删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Semilinear elliptic equations with strong singularity

本站小编 Free考研考试/2021-12-25

谭玉鑫, 孙义静
中国科学院大学数学科学学院, 北京 100049
摘要: 证明-div(Mx)▽u)= $\frac{{f\left( x \right)}}{{{u^p}}}$H01-解的存在性,其中Mx)是有界椭圆矩阵(即存在0 < αβ满足Mxξ·ξα|ξ|2,|Mx)|≤ β,?x ∈ Ω,ξRn)和-p < -1.本工作的关键点在于建立2个密切联系的集合,便于找到相应的能量泛函最小值。
关键词: 有界椭圆矩阵弱解强奇性
In this work, we consider the existence of solutions of the semilinear elliptic problem with a singular nonlinearity,
$\left\{ \begin{array}{l} - {\rm{div}}\left( {\begin{array}{*{20}{c}}{\mathit{\boldsymbol{M}}\left( x \right)}&{\nabla u}\end{array}} \right) = h\left( x \right){u^{ - p}}\;\;\;{\rm{in}}\;\Omega ,\\u > 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{in}}\;\Omega ,\\u = 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{on}}\;\Omega ,\end{array} \right.$ (1)
where Ω $\subset $Rn is a bounded open set with smooth boundary $\partial $Ω, M(x) is a real symmetric matrix satisfying
$\begin{array}{*{20}{c}}{\mathit{\boldsymbol{M}}\left( x \right)\mathit{\boldsymbol{\xi }} \cdot \mathit{\boldsymbol{\xi }} \ge \alpha {{\left| \mathit{\boldsymbol{\xi }} \right|}^2},}\\{\left| {\mathit{\boldsymbol{M}}\left( x \right)} \right| \le \beta ,\forall x \in \Omega ,\mathit{\boldsymbol{\xi }} \in {{\bf{R}}^n},}\end{array}$ (2)
and h(x)>0 a.e.in Ω and -p < -1.By solutions we mean here weak solutions in H01(Ω), i.e., uH01(Ω) satisfying u(x)>0 in Ω and
$\begin{array}{*{20}{c}}{\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla u \cdot \nabla \nu {\rm{d}}x} - \int_\Omega {\frac{{h\left( x \right)}}{{{u^p}}} \cdot \nu {\rm{d}}x} = 0,}\\{\forall \nu \in H_0^1\left( \Omega \right).}\end{array}$
Since the work by Stuart[1], people have paid much attention to the existence and multiplicity of solutions for such singular equations
$ - {\rm{div}}\left( {\begin{array}{*{20}{c}}{\mathit{\boldsymbol{M}}\left( x \right)}&{\nabla u}\end{array}} \right) = f\left( {x,u} \right),$
where f(x, s) is singular at s=0. See Refs.[2-5] and the rich list of references provided by these papers for a survey. Recently, Boccardo and Orsina[6] solved the problem with f(x, u)=h(x)u-p, h(x)≥0, -p < -1 and provided the existence of an Hloc1(Ω)-solution u by using approximation arguments when M(x) is a real symmetric matrix satisfying M(x)ξ·ξα|ξ|2, |M(x)|≤β, ?x∈Ω, ξRn and ${{u}^{\frac{1+p}{2}}}$H01(Ω). Then, under a superlinear perturbation of uq with q>1, Boccardo[7] also proved the existence of Hloc1(Ω)-solution for each -p < -1 and ${{u}^{\frac{1+p}{2}}}$H01(Ω). Recently, Boccardo and Casado-Dìaz[8] studied some properties of the solution of problem (1). They showed that if M(x) is a bounded elliptic matrix, h(x)∈Lm(Ω), m≥(2*)′, supp(h(x)) is compact, then the solution u of (1) obtained as the limit of the solution un of -div(M(xun)= $\frac{h\left( x \right)}{1/n+u_{n}^{-p}}$ is in H01(Ω). In this work, we will show a compatible condition on the couple (h(x), p), which is optimal for the existence of H01-solutions.
We define the singular energy functional
$\begin{array}{l}I\left( u \right) = \frac{1}{2}\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla u \cdot \nabla u{\rm{d}}x} + \\\;\;\;\;\;\;\;\;\;\;\frac{1}{{p - 1}}\int_\Omega {h\left( x \right){{\left| u \right|}^{1 - p}}{\rm{d}}x} ,\end{array}$ (3)
where -p < -1. The main difficulty is the absence of integrability of u-p for uH01(Ω) when -p < -1 and any inequality that relates uH01(Ω) will not be of much help. It should be noted also that there is a sharp contrast between the case -1 < -p < 0, for which the energy functional is continuous, and the case -p < -1. Generally, the sub-supersolution method is very effective in dealing with singularity. However, the method cannot be used for such general measurable h(x)>0. To reverse this situation, we use constrained sets to restore integrability and recast problem (1) into a variational framework in the spirit of our earlier works[9-12]. We defined constrained sets N1 and N2 as follows: N1:={uH01(Ω):u≥0 in Ω and ∫ΩM(x)▽u·▽u≥∫Ωh(x)|u|1-p}, N2:={uH01(Ω):u≥0 in Ω and ∫ΩM(x)▽u·▽u=∫Ωh(x)|u|1-p}. Here, special care must be taken to establish the validity and connection of the two constraints which simplify the existence of a minimizer for the singular functional I. It should also be noted that for -p < -1, N2 is not closed as usual (certainly not weakly closed) in H01(Ω).
In this paper we will use the notation,
C, Ci, ci, i=1, 2, …, denoting (possibly different) constants.
We denote the Dirichlet norm in H01(Ω) by ‖u2=∫Ω|▽u|2dx, |M(x)|=det M(x), and M(x)ξ·η:=ξTM(x)η.
