删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

A Lie algebraic approach for a class of highly oscillatory stochastic Hamiltonian systems

本站小编 Free考研考试/2021-12-25

阮家麟, 王丽瑾
中国科学院大学数学科学学院, 北京 100049
摘要: 为一类高振荡随机哈密顿系统提出一种李代数数值方法。对一个具体的高振荡随机哈密顿系统,给出两个基于李代数方法的数值格式,并证明它们近似保辛结构。通过数值实验展示这两种格式的根均方收敛阶,以及它们在数值求解该高振荡随机哈密顿系统中的有效性和优越性。
关键词: 随机微分方程数值解随机哈密顿系统高振荡随机微分方程算子分裂方法李代数方法
Stochastic differential equations (SDEs) play an important role in the description of phenomena in many subjects[12], such as biology, mechanics, chemistry, and microelectronics. The Hamiltonian system is one of the most important dynamical systems. All the real physical processes where the dissipation can be neglected can be formulated as Hamiltonian systems[3]. Stochastic Hamiltonian systems (SHSs) are the Hamiltonian systems with stochastic disturbances.
A 2n-dimensional SHS can be written as the SDE of Stratonovich sense[4-5] with initial values P(0)=p, Q(0)=q,
$\begin{array}{*{20}{c}}{{\rm{d}}P = \mathit{\boldsymbol{f}}\left( {t,P,Q} \right){\rm{d}}t + \sum\limits_{r = 1}^m {{\mathit{\boldsymbol{\sigma }}_r}\left( {t,P,Q} \right)} \circ {\rm{d}}{W_r}\left( t \right),}\\{{\rm{d}}Q = \mathit{\boldsymbol{g}}\left( {t,P,Q} \right){\rm{d}}t + \sum\limits_{r = 1}^m {{\mathit{\boldsymbol{\gamma }}_r}\left( {t,P,Q} \right)} \circ {\rm{d}}{W_r}\left( t \right),}\end{array}$ (1)
where f, g, σr, and γr, r=1, …, m, are n-dimensional column vectors, and Wr(t), r=1, …, m, are independent standard Wiener processes. There are functions H(t, P, Q), Hr(t, P, Q), r=1, …, m, such that
$\begin{array}{*{20}{c}}{{f^i} = - \partial H/\partial {q^i},{g^i} = \partial H/\partial {p^i},}\\{\sigma _r^i = - \partial {H_r}/\partial {q^i},\gamma _r^i = \partial {H_r}/\partial {p^i}\left( {i = 1, \cdots ,n} \right).}\end{array}$ (2)
Similar to deterministic Hamiltonian systems, the phase flow of SHS (1) preserves the symplectic structure characterized by
${\left( {\frac{{\partial Y\left( t \right)}}{{\partial {y_0}}}} \right)^{\rm{T}}}J\left( {\frac{{\partial Y\left( t \right)}}{{\partial {y_0}}}} \right) = J,\forall t \ge 0,{\rm{a}}.{\rm{s}}.,$
where Y(t)=(P(t)T(Q(t)T, y0=(pTqT)T, J= $\left( {\begin{array}{*{20}{l}} 0&{{I_n}} \\ { - {I_n}}&0 \end{array}} \right)$.
The exact solutions to SDEs are in general very difficult to obtain. Therefore numerical methods become important tools for simulating solutions to SDEs. In recent decades, there arose many studies regarding different aspects of numerical methods of SDEs[68]. The study of numerical solutions for highly oscillatory problems is an important branch, to which many works were devoted, such as Refs.[9-12]. Standard numerical methods are usually not suitable for treating such problems tecause they require very small time step sizes and thus make the computations prohibitively expensive.
