing and quntum information processing[J].Int J Theor, 2011, 50:1305–1318.DOI:10.1007/s10773-010-0603-z
[15] Anandan J S. Geometric phase for cyclic motions and the quantum state space metric[J].Phys Lett A, 1990, 147:3–8.DOI:10.1016/0375-9601(90)90003-7
[16] Pati A K, Singh U, Sinha U. Quantum theory allows measurement of non-Hermitian operators[J].arXiv, 1406:3007.


相关话题/测量 量子力学 北京 物理学院 中国科学院大学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 机动车燃油质量及尾气排放与北京市大气污染的相关性
    杨昆昊1,夏赞宇1,何芃2,吴丽1,龚玲玲1,钱越英3,侯琰霖1,何裕建11.中国科学院大学化学与化工学院,北京101408;2.同济大学化学系,上海200092;3.中国科学院理化技术研究所,北京1001902016年05月31日收稿;2016年12月01日收修改稿基金项目:国家自然科学基金(21 ...
    本站小编 Free考研考试 2021-12-25
  • 电容电导传感器油水两相流含率测量
    吴昊,谭超,董峰天津大学电气与自动化工程学院天津市过程检测与控制重点实验室,天津3000722016年04月21日收稿;2016年07月06日收修改稿基金项目:国家自然科学基金(61227006,61473206)资助通信作者:谭超,E-mail:tanchao@tju.edu.cn摘要:在油水两相 ...
    本站小编 Free考研考试 2021-12-25
  • 正交移相干涉法测量液晶衍射光栅调制相位
    赵英明,杨若夫,杨春平电子科技大学光电信息学院,成都6100542016年03月16日收稿;2016年04月18日收修改稿基金项目:国家自然科学基金(61308062)资助通信作者:赵英明,E-mail:whataboutzhao@163.com摘要:液晶衍射光栅在电控下能够实现光束控制和偏转,与传 ...
    本站小编 Free考研考试 2021-12-25
  • 基于投入产出模型的北京市生产性服务业与制造业互动关系
    王红杰1,2,3,鲍超1,2,3,郭嘉颖3,41.中国科学院地理科学与资源研究所,北京100101;2.中国科学院区域可持续发展分析与模拟重点实验室,北京100101;3.中国科学院大学资源与环境学院,北京100049;4.中国科学院南京地理与湖泊研究所,南京2100082017年08月08日收稿; ...
    本站小编 Free考研考试 2021-12-25
  • 工具变量辅助的变系数测量误差模型的估计
    刘智凡1,王妙妙2,谢田法2,孙志华1,31.中国科学院大学数学科学学院,北京100049;2.北京工业大学应用数理学院,北京100124;3.中国科学院大数据挖掘与知识管理重点实验室,北京1000492016年10月11日收稿;2017年02月28日收修改稿基金项目:国家自然科学基金(112310 ...
    本站小编 Free考研考试 2021-12-25
  • 太湖富营养化水体比辐射率测量及MODIS水体温度反演应用
    阎福礼1,林亚森1,2,王世新1,周艺11.中国科学院遥感与数字地球研究所,北京100101;2.中国科学院大学,北京1000492018年3月16日收稿;2018年5月17日收修改稿基金项目:国家自然科学基金(41371363,40701126)资助通信作者:周艺,E-mail:zhouyi@ra ...
    本站小编 Free考研考试 2021-12-25
  • 北京张坊地区中上元古界中岩溶发育与构造作用
    刘建明1,张玉修1,曾璐1,琚宜文1,芮小平2,乔小娟11.中国科学院大学地球与行星科学学院,北京100049;2.中国科学院大学资源与环境学院,北京1000492017年11月3日收稿;2018年3月23日收修改稿基金项目:北京岩溶水资源勘查评价工程项目(BJYRS-ZT-03)和中国科学院大学校 ...
    本站小编 Free考研考试 2021-12-25
  • 腹主动脉瘤形态学二维断面和三维立体测量的误差分析
    尉驰俊1,邱越1,袁丁2,郑庭辉11.四川大学建筑与环境学院力学系,成都610207;2.四川大学华西医院血管外科,成都6100002018年5月14日收稿;2018年7月10日收修改稿基金项目:国家自然基金(81500370)资助通信作者:郑庭辉,E-mail:tinghuizh@scu.edu. ...
    本站小编 Free考研考试 2021-12-25
  • 传感器安装对平板气动热测量精度的影响*
    高超声速飞行器在大气层中高速飞行时,飞行器前方的空气会受到强烈的压缩而产生弓形激波,被压缩后的气体会与飞行器的表面产生巨大的摩擦力,由摩擦力作用而产生的动能损失大部分会转化为热能,热能的作用致使飞行器周围空气温度急剧上升,部分热能通过边界层传递至飞行器表面,从而使壁面产生高温,这种现象被称为“气动加 ...
    本站小编 Free考研考试 2021-12-25
  • 基于结构分区与应变电桥解耦的支柱式主起落架载荷测量*
    飞机在起降和地面运行过程中,飞行员需适时实施滑行、转弯、回转、刹车、滑跑起飞、着陆等各种操作和动作,加上跑道不平度、道面突风及飞机离地或接地姿态变化等因素,综合导致飞机起落架的受载和传载复杂多变,对飞机起落架的实际受载进行测量具有极其重要的工程意义。应变电测法是国内外飞行实测飞机载荷的常用方法[1- ...
    本站小编 Free考研考试 2021-12-25