1 Main resultsTheorem 1.1?? Let Ω $\subset $Rn be bounded open set with smooth boundary $\partial $Ω, M(x) be the real symmetric matrix satisfying M(x)ξ·ξα|ξ|2, |M(x)|≤β, ?x∈Ω, ξRn with 0 < αβ, h(x)∈L1(Ω), h(x)>0 a.e.in Ω and -p < -1, then
$ - {\rm{div}}\left( {\begin{array}{*{20}{c}}{\mathit{\boldsymbol{M}}\left( x \right)}&{\nabla u}\end{array}} \right) = h\left( x \right){u^{ - p}}$
admits an H01-solution if there exists u0H01(Ω) such that
$\int_\Omega {h\left( x \right){{\left| {{u_0}} \right|}^{1 - p}}{\rm{d}}x} < + \infty .$ (4)
2 Proof of Theorem 1.1Proof?? It should be noted that the topology on H01(Ω) which was generated by the norm
${\left( {\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla u \cdot \nabla u} } \right)^{\frac{1}{2}}}$
is equivalent to the one that was generated by the norm
${\left( {\int_\Omega {{{\left| {\nabla u} \right|}^2}} } \right)^{\frac{1}{2}}},$
since
$\begin{array}{*{20}{c}}{\alpha \int_\Omega {{{\left| {\nabla u} \right|}^2}} \le \int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla u \cdot \nabla u} \le }\\{\frac{\beta }{{{\alpha ^{n - 1}}}}\int_\Omega {{{\left| {\nabla u} \right|}^2}} .}\end{array}$
Hence
$\begin{array}{*{20}{c}}{{{\left( {H_0^1\left( \Omega \right),{{\left( {\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla u \cdot \nabla u} } \right)}^{\frac{1}{2}}}} \right)}^ * } = }\\{{{\left( {H_0^1\left( \Omega \right),{{\left( {\int_\Omega {{{\left| {\nabla u} \right|}^2}} } \right)}^{\frac{1}{2}}}} \right)}^ * }.}\end{array}$
Then, it follows that
${u_n} \to u\;{\rm{weakly}}\;{\rm{in}}\;\left( {H_0^1\left( \Omega \right),{{\left( {\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla u \cdot \nabla u} } \right)}^{\frac{1}{2}}}} \right)$
is equal to
${u_n} \to u\;{\rm{weakly}}\;{\rm{in}}\;\left( {H_0^1\left( \Omega \right),{{\left( {\int_\Omega {{{\left| {\nabla u} \right|}^2}} } \right)}^{\frac{1}{2}}}} \right).$
The key to prove (1) depends on a natural interpolation between the constrained sets Ni, i=1, 2. Taking uH01(Ω) with
$\int_\Omega {h\left( x \right){{\left| u \right|}^{1 - p}}} < \infty ,$
the function
$U\left( t \right): = {t^{1 + p}}\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla u \cdot \nabla u{\rm{d}}x} - \int_\Omega {h\left( x \right){{\left| u \right|}^{1 - p}}} {\rm{d}}x$
is increasing on t>0 with $\mathop {\lim }\limits_{t \to + \infty } \, U\left( t \right)=+\infty $ and $\mathop {\lim }\limits_{t \to {0^ + }} \, U\left( t \right) < 0$. Since
$\begin{array}{*{20}{c}}{\frac{{{\rm{d}}I\left( {tu} \right)}}{{{\rm{d}}t}} = t\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla u \cdot \nabla u{\rm{d}}x} - {t^{ - p}}\int_\Omega {h\left( x \right){{\left| u \right|}^{1 - p}}} {\rm{d}}x}\\{ = {t^{ - p}}\left( {{t^{1 + p}}\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla u \cdot \nabla u{\rm{d}}x} - \int_\Omega {h\left( x \right){{\left| u \right|}^{1 - p}}} {\rm{d}}x} \right),}\end{array}$
then it follows that there exists the unique positive minimizer t(u)u such that
$I\left( {tu} \right) \ge I\left( {t\left( u \right)u} \right),\forall t > 0.$ (5)
In particular, assumption (4) of Theorem 1.1 implies the existence of t(u0)>0 such that t(u0)u0N2 and hence N1($\supset $N2) and N2 are not empty. Clearly, since tu0N1 for all ≥t(u0), N1 is unbounded in H01(Ω). The closeness of N1 follows easily from Fatou's lemma. However, it should be noted that N2 is not anymore a closed set in H01(Ω) since ∫Ωh(x)|u|(1-p)dx is not continuous in H01(Ω) as -p < -1. Furthermore, unbounded N1 lies in the exterior of H01(Ω) (i.e., it stays away from a ball centered at zero). Indeed, since -p < -1, the reversed H?lder inequality
$\begin{array}{*{20}{c}}{\beta {{\left\| u \right\|}^2} \ge \int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla u \cdot \nabla u} \ge \int_\Omega {h\left( x \right){{\left| u \right|}^{1 - p}}} }\\{ \ge {{\left( {\int_\Omega {h{{\left( x \right)}^{1 - p}}} } \right)}^p}{{\left( {\int_\Omega {\left| u \right|} } \right)}^{1 - p}}}\end{array}$
and Poincaré inequality
${\left( {\int_\Omega {\left| u \right|} } \right)^{1 - p}} \ge {C_1}{\left\| u \right\|^{1 - p}},$
imply that ‖u‖≥C for all uN1.
It should also be noted that
$\begin{array}{*{20}{c}}{\left| {\mathit{\boldsymbol{M}}\left( x \right)\mathit{\boldsymbol{\xi }} \cdot \mathit{\boldsymbol{\eta }}} \right| \le \frac{\beta }{{{\alpha ^{n - 1}}}}\left| \mathit{\boldsymbol{\xi }} \right| \cdot \left| \mathit{\boldsymbol{\eta }} \right|,}\\{\forall \mathit{\boldsymbol{\xi }},\mathit{\boldsymbol{\eta }} \in {{\bf{R}}^n},x \in \Omega .}\end{array}$ (6)
Indeed, since M(x) is a real symmetric matrix, there exists an orthogonal matrix Q(x) such that
${\mathit{\boldsymbol{Q}}^{\rm{T}}}\mathit{\boldsymbol{MQ}} = \left( {\begin{array}{*{20}{c}}{{\lambda _1}}&{}&{}\\{}& \ddots &{}\\{}&{}&{{\lambda _n}}\end{array}} \right),$
where λi, i=1, …, n, the eigenvalues of M(x), satisfy λiα since M(x)ξ·ξα|ξ|2, ?x∈Ω, ξRn. Then it yields that
$\mathit{\boldsymbol{M}} = \mathit{\boldsymbol{Q}}\left( {\begin{array}{*{20}{c}}{{\lambda _1}}&{}&{}\\{}& \ddots &{}\\{}&{}&{{\lambda _n}}\end{array}} \right){\mathit{\boldsymbol{Q}}^{\rm{T}}}$
and