In this work we focus on the stochastic highly oscillatory problem with initial values P(0)=p, Q(0)=q,
$\begin{matrix} \text{d}\mathit{\boldsymbol{P}}=\left( {{\epsilon }^{-1}}-f\left( \mathit{\boldsymbol{P}},\mathit{\boldsymbol{Q}} \right) \right)\mathit{\boldsymbol{Q}}\text{d}t-\sigma \mathit{\boldsymbol{Q}}\circ \text{d}W\left( t \right), \\ \text{d}\mathit{\boldsymbol{Q}}=\left( -{{\epsilon }^{-1}}+f\left( \mathit{\boldsymbol{P}},\mathit{\boldsymbol{Q}} \right) \right)\mathit{\boldsymbol{P}}\text{d}t+\sigma \mathit{\boldsymbol{P}}\circ \text{d}W\left( t \right), \\\end{matrix}$ (3)
where $ \epsilon $>0 is a small number, and f is a scalar function. It is called the highly oscillatory nonlinear Kubo oscillator with multiplicative noise[10]. According to the integrability lemma[13], it is not difficult to obtain that the oscillator (3) is a stochastic Hamiltonian system under the conditions
$\mathit{\boldsymbol{Pf}}_p^{\rm{T}} = {\mathit{\boldsymbol{f}}_p}{\mathit{\boldsymbol{P}}^{\rm{T}}},\mathit{\boldsymbol{Qf}}_p^{\rm{T}} = {\mathit{\boldsymbol{f}}_p}{\mathit{\boldsymbol{Q}}^{\rm{T}}},\mathit{\boldsymbol{Qf}}_p^{\rm{T}} = \mathit{\boldsymbol{Pf}}_p^{\rm{T}}.$ (4)
Our motivation is to employ the Lie algebraic approach to solve this class of highly oscillatory SHSs (3) with conditions (4), and we establish two numerical schemes for a concrete highly oscillatory SHS based on the Lie algebraic approach. Further, we analyze the symplecticity of the two schemes and prove that they nearly preserve the symplectic structure. Next we investigate their root mean-square convergence orders, efficiency, and superiority via numerical experiments.
1 The Lie algebraic approachLet (Ω, $ \mathscr{F} $, { $ \mathscr{F}$t}t≥0, P) be a complete probability space with filtration { $\mathscr{F}$t}t≥0. Consider the SDE of Stratonovich sense under the probability space Ω, $\mathscr{F} $, { $\mathscr{F} $t}t≥0, P), with initial value S(0)=s0,
${\rm{d}}S\left( t \right) = b\left( {S\left( t \right)} \right){\rm{d}}t + \sum\limits_{j = 1}^r {{g_j}\left( {S\left( t \right)} \right)} \circ {\rm{d}}{W^j}\left( t \right),$ (5)
where b, gj, j=1, …, r, are d-dimensional ${\mathbb{C}}$ functions and W(t)=(W1(t), …, Wr(t)) is a m-dimensional standard Wiener process. Define the $ {\mathbb{C}}$ vector fields
${X_0} = \sum\limits_{i = 1}^d {{b^i}{\partial _i}} ,{X_j} = \sum\limits_{i = 1}^d {g_j^i{\partial _i}\left( {j = 1, \cdots ,r} \right)} ,$ (6)
where ?i=?/?Si. There is a representation theorem in Ref.[14] for the solution of SDE (5), which is the base of the Lie algebraic approach. To state the theorem, we first introduce some notations.
Given a multi-index J=(j1, …, jm) and [X, Y]=XY-YX, XJ is defined as
${X^J} = \left[ {\left[ { \cdots \left[ {{X_{{j_1}}},{X_{{j_2}}}} \right], \cdots } \right],{X_{{j_m}}}} \right].$
The divided index ${\hat J}$ is a division of the multi-index J in the form
$\hat J = \left( {{J_1}, \cdots {J_{{k_1}}}} \right)\left( {{J_{{k_1} + 1}}, \cdots {J_{{k_2}}}} \right) \cdots \left( {{J_{{k_{l - 1}} + 1}}, \cdots {J_{{k_l}}}} \right).$ (7)
${\hat J}$ is called a single divided index when each Jk(k=1, …, kl) contains a single element, and ${\hat J}$ is a double divided index if each Jk(k=1, …, kl) has either one element or two duplicated elements.
For a single divided index ${\hat J}$, the multiple Stratonovich integral ${W^{\hat J}}(t)$ is defined as
${W^{\hat J}}\left( t \right): = \int { \cdots \int { \circ {\rm{d}}{W^{{j_1}}}\left( {{t_1}} \right) \cdots \circ {\rm{d}}{W^{{j_m}}}\left( {{t_m}} \right)} } ,$ (8)
where W0(t)=t. For a double divided index ${\hat J}$,
${W^{\hat J}}\left( t \right): = \int { \cdots \int { \circ {\rm{d}}{W^{{J_1}}}\left( {{t_1}} \right) \cdots \circ {\rm{d}}{W^{{J_{{k_l}}}}}\left( {{t_{{k_l}}}} \right)} } ,$ (9)
where
${W^{{J_k}}}\left( t \right) = \left\{ {\begin{array}{*{20}{c}}\begin{array}{l}{W^{{i_k}}}\left( t \right),\\t,\\0,\end{array}&\begin{array}{l}{\rm{if}}\;{J_k} = \left\{ {{i_k}} \right\},\\{\rm{if}}\;{J_k} = \left\{ {{i_k},{i_k}} \right\}\;{\rm{and}}\;{i_k} \ne 0,\\{\rm{if}}\;{J_k} = \left\{ {0,0} \right\}.\end{array}\end{array}} \right.$
Lemma 1.1 Suppose that the Lie algebra L=L(X0, X1, …, Xr) generated by X0, X1, …, Xr is nilpotent of step p. Then the solution S(t) of (5) with S(0)=s is represented as S(t)=exp(Yt)(s), where Yt(ω) is the vector field given by
${Y_t} = \sum\limits_{i = 0}^r {{W^i}\left( t \right){X_i}} + \sum\limits_{2 \le \left| J \right| \le p} {\left\{ {\sum\limits_J^ * {{c_{\hat J}}{W^{\hat J}}\left( t \right)} } \right\}{X^J}} $ (10)
almost surely for each t.
In (10), |J| denotes the length of the multi-index J, and $\sum\limits_{\hat J}^* {} $ is the sum taken over all single and double divided indices ${\hat J}$ of J. Besides, the coefficients ${c_{\hat J}}$ are given by
$\begin{array}{*{20}{c}}{{c_{\hat J}} = \frac{1}{m}\sum\limits_{s = 0}^{l - 1} {\sum\limits_ * {\left( {\begin{array}{*{20}{c}}{l - 1}\\s\end{array}} \right){{\left( { - 1} \right)}^{{u_1} + \cdots + {u_{{k_l}}} - s - 1}}} } \times }\\{\frac{{{{\left( {{u_1} + \cdots + {u_{{k_l}}} - s} \right)}^{ - 1}}}}{{n_1^{\left( 1 \right)}! \cdots n_1^{\left( {{u_1}} \right)}! \cdots n_{{k_l}}^{\left( 1 \right)}! \cdots n_{{k_l}}^{\left( {{u_{{k_l}}}} \right)}!}},}\end{array}$ (11)
where nk(v) (k=1, …, kl, v=1, …, uk) denotes the v-th element of Jk, and uk is the number of elements of Jk.
Given a time discretization {tn} of the interval [0, T] with an equidistant step size h, i.e., tn=nh, n=0, 1, …, N. The Lie algebraic approach to construction of numerical methods follows the procedure[2] as follows.
?Based on the representation of the solution of the SDE (5), write the time discretization scheme Sn+1=exp(Yn, h)(Sn);
?After obtaining a truncated vector field ${{\hat Y}_{n, h}}$ by discarding the higher order terms, construct the truncated scheme ${{\hat S}_{n + 1}} = \exp ({{\hat Y}_{n, h}})({{\hat S}_n})$
?Split ${{\hat Y}_{n, h}}$ into ${{\hat Y}_{n, h}}$=An, h+Bn, h where exp(An, h) and exp(Bn, h) can both be explicitly calculated. Then, use exp(An, h) exp(Bn, h) to approximate exp ${{\hat Y}_{n, h}}$ to get the numerical approximation ${{\tilde S}_{n + 1}} = \exp ({A_{n, h}})\exp({B_{n, h}})({{\tilde S}_n})$, with ${{\tilde S}_0} = {s_0}$.