$\begin{array}{l}\mathit{\boldsymbol{M}}\left( x \right)\mathit{\boldsymbol{\xi }} \cdot \mathit{\boldsymbol{\eta }} = {\mathit{\boldsymbol{\xi }}^{\rm{T}}}\mathit{\boldsymbol{M}}\left( x \right)\mathit{\boldsymbol{\eta = }}{\mathit{\boldsymbol{\xi }}^{\rm{T}}}\mathit{\boldsymbol{Q}}\left( {\begin{array}{*{20}{c}}{{\lambda _1}}&{}&{}\\{}& \ddots &{}\\{}&{}&{{\lambda _n}}\end{array}} \right){\mathit{\boldsymbol{Q}}^{\rm{T}}}\mathit{\boldsymbol{\eta }}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\mathit{\boldsymbol{ = }}{\left( {{\mathit{\boldsymbol{Q}}^{\rm{T}}}\mathit{\boldsymbol{\xi }}} \right)^{\rm{T}}}\left( {\begin{array}{*{20}{c}}{{\lambda _1}}&{}&{}\\{}& \ddots &{}\\{}&{}&{{\lambda _n}}\end{array}} \right){\mathit{\boldsymbol{Q}}^{\rm{T}}}\mathit{\boldsymbol{\eta }}.\end{array}$
Hence, if one defines x:=QTξ, y:=QTη, one can obtain
$\begin{array}{l}\mathit{\boldsymbol{M}}\left( x \right)\mathit{\boldsymbol{\xi }} \cdot \mathit{\boldsymbol{\eta }} = {\mathit{\boldsymbol{x}}^{\rm{T}}}\left( {\begin{array}{*{20}{c}}{{\lambda _1}}&{}&{}\\{}& \ddots &{}\\{}&{}&{{\lambda _n}}\end{array}} \right)y\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \left( {\begin{array}{*{20}{c}}{{x_1}}& \cdots &{{x_n}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{\lambda _1}}&{}&{}\\{}& \ddots &{}\\{}&{}&{{\lambda _n}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{y_1}}\\ \vdots \\{{y_n}}\end{array}} \right)\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = {\lambda _1}{x_1}{y_1} + {\lambda _2}{x_2}{y_2} + \cdots + {\lambda _n}{x_n}{y_n},\end{array}$
which implies that
$\begin{array}{l}\left| {\mathit{\boldsymbol{M}}\left( x \right)\mathit{\boldsymbol{\xi }} \cdot \mathit{\boldsymbol{\eta }}} \right| = \left| {\sum\limits_{i = 1}^n {{\lambda _i}{x_i}{y_i}} } \right|\\\;\;\;\;\; = \left| {\prod\limits_{i = 1}^n {{\lambda _i}\left( {\frac{{{\lambda _1}}}{{\prod {{\lambda _i}} }}{x_1}{y_1} + \frac{{{\lambda _2}}}{{\prod {{\lambda _i}} }}{x_2}{y_2} + \cdots + \frac{{{\lambda _n}}}{{\prod {{\lambda _i}} }}{x_n}{y_n}} \right)} } \right.\\\;\;\;\;\; \le \frac{\beta }{{{\alpha ^{n - 1}}}}\left| x \right| \cdot \left| y \right|.\end{array}$
Since
$\begin{array}{l}{\left| x \right|^2} = {\mathit{\boldsymbol{x}}^{\rm{T}}} \cdot \mathit{\boldsymbol{x}} = {\left( {{\mathit{\boldsymbol{Q}}^{\rm{T}}}\mathit{\boldsymbol{\xi }}} \right)^{\rm{T}}} \cdot {\mathit{\boldsymbol{Q}}^{\rm{T}}}\mathit{\boldsymbol{\xi }} = {\mathit{\boldsymbol{\xi }}^{\rm{T}}}\mathit{\boldsymbol{Q}} \cdot {\mathit{\boldsymbol{Q}}^{\rm{T}}}\mathit{\boldsymbol{\xi }}\\\;\;\;\;\; = {\mathit{\boldsymbol{\xi }}^{\rm{T}}} \cdot \mathit{\boldsymbol{\xi }} = {\left| \mathit{\boldsymbol{\xi }} \right|^2},\end{array}$
$\begin{array}{l}{\left| y \right|^2} = {\mathit{\boldsymbol{y}}^{\rm{T}}} \cdot \mathit{\boldsymbol{y}} = {\left( {{\mathit{\boldsymbol{Q}}^{\rm{T}}}\mathit{\boldsymbol{\eta }}} \right)^{\rm{T}}} \cdot {\mathit{\boldsymbol{Q}}^{\rm{T}}}\mathit{\boldsymbol{\eta }} = {\mathit{\boldsymbol{\eta }}^{\rm{T}}}\mathit{\boldsymbol{Q}} \cdot {\mathit{\boldsymbol{Q}}^{\rm{T}}}\mathit{\boldsymbol{\eta }}\\\;\;\;\;\; = {\mathit{\boldsymbol{\eta }}^{\rm{T}}} \cdot \mathit{\boldsymbol{\eta }} = {\left| \mathit{\boldsymbol{\eta }} \right|^2},\end{array}$
it follows that
$\left| {\mathit{\boldsymbol{M}}\left( x \right)\mathit{\boldsymbol{\xi }} \cdot \mathit{\boldsymbol{\eta }}} \right| \le \frac{\beta }{{{\alpha ^{n - 1}}}}\left| \mathit{\boldsymbol{x}} \right| \cdot \left| \mathit{\boldsymbol{y}} \right| = \frac{\beta }{{{\alpha ^{n - 1}}}}\left| \mathit{\boldsymbol{\xi }} \right| \cdot \left| \mathit{\boldsymbol{\eta }} \right|.$
Furthermore, for uN1,
$\begin{array}{l}\int {h\left( x \right){{\left| u \right|}^{1 - p}}} \le \int {\mathit{\boldsymbol{M}}\left( x \right)\nabla u \cdot \nabla u} \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le \frac{\beta }{{{\alpha ^{n - 1}}}}\int {{{\left| {\nabla u} \right|}^2} < \infty } .\end{array}$ (7)
Then there exists tu>0 such that tuuN2, I(u)≥I(tuu)≥ $\mathop {\inf }\limits_{{N_2}} \, I$, and therefore
$\mathop {\inf I}\limits_{{N_1}} \ge \mathop {\inf I}\limits_{{N_2}} .$ (8)
However, since N1 $\supset $ N2, it follows that
$\mathop {\inf I}\limits_{{N_1}} \le \mathop {\inf I}\limits_{{N_2}} .$ (9)
In view of (8) and (9), it yields that
$\mathop {\inf I}\limits_{{N_1}} = \mathop {\inf I}\limits_{{N_2}} .$
Now, we turn our attention to $\mathop {\inf }\limits_{{N_1}} \, I$. For N1, we can assert that it is closed in H01(Ω). Indeed, as unu in H01(Ω), unu in L2(Ω), unu a.e.in Ω, and ∫M(x)▽n·▽un≥∫h(x)|un|1-p. Since h(x)>0 a.e.in Ω, it follows that un>0 a.e. in Ω. By (6), we have
$\begin{array}{l}\mathop {\lim \;\rm{inf}}\limits_{n \to \infty } \int {h\left( x \right){{\left| {{u_n}} \right|}^{1 - p}}} \le \mathop {\lim \;\rm{inf}}\limits_{n \to \infty } \int {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u_n} \cdot \nabla {u_n}} \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le \mathop {\lim \;\rm{inf}}\limits_{n \to \infty } \frac{\beta }{{{\alpha ^{n - 1}}}}\int {{{\left| {\nabla {u_n}} \right|}^2} < \infty } ,\end{array}$
and based on Fatou' lemma, we obtain
$\begin{array}{l}\int {h\left( x \right){{\left| u \right|}^{1 - p}}} = \int {\mathop {\lim \;\rm{inf}}\limits_{n \to \infty } h\left( x \right){{\left| {{u_n}} \right|}^{1 - p}}} \\ \le \mathop {\lim \;\rm{inf}}\limits_{n \to \infty } \int {h\left( x \right){{\left| {{u_n}} \right|}^{1 - p}}} \le \mathop {\lim \;\rm{inf}}\limits_{n \to \infty } \int {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u_n} \cdot \nabla {u_n}} \\ = \int {\mathit{\boldsymbol{M}}\left( x \right)\nabla u \cdot \nabla u} .\end{array}$
On the other hand, we can claim that I(u) is weakly lower semi-continuous, that is,
$\begin{array}{*{20}{c}}{I\left( u \right) \le \mathop {\lim \;\rm{inf}}\limits_{n \to \infty } I\left( {{u_n}} \right)}\\{{\rm{as}}\;{u_n} \to u\;{\rm{weakly}}\;{\rm{in}}\;\left( {H_0^1\left( \Omega \right),{{\left( {\int {{{\left| {\nabla {u_n}} \right|}^2}} } \right)}^{\frac{1}{2}}}} \right).}\end{array}$
as unu weakly in $\left( {H_0^1\left( \Omega \right),{{\left( {\int {|\nabla u{|^2}} } \right)}^{\frac{1}{2}}}} \right)$. Indeed, there holds that
$\int {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u_n} \cdot \nabla {u_n}} \to \int {\mathit{\boldsymbol{M}}\left( x \right)\nabla u \cdot \nabla u} ,$
and by Fatou's lemma one can also obtain
$\int {h\left( x \right){{\left| u \right|}^{1 - p}}} \le \mathop {\lim \;\rm{inf}}\limits_{n \to \infty } \int {h\left( x \right){{\left| {{u_n}} \right|}^{1 - p}}} $
if unu weakly in $\left( {H_0^1\left( \Omega \right),{{\left( {\int {|\nabla u{|^2}} } \right)}^{\frac{1}{2}}}} \right)$. Now we can use Ekeland's principle[13] to exploit the property of the best minimizing sequence for $\mathop {\inf }\limits_{{N_1}} \, I$, that is, (un)∈N1 satisfying
$\begin{align} & \left( \text{ⅰ} \right)I\left( {{u}_{n}} \right) < \underset{{{N}_{1}}}{\mathop{\inf }}\,I+\frac{1}{n} \\ & \left( \text{ⅱ} \right)I\left( {{u}_{n}} \right)\le I\left( v \right)+\frac{1}{n}||{{u}_{n}}-v||,\forall v\in {{N}_{1}} \\ \end{align}$
since N1 is a closed set in H01(Ω). We may assume un≥0 as I(u)=I(|u|). Since -p < -1, I(u) is coercive on N1 and therefore (un) is bounded in H01(Ω). Indeed, by -p < -1,
$\begin{array}{*{20}{c}}{I\left( u \right) = \frac{1}{2}\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla u \cdot \nabla u{\rm{d}}x} + }\\{\frac{1}{{p - 1}}\int_\Omega {h\left( x \right){{\left| u \right|}^{1 - p}}{\rm{d}}x} \ge \frac{\alpha }{2}{{\left\| u \right\|}^2}.}\end{array}$
Hence, up to subsequence (still denoted by un), un $\rightharpoonup$ u* weakly in H01(Ω), strongly in L2(Ω), and pointwise a.e. in Ω. Therefore u*≥0. More precisely,
${u^ * } > 0\;{\rm{a}}{\rm{.}}\;{\rm{e}}{\rm{.}}\;{\rm{in}}\;\Omega $ (10)
as ∫Ωh(x)|u*|1-p < ∞ by Fatou's lemma. Moreover, we shall show that u*N2 by evaluating the best minimizing sequence (un)∈N1.
Case 1. Suppose that (un)N1\N2 for all n large. Fix φH01(Ω), φ≥0 and n by now. Note that, as (un)N1\N2 and p>1, there holds that $\int {\mathit{\boldsymbol{M}}\left( x \right)} \nabla {{u}_{n}}\cdot \nabla {{u}_{n}}>\int_{\Omega }{h\left( x \right)}|{{u}_{n}}{{|}^{1-p}}\ge \int_{\Omega }{h\left( x \right)}|{{u}_{n}}+t\varphi {{|}^{1-p}}$ for t≥0. Subsequently, choose t>0 sufficiently small such that
$\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla \left( {{u_n} + t\varphi } \right) \cdot \nabla \left( {{u_n} + t\varphi } \right)} > \int_\Omega {h\left( x \right){{\left( {{u_n} + t\varphi } \right)}^{1 - p}}{\rm{d}}x} ,$
that is,
${u_n} + t\varphi \in {N_1}.$
In virtue of (ⅰ) and (ⅱ), we obtain that
$\begin{array}{l}\frac{t}{n}\left\| \varphi \right\| + \frac{1}{2}\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\left( {{{\left| {\nabla \left( {{u_n} + t\varphi } \right)} \right|}^2} - {{\left| {\nabla {u_n}} \right|}^2}} \right){\rm{d}}x} \\ \ge \frac{1}{{1 - p}}\int_\Omega {h\left( x \right)\left( {{{\left| {\left( {{u_n} + t\varphi } \right)} \right|}^{1 - p}} - {{\left| {{u_n}} \right|}^{1 - p}}} \right){\rm{d}}x} .\end{array}$
Dividing by t>0, passing to the liminf as t→0+, we obtain
$\begin{array}{l}\frac{{\left\| \varphi \right\|}}{n} + \int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla u \cdot \nabla \varphi } \\\;\;\;\;\;\;\; \ge \int_\Omega {\mathop {\lim \;\rm{inf}}\limits_{n \to \infty } \frac{{h\left( x \right)}}{{1 - p}}\frac{{{{\left( {{u_n} + t\varphi } \right)}^{1 - p}} - u_n^{1 - p}}}{t}} \\\;\;\;\;\;\;\; = \int_\Omega {h\left( x \right)u_n^{ - p}\varphi } .\end{array}$
Using Fatou's lemma again and letting n tend to infinity, we have
$\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u^ * } \cdot \nabla \varphi } \ge \int_\Omega {h\left( x \right){u^{ * - p}}\varphi } ,\forall \varphi \ge 0.$
In view of (10), we obtain that u*N1, and by the above argument (5) there exists a unique t(u*) such that I(t(u*)u*)= $\mathop {\min }\limits_{t > 0} \, I\left( t{{u}^{*}} \right)$. So
$\begin{array}{l}\mathop {\inf }\limits_{{N_1}} I = \mathop {\lim }\limits_{n \to \infty } I\left( {{u_n}} \right)\\\; = \mathop {\lim }\limits_{n \to \infty } \left[ {\frac{1}{2}\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u_n} \cdot \nabla {u_n}} + \frac{1}{{p - 1}}\int_\Omega {h\left( x \right)u_n^{1 - p}} } \right]\\\; \ge \mathop {\lim \;\rm{inf}}\limits_{n \to \infty } \left[ {\frac{1}{2}\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u_n} \cdot \nabla {u_n}} } \right] + \\\;\;\;\;\mathop {\lim \;\rm{inf}}\limits_{n \to \infty } \left[ {\frac{1}{{p - 1}}\int_\Omega {h\left( x \right)u_n^{1 - p}} } \right]\\\; \ge \frac{1}{2}\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u^ * } \cdot \nabla {u^ * }} + \frac{1}{{p - 1}}\int_\Omega {h\left( x \right){u^{ * 1 - p}}} \\\; = I\left( {{u^ * }} \right) \ge I\left( {t\left( {{u^ * }} \right){u^ * }} \right) \ge \mathop {\inf }\limits_{{N_2}} I \ge \mathop {\inf }\limits_{{N_1}} I,\end{array}$
and thus t(u*)=1, which means that
$\mathop {\min }\limits_{t > 0} I\left( {t{u^ * }} \right) = I\left( {{u^ * }} \right),{u^ * } \in {N_2}.$
Case 2. There exists a subsequence of (un) (still denoted by un), which belongs to N2.