2 The Lie algebraic methods for highly oscillatory SHSsAccording to Refs.[2, 14], we write the coefficients ${c_{\hat J}}$ in (11) for |J|=2, 3 explicitly. Furthermore, for convenience of calculations, we replace the multiple Stratonovich integrals in Yt in (10) by their equivalent multiple ${\text{It}}\hat o$ integrals. For SDE (5) with one single noise, we have
$\begin{array}{l}{Y_t} = {I_{\left( 0 \right)}}\left( t \right){X_0} + {I_{\left( 1 \right)}}\left( t \right){X_1} + \\\;\;\;\;\;\;\frac{1}{2}\left( {{I_{\left( {0,1} \right)}}\left( t \right) - {I_{\left( {1,0} \right)}}\left( t \right)} \right)\left[ {{X_0},{X_1}} \right] + \\\;\;\;\;\;\;\frac{{{C_1}}}{{18}}\left[ {\left[ {{X_0},{X_1}} \right],{X_0}} \right] + \frac{{{C_2}}}{{18}}\left[ {\left[ {{X_0},{X_1}} \right],{X_1}} \right] + \\\;\;\;\;\;\;\frac{1}{{36}}\left\{ {{I_{\left( {0,0} \right)}} + {{\left\{ {{I_{\left( 0 \right)}}\left( t \right)} \right\}}^2}} \right\}\left[ {\left[ {{X_0},{X_1}} \right],{X_1}} \right] + \\\;\;\;\;\;\;\sum\limits_{4 \le \left| I \right|} {{H^J}\left( t \right){X^J}} ,\end{array}$ (12)
where HJ(t) is a version of $\sum\limits_{\hat J}^* {{c_{\hat J}}{W^{\hat J}}(t)} $, C1=2I(0, 1, 0)-2I(1, 0, 0)+I(0)I(1, 0)-I(0)I(0, 1) and C2=2I(0, 1, 1)-2I(1, 0, 1)+I(1)I(1, 0)-I(1)I(0, 1).
Now let us consider the highly oscillatory SDE (3). Let f(P, Q)=P2+Q2 and the dimension of the system d=2, i.e.,
$\begin{matrix} \text{d}\mathit{\boldsymbol{P}}=\left( {{\epsilon }^{-1}}-\left( {{\mathit{\boldsymbol{P}}}^{2}}+{{\mathit{\boldsymbol{Q}}}^{2}} \right) \right)\mathit{\boldsymbol{Q}}\text{d}t-\sigma \mathit{\boldsymbol{Q}}\circ \text{d}W\left( t \right), \\ \text{d}\mathit{\boldsymbol{Q}}=\left( -{{\epsilon }^{-1}}+\left( {{\mathit{\boldsymbol{P}}}^{2}}+{{\mathit{\boldsymbol{Q}}}^{2}} \right) \right)\mathit{\boldsymbol{P}}\text{d}t+\sigma \mathit{\boldsymbol{P}}\circ \text{d}W\left( t \right). \\\end{matrix}$ (13)
According to the conditions (4), it is clear that (13) is an SHS, with Hamiltonian functions
$H\left( \mathit{\boldsymbol{P}},\mathit{\boldsymbol{Q}} \right)=\frac{-{{\epsilon }^{-1}}}{2}\left( {{\mathit{\boldsymbol{P}}}^{2}}+{{\mathit{\boldsymbol{Q}}}^{2}} \right)+\frac{1}{4}{{\left( {{\mathit{\boldsymbol{P}}}^{2}}+{{\mathit{\boldsymbol{Q}}}^{2}} \right)}^{2}},$
${H_1}\left( {\mathit{\boldsymbol{P}},\mathit{\boldsymbol{Q}}} \right) = \frac{\sigma }{2}\left( {{\mathit{\boldsymbol{P}}^2} + {\mathit{\boldsymbol{Q}}^2}} \right).$
Therefore, (13) is a highly oscillatory SHS.