Let φH10(Ω),φ≥0, be fixed. Since -p < -1,
$\begin{array}{*{20}{c}}{\int_\Omega {h\left( x \right){{\left( {{u_n} + t\varphi } \right)}^{1 - p}}{\rm{d}}x} \le \int_\Omega {h\left( x \right)u_n^{1 - p}{\rm{d}}x} < \infty ,}\\{\forall t \ge 0.}\end{array}$
By the previous argument (5), the function fn, φ(t):=t(un+), ?t≥0 exists, and, moreover, using the notation therein, fn, φ(0)=1 and fn, φ(t)(un+)∈N2. The continuity of fn, φ(t), t>0 depends on ∫Ωh(x)|un|1-p < ∞ and dominates convergence. Indeed,
$\begin{array}{*{20}{c}}{f_{n,\varphi }^2\left( t \right)\int {\mathit{\boldsymbol{M}}\left( x \right)\nabla \left( {{u_n} + t\varphi } \right) \cdot \nabla \left( {{u_n} + t\varphi } \right)} }\\{f_{n,\varphi }^{1 - p}\left( t \right)\int {h\left( x \right){{\left( {{u_n} + t\varphi } \right)}^{1 - p}}} ,}\end{array}$
that is,
${f_{n,\varphi }}\left( t \right) = {\left[ {\frac{{\int {h\left( x \right){{\left( {{u_n} + t\varphi } \right)}^{1 - p}}} }}{{\int {\mathit{\boldsymbol{M}}\left( x \right)\nabla \left( {{u_n} + t\varphi } \right) \cdot \nabla \left( {{u_n} + t\varphi } \right)} }}} \right]^{\frac{1}{{p + 1}}}}.$
The key to showing that u*N2 hinges on the estimation of fn, φ(0) defined as
${{f'}_{n,\varphi }}\left( 0 \right) = \mathop {\lim }\limits_{n \to \infty } \frac{{\left( {{f_{n,\varphi }}\left( t \right) - 1} \right)}}{t} \in \left[ { - \infty , + \infty } \right].$
If the limit does not exist, we let tk→0 (instead of t→0) with tk>0 chosen in such a way that $\mathop {\lim }\limits_{k \to \infty } \frac{{\left( {{f_{n, \varphi }}\left( {{t_k}} \right) - 1} \right)}}{{{t_k}}} \in \left[{-\infty, + \infty } \right]$. We deduce that fn, φ(t) has uniform behavior at zero with respect to n, i.e., |fn, φ(0)|≤C for suitable C>0 independent of n. In fact, with fn, φ(t)(un+)∈N2, unN2, we have
$\begin{array}{l}0 = f_{n,\varphi }^2\left( t \right)\int {\mathit{\boldsymbol{M}}\left( x \right)\nabla \left( {{u_n} + t\varphi } \right) \cdot \nabla \left( {{u_n} + t\varphi } \right)} - \\\;\;\;\;\;f_{n,\varphi }^{1 - p}\left( t \right)\int {h\left( x \right){{\left( {{u_n} + t\varphi } \right)}^{1 - p}}} ,\end{array}$
$0 = \int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u_n} \cdot \nabla {u_n}} - \int_\Omega {h\left( x \right){{\left| {{u_n}} \right|}^{1 - p}}} .$
By the continuity of fn, φ(t), t>0, it holds
$\begin{array}{l}0 = \left\{ {\left( {{f_{n,\varphi }}\left( t \right) + 1} \right)\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla \left( {{u_n} + t\varphi } \right) \cdot \nabla \left( {{u_n} + t\varphi } \right)} - } \right.\\\left. {\left( {1 - p} \right){{\left[ {{f_{n,\varphi }}\left( 0 \right) + o\left( 1 \right)} \right]}^{ - p}}\int_\Omega {h\left( x \right){{\left( {{u_n} + t\varphi } \right)}^{1 - p}}} } \right\} \cdot \\\frac{{\left( {{f_{n,\varphi }}\left( t \right) - 1} \right)}}{t} - \frac{1}{t}\left\{ {\int_\Omega {h\left( x \right){{\left( {{u_n} + t\varphi } \right)}^{1 - p}}} + h\left( x \right)u_n^{1 - p}{\rm{d}}x - } \right.\\\left. {\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla \left( {{u_n} + t\varphi } \right) \cdot \nabla \left( {{u_n} + t\varphi } \right) - \mathit{\boldsymbol{M}}\left( x \right)\nabla {u_n} \cdot \nabla {u_n}{\rm{d}}x} } \right\},\end{array}$
and by letting t→0+, then
$\begin{array}{l}0 \ge {{f'}_{n,\varphi }}\left( 0 \right)\left\{ {2\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u_n} \cdot \nabla {u_n}} + \left( {p - 1} \right)\int_\Omega {h\left( x \right)u_n^{1 - p}} } \right\} + \\\;\;\;\;\;2\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u_n} \cdot \nabla \varphi } ,\end{array}$
which implies that fn, φ(0)≠+∞. Indeed, due to unN2 $ \subseteq $ N1 and B(0, r0)∩N1=?, it follows that
$\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u_n} \cdot \nabla {u_n}} \ge \alpha {\left\| {{u_n}} \right\|^2} > \alpha r_0^2 > 0.$ (11)
Since -p < -1, by the reversed H?lder inequality it yields that
$\begin{array}{*{20}{c}}{\int_\Omega {h\left( x \right)u_n^{1 - p}} \ge {{\left( {\int_\Omega {h{{\left( x \right)}^{1/p}}} } \right)}^p}{{\left( {\int_\Omega {{u_n}} } \right)}^{1 - p}}}\\{ \ge {C_2}{{\left( {\int_\Omega {h{{\left( x \right)}^{1/p}}} } \right)}^p}{{\left\| {{u_n}} \right\|}^{1 - p}} > 0.}\end{array}$
In addition,
$\begin{array}{*{20}{c}}{\left| {\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u_n} \cdot \nabla \varphi } } \right| \le \frac{\beta }{{{\alpha ^{n - 1}}}} \cdot }\\{\int_\Omega {\left| {\nabla {u_n}} \right| \cdot \left| \varphi \right| \le {C_3}\left\| {{u_n}} \right\| \cdot \left\| \varphi \right\|} .}\end{array}$ (12)
Furthermore, since r0 is independent of n, it follows that
${{f'}_{n,\varphi }}\left( 0 \right) \le {c_1}\;{\rm{uniformly}}\;{\rm{in}}\;n.$ (13)
On the other hand, we will show that fn, φ(0) cannot go to -∞ as n→∞, that is, fn, φ(0) is bounded from below uniformly for all n large. Indeed, by the fact that uN2, we have