Performing the change of variable s=t/ $\epsilon$ in (13), we get the equivalent system of (13)
$\begin{matrix} \text{d}\mathit{\boldsymbol{P}}=\left( 1-\epsilon \left( {{\mathit{\boldsymbol{P}}}^{2}}+{{\mathit{\boldsymbol{Q}}}^{2}} \right) \right)\mathit{\boldsymbol{Q}}\text{d}s-\sqrt{\epsilon }\sigma \mathit{\boldsymbol{Q}}\circ \text{d}W\left( s \right), \\ \text{d}\mathit{\boldsymbol{Q}}=\left( -1+\epsilon \left( {{\mathit{\boldsymbol{P}}}^{2}}+{{\mathit{\boldsymbol{Q}}}^{2}} \right) \right)\mathit{\boldsymbol{P}}\text{d}s+\sqrt{\epsilon }\sigma \mathit{\boldsymbol{P}}\circ \text{d}W\left( s \right). \\\end{matrix}$ (14)
It is not difficult to see that (14) is also an SHS. Now we apply the Lie algebraic approach to system (14), for which
$\begin{align} &{{X}_{0}}=\left( 1-\epsilon \left( {{\mathit{\boldsymbol{P}}}^{2}}+{{\mathit{\boldsymbol{Q}}}^{2}} \right) \right)\mathit{\boldsymbol{Q}}\partial \mathit{\boldsymbol{P}}+ \\ &\ \ \ \ \ \ \ \ \left( -1+\epsilon \left( {{\mathit{\boldsymbol{P}}}^{2}}+{{\mathit{\boldsymbol{Q}}}^{2}} \right) \right)\mathit{\boldsymbol{P}}\partial \mathit{\boldsymbol{Q}}, \\ \end{align}$
${{X}_{1}}=-\sqrt{\epsilon }\sigma \mathit{\boldsymbol{Q}}\partial \mathit{\boldsymbol{P}}+\sqrt{\epsilon }\sigma \mathit{\boldsymbol{P}}\partial \mathit{\boldsymbol{Q}}.$
We take the truncation ${{\hat Y}_{n, h}}$=hX0WnX1, and let
${{A}_{n,h}}=\left( \left( 1-\epsilon \left( {{\mathit{\boldsymbol{P}}}^{2}}+{{\mathit{\boldsymbol{Q}}}^{2}} \right) \right)Qh-\sqrt{\epsilon }\sigma \mathit{\boldsymbol{Q}}\Delta {{W}_{n}} \right)\partial \mathit{\boldsymbol{P}},$
$\begin{matrix} {{B}_{n,h}}=\left( \left( -1+\epsilon \left( {{\mathit{\boldsymbol{P}}}^{2}}+{{\mathit{\boldsymbol{Q}}}^{2}} \right) \right)Ph+ \right. \\ \left. \sqrt{\epsilon }\sigma \mathit{\boldsymbol{P}}\Delta {{W}_{n}} \right)\partial \mathit{\boldsymbol{Q}}. \\\end{matrix}$
For simplicity, we denote F(p, q)=(1- $\epsilon$(p2+q2))h- $\sqrt\epsilon$σΔWn. If we choose the operator splitting ${{\hat Y}_{n, h}} = {A_{n, h}} + {B_{n, h}}$, we get the scheme
$\begin{align} &{{P}_{n+1}}={{P}_{n}}+F\left( {{P}_{n}},{{Q}_{n+1}} \right)\frac{\exp \left( -2\epsilon {{P}_{n}}{{Q}_{n+1}}h \right)-1}{-2\epsilon {{P}_{n}}h}, \\ &{{Q}_{n+1}}={{Q}_{n}}-F\left( {{P}_{n}},{{Q}_{n}} \right)\frac{\exp \left( 2\epsilon {{P}_{n}}{{Q}_{n}}h \right)-1}{2\epsilon {{Q}_{n}}h}. \\ \end{align}$ (15)
If we choose the operator splitting ${{\hat Y}_{n, h}} = \frac{{{B_{n, h}}}}{2} + {A_{n, h}} + \frac{{{B_{n, h}}}}{2}$, we obtain the scheme
$\begin{matrix} {{P}_{n+1}}={{P}_{n}}+F\left( {{P}_{n}},{{{\tilde{Q}}}_{n}} \right)\frac{\exp \left( -2\epsilon {{P}_{n}}{{{\tilde{Q}}}_{n}}h \right)-1}{-2\epsilon {{P}_{n}}h}, \\ {{Q}_{n+1}}={{{\tilde{Q}}}_{n}}-\frac{1}{2}F\left( {{P}_{n+1}},{{{\tilde{Q}}}_{n}} \right)\frac{\exp \left( 2\epsilon {{P}_{n+1}}{{{\tilde{Q}}}_{n}}h \right)-1}{2\epsilon {{{\tilde{Q}}}_{n}}h}, \\\end{matrix}$ (16)
where ${{\tilde Q}_n} = {Q_n} - \frac{1}{2}F({{P}_n}, {{Q}_n})\frac{{\exp (2{{P}_n}{{Q}_n}{h}) - 1}}{{2{{\tilde Q}_n}h}}$.
Theorem 2.1 The Lie algebraic schemes (15) and (