$\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla u \cdot \nabla u} = \int_\Omega {h\left( x \right){{\left| {{u_n}} \right|}^{1 - p}}} ,$
which imples
$I\left( u \right) = \left( {\frac{1}{2} + \frac{1}{{p - 1}}} \right)\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla u \cdot \nabla u} ,$
and by condition (ⅱ) we have the additional condition
$\begin{array}{l}\frac{1}{n}\left| {\frac{{1 - {f_{n,\varphi }}\left( t \right)}}{t}} \right| \cdot \left\| {{u_n}} \right\| + \frac{1}{n}{f_{n,\varphi }}\left( t \right)\left\| \varphi \right\|\\ \ge \frac{1}{n}\left\| {{u_n} \cdot {f_{n,\varphi }}\left( t \right)\left( {{u_n} + t\varphi } \right)} \right\|\frac{1}{t}\\ \ge \left[ {I\left( {{u_n}} \right) - I\left( {{f_{n,\varphi }}\left( t \right)\left( {{u_n} + t\varphi } \right)} \right.} \right]\frac{1}{t},\end{array}$
that is,
$\begin{array}{l}\frac{{\left\| \varphi \right\|}}{n}{f_{n,\varphi }}\left( t \right) \ge \frac{{{f_{n,\varphi }}\left( t \right) - 1}}{t}\left\{ { - \left( {\frac{1}{2} + \frac{1}{{p - 1}}} \right)\left[ {{f_{n,\varphi }}\left( t \right) + 1} \right] \cdot } \right.\\\left. {\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right){{\left| {\nabla \left( {{u_n} + t\varphi } \right)} \right|}^2}} - \frac{{\left\| {{u_n}} \right\|}}{n} \cdot {\mathop{\rm sgn}} \left( {{f_{n,\varphi }}\left( t \right) - 1} \right)} \right\} - \\\frac{1}{t}\left( {\frac{1}{2} + \frac{1}{{p - 1}}} \right)\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\left[ {{{\left| {\nabla \left( {{u_n} + t\varphi } \right)} \right|}^2} - {{\left| {\nabla {u_n}} \right|}^2}} \right]{\rm{d}}x} .\end{array}$
Letting t→0+, we obtain that
$\begin{array}{l}\frac{{\left\| \varphi \right\|}}{n} \ge - {{f'}_{n,\varphi }}\left( 0 \right)\left\{ {\left( {\frac{1}{2} + \frac{1}{{p - 1}}} \right)\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u_n} \cdot \nabla {u_n}} + } \right.\\\left. {\frac{{\left\| {{u_n}} \right\|}}{n} \cdot {\mathop{\rm sgn}} {{f'}_{n,\varphi }}\left( 0 \right)} \right\} - \left( {1 + \frac{1}{{p - 1}}} \right)\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u_n} \cdot \nabla \varphi } .\end{array}$
By (2) and (11) it yields that
$\beta {\left\| u \right\|^2} \ge \int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla u \cdot \nabla u} \ge \alpha {\left\| {{u_n}} \right\|^2} > \alpha r_0^2 > 0,$
and in view of (12) it holds that fn, φ is bounded below. More precisely,
${{f'}_{n,\varphi }}\left( 0 \right) \ge {c_2}\;{\rm{uniformly}}\;{\rm{in}}\;{\rm{all}}\;n\;{\rm{large}}$ (14)
as r0 is independent of n.
Now, applying condition (ⅱ) again, we have that
$\begin{array}{l}\frac{1}{n}\left[ {\frac{{\left| {{f_{n,\varphi }}\left( t \right) - 1} \right|}}{t}\left\| {{u_n}} \right\| + {f_{n,\varphi }}\left( t \right)\left\| \varphi \right\|} \right]\\\;\;\; \ge \frac{1}{n}\left\| {{f_{n,\varphi }}\left( t \right)\left( {{u_n} + t\varphi } \right) - {u_n}} \right\|\frac{1}{t}\\\;\;\; \ge \left[ {I\left( {{u_n}} \right) - I\left( {{f_{n,\varphi }}\left( t \right)\left( {{u_n} + t\varphi } \right)} \right.} \right]\frac{1}{t},\end{array}$
that is,
$\begin{array}{l}\frac{{\left\| {{u_n}} \right\|}}{n}\frac{{\left| {{f_{n,\varphi }}\left( t \right) - 1} \right|}}{t} + \frac{{\left\| \varphi \right\|}}{n}{f_{n,\varphi }}\left( t \right)\\ \ge \left\{ { - \frac{{\left[ {{f_{n,\varphi }}\left( t \right) + 1} \right]}}{2}\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla \left( {{u_n} + t\varphi } \right) \cdot \nabla \left( {{u_n} + t\varphi } \right) + } } \right.\\\left. {{{\left[ {{f_{n,\varphi }}\left( 0 \right) + o\left( 1 \right)} \right]}^{ - p}}\int_\Omega {h\left( x \right){{\left( {{u_n} + t\varphi } \right)}^{1 - p}}{\rm{d}}x} } \right\} \cdot \\\frac{{{f_{n,\varphi }}\left( t \right) - 1}}{t} + \frac{1}{{1 - p}}\int_\Omega {\frac{{h\left( x \right)\left[ {{{\left( {{u_n} + t\varphi } \right)}^{1 - p}} - u_n^{1 - p}} \right]}}{t} - } \\\frac{{\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla \left( {{u_n} + t\varphi } \right) \cdot \nabla \left( {{u_n} + t\varphi } \right) - \mathit{\boldsymbol{M}}\left( x \right)\nabla {u_n} \cdot \nabla {u_n}} }}{{2t}}.\end{array}$
In other words,
$\begin{array}{l}\frac{1}{{p - 1}}\int_\Omega {\frac{{h\left( x \right)\left[ {u_n^{1 - p} - {{\left( {{u_n} + t\varphi } \right)}^{1 - p}}} \right]}}{t}} \\ \le \left\{ {\frac{{\left[ {{f_{n,\varphi }}\left( t \right) + 1} \right]}}{2}\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla \left( {{u_n} + t\varphi } \right) \cdot \nabla \left( {{u_n} + t\varphi } \right) - } } \right.\\\left. {{{\left[ {{f_{n,\varphi }}\left( 0 \right) + o\left( 1 \right)} \right]}^{ - p}}\int_\Omega {h\left( x \right){{\left( {{u_n} + t\varphi } \right)}^{1 - p}}{\rm{d}}x} } \right\} \cdot \\\frac{{{f_v}\left( t \right) - 1}}{t} + \frac{{\left\| {{u_n}} \right\|}}{n}\frac{{\left| {{f_{n,\varphi }}\left( t \right) - 1} \right|}}{t} + \frac{{\left\| \varphi \right\|}}{n}{f_{n,\varphi }}\left( t \right) + \\\frac{{\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla \left( {{u_n} + t\varphi } \right) \cdot \nabla \left( {{u_n} + t\varphi } \right) - \mathit{\boldsymbol{M}}\left( x \right)\nabla {u_n} \cdot \nabla {u_n}} }}{{2t}}.\end{array}$
In view of (13)and (14), it holds that
$\begin{array}{l}\mathop {\lim \inf }\limits_{t \to {0^ + }} \frac{1}{{p - 1}}\int_\Omega {\frac{{h\left( x \right)\left[ {u_n^{1 - p} - {{\left( {{u_n} + t\varphi } \right)}^{1 - p}}} \right]}}{t}} \\ \le {{f'}_{n,\varphi }}\left( 0 \right)\left\{ {\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u_n} \cdot \nabla {u_n}} - h\left( x \right){{\left( {{u_n} + t\varphi } \right)}^{1 - p}}{\rm{d}}x} \right\} + \\\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u_n} \cdot \nabla \varphi {\rm{d}}x} + \frac{1}{n}\left[ {{{f'}_{n,\varphi }}\left( 0 \right)\left\| {{u_n}} \right\| + \left\| \varphi \right\|} \right]\\ = \int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u_n} \cdot \nabla \varphi {\rm{d}}x} + \frac{1}{n}\left[ {{{f'}_{n,\varphi }}\left( 0 \right)\left\| {{u_n}} \right\| + \left\| \varphi \right\|} \right]\\ < \infty .\end{array}$
On the other hand, since -p < -1, φ≥0, h(x)>0, and t>0, we have
$\frac{{h\left( x \right)\left[ {u_n^{1 - p} - {{\left( {{u_n} + t\varphi } \right)}^{1 - p}}} \right]}}{t} \ge 0,$
and by Fatou' lemma, we have
$\begin{array}{l}\int_\Omega {h\left( x \right)u_u^{1 - p}\varphi {\rm{d}}x} \\ \le \mathop {\lim \inf }\limits_{t \to {0^ + }} \frac{1}{{p - 1}}\int_\Omega {\frac{{h\left( x \right)\left[ {u_n^{1 - p} - {{\left( {{u_n} + t\varphi } \right)}^{1 - p}}} \right]}}{t}} \\ \le \int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u_n} \cdot \nabla \varphi } + \frac{1}{n}\left[ {{{f'}_{n,\varphi }}\left( 0 \right)\left\| {{u_n}} \right\| + \left\| \varphi \right\|} \right].\end{array}$
Hence, using Fatou's lemma again and n→∞, we obtain
$\int_\Omega {h\left( x \right){u^{ * 1 - p}}{\rm{d}}x} \le \int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u^ * } \cdot \nabla \varphi ,\forall \varphi } \ge 0.$
In other words,
$\int_\Omega {h\left( x \right){u^{ * 1 - p}}{\rm{d}}x} - \int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u^ * } \cdot la\varphi \ge 0,\forall \varphi } \ge 0.$
By the same reasoning as in case 1 we derive that
${u^ * } \in {N_2}.$
Now it remains to show that u*H01(Ω) is a weak solution for problem (1) for all -p < -1. Letting ψH01(Ω) be fixed and applying the above inequalities one finds
$\begin{array}{l}0 \le \int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u^ * } \cdot \nabla {{\left( {{u^ * } + t\psi } \right)}^ + }} - \int_\Omega {h\left( x \right){u^{ * - p}}{{\left( {{u^ * } + t\psi } \right)}^ + }} \\ = \int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u^ * } \cdot \nabla \left( {{u^ * } + t\psi } \right)} - \int_\Omega {h\left( x \right){u^{ * - p}}\left( {{u^ * } + t\psi } \right)} - \\\;\;\;\int_{{u^ * } + t\psi < 0} {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u^ * } \cdot \nabla \left( {{u^ * } + t\psi } \right)} + \\\;\;\;\int_\Omega {h\left( x \right){u^{ * - p}}\left( {{u^ * } + t\psi } \right)} \\ \le t\left\{ {\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u^ * } \cdot \nabla \psi } - \int_\Omega {h\left( x \right){u^{ * - p}}\psi } } \right\} - \\\;\;\;\;\int_{{u^ * } + t\psi < 0} {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u^ * } \cdot \nabla {u^ * }} - t\int_{{u^ * } + t\psi < 0} {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u^ * } \cdot \nabla \psi } \\ \le t\left\{ {\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u^ * } \cdot \nabla \psi } - \int_\Omega {h\left( x \right){u^{ * - p}}\psi } - } \right.\\\;\;\;\;\left. {\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u^ * } \cdot \nabla \psi } } \right\}.\end{array}$
Since meas[u*+ < 0]→0 as t→0, we may divide the inequality by t>0 and pass to the limit as t→0, and we conclude that
$0 \le \int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla {u^ * } \cdot \nabla \psi } + \int_\Omega {h\left( x \right){u^{ * - p}}\psi {\rm{d}}x} .$
By the arbitrariness of ψH01(Ω), u* is indeed a H01(Ω)-solution of problem (1).
References
[1] Stuart C A. Existence and approximation of solutions of non-linear elliptic equations[J].Mathematische Zeitschrift, 1976, 147(1):53–63.DOI:10.1007/BF01214274
[2] Arcoya D, Carmona J, Leonori T, et al. Existence and nonexistence of solutions for singular quadratic quasilinear equations[J].Dierential Equations, 2009, 246(10):4006–4042.DOI:10.1016/j.jde.2009.01.016
[3] Boccardo L. Dirichlet problems with singular and gradient quadratic lower order terms[J].ESAIM:Control, Optimisation and Calculus of Variations, 2008, 14(3):411–426.DOI:10.1051/cocv:2008031
[4] Giachetti D, Murat F. An elliptic problem with a lower order term having singular behaviour[J].Bollettino Dell Unione Matematica Italiana, 2009, 2(2):349–370.
[5] Crandall M G, Rabinowitz P H, Tartar L. On a Dirichlet problem with a singular nonlinearity[J].Communications in Partial Dierential Equations, 1977, 2(2):193–222.DOI:10.1080/03605307708820029
[6] Boccardo L, Orsina L. Semilinear elliptic equations with singular nonlinearities[J].Calculus of Variations and Partial Dierential Equations, 2010, 37(3):363–380.
[7] Boccardo L. A Dirichlet problem with singular and supercritical nonlinearities[J].Nonli near Analysis:Theory, Methods & Applications, 2012, 75(12):4436–4440.
[8] Boccardo L, Casado-Dìaz J. Some properties of solutions of some semilinear elliptic singular problems and applications to the Gconvergence[J].Asymptotic Analysis, 2014, 86(1):1–15.
[9] Sun Y J. Compatible phenomena in singular problems[J].Proc Roy Soc Edinburgh, 2013, 143(A):1321–1330.
[10] Sun Y J, Zhang D Z. The role of the power 3 for elliptic equations with negative exponents[J].Calculus of Variations and Partial Dierential Equations, 2014, 49(3/4):909–922.
[11] Sun Y J, Wu S P. An exact estimate result for a class of singular equations with critical exponents[J].Journal of Functional Analysis, 2011, 260(5):1257–1284.DOI:10.1016/j.jfa.2010.11.018
[12] Liu X, Sun Y J. Multiple positive solutions for Kirchho type problems with singularity[J].Comm Pure Appl Anal, 2013, 12(2):721–733.
[13] Ekeland I. On the variational principle[J].Math Anal Appl, 1974, 47:324–353.DOI:10.1016/0022-247X(74)90025-0


相关话题/工作 北京 科学学院 数学 中国科学院大学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 机动车燃油质量及尾气排放与北京市大气污染的相关性
    杨昆昊1,夏赞宇1,何芃2,吴丽1,龚玲玲1,钱越英3,侯琰霖1,何裕建11.中国科学院大学化学与化工学院,北京101408;2.同济大学化学系,上海200092;3.中国科学院理化技术研究所,北京1001902016年05月31日收稿;2016年12月01日收修改稿基金项目:国家自然科学基金(21 ...
    本站小编 Free考研考试 2021-12-25
  • 基于投入产出模型的北京市生产性服务业与制造业互动关系
    王红杰1,2,3,鲍超1,2,3,郭嘉颖3,41.中国科学院地理科学与资源研究所,北京100101;2.中国科学院区域可持续发展分析与模拟重点实验室,北京100101;3.中国科学院大学资源与环境学院,北京100049;4.中国科学院南京地理与湖泊研究所,南京2100082017年08月08日收稿; ...
    本站小编 Free考研考试 2021-12-25
  • 北京张坊地区中上元古界中岩溶发育与构造作用
    刘建明1,张玉修1,曾璐1,琚宜文1,芮小平2,乔小娟11.中国科学院大学地球与行星科学学院,北京100049;2.中国科学院大学资源与环境学院,北京1000492017年11月3日收稿;2018年3月23日收修改稿基金项目:北京岩溶水资源勘查评价工程项目(BJYRS-ZT-03)和中国科学院大学校 ...
    本站小编 Free考研考试 2021-12-25
  • 热力耦合问题数学均匀化方法的物理意义*
    复合材料具有比强度高、比刚度大等优点,广泛应用于航天、航空工业领域。众所周知,对于很多复合材料的宏观解,如低阶频率和模态,可以使用等应变模型或等应力模型[1]及其他均匀化方法[2]求解,但相对于宏观应力分析,细观结构分析要复杂很多。为了在计算精度和效率之间达到平衡,各种多尺度方法相继被提出,如数学均 ...
    本站小编 Free考研考试 2021-12-25
  • 一种电磁定位系统工作空间拓展方法*
    电磁定位系统(ElectromagneticTrackingSystem,EM)利用电磁感应原理进行位姿测量,具有实时定位、精度高、不惧遮挡的优点[1-2],因而被广泛应用于医学手术中器械的跟踪定位[3-4]。如Wallace等[5]将EM应用于肾上腺、肝脏、肺等位置病变活检手术中的穿刺针导航;Kr ...
    本站小编 Free考研考试 2021-12-25
  • 附件化超声振动工作台设计及有限元优化分析*
    随着科学技术的进步,高温合金、工程陶瓷、复合材料等具有高硬度、耐磨损、耐高温、耐腐蚀等优异属性的先进材料在航空航天、国防科技、生物工程、计算机工程等尖端领域中的应用日益广泛[1-2]。由于材料的难加工特性,利用传统加工方法已经很难甚至无法提供有效的材料加工技术解决方案[3]。超声振动辅助加工结合了超 ...
    本站小编 Free考研考试 2021-12-25
  • 改进BA优化的MKSVDD航空发动机工作状态识别*
    航空发动机是提供飞机飞行所需推力的装置。按照推力的大小,通常航空发动机工作状态可划分为停车、慢车、中间及中间以上、最大工作状态,在不同的工作状态下,航空发动机采用不同的调节规律提供推力,其性能参数在不同工作状态下表现出不同的函数形式和映射关系[1]。判别航空发动机工作状态,是分析发动机性能、检验发动 ...
    本站小编 Free考研考试 2021-12-25
  • 基于时间-多资源占用的工作负荷评估模型*
    随着航天技术的发展,空间站结构、组成日趋复杂,性能、技术水平不断提高[1]。空间站在轨运行时,不可避免发生故障[2]。为保障空间站在轨持续、稳定工作,合理的空间站在轨维修成了主要途径和必要手段[3]。空间站的安全、可靠、持续和稳定运行离不开在轨维修[2]。由于人的信息处理能力、记忆和注意力等资源有限 ...
    本站小编 Free考研考试 2021-12-25
  • 民机横航向静稳定性适航符合性数学仿真评估*
    横航向静稳定性是评定飞机操稳特性的重要指标之一。横向静稳定性是指飞机在平衡状态受到外界非对称扰动产生小量滚转角Δ?后,具有自动恢复机翼水平姿态的趋势,判据为无量纲横向静稳定性导数Clβ<0。航向静稳定性是指飞机在平衡状态受到外界非对称扰动产生小量侧滑角Δβ后,具有自动消除侧滑运动的趋势,判据为无量纲 ...
    本站小编 Free考研考试 2021-12-25
  • 民机起飞爬升梯度适航符合性数学仿真评估*
    为了保障飞行安全,飞机起飞离地后需要迅速拉起爬升加速至起飞安全速度,达到10.5m的起飞安全高度,进入起飞爬升阶段并继续爬升至离地高度不低于450m。爬升梯度定义为飞机爬升的高度与飞过的水平距离的比值[1]。民机起飞阶段和起飞爬升阶段的爬升梯度反映了飞机超越地面障碍物并爬升到安全飞行高度的能力。根据 ...
    本站小编 Free考研考试 2021-12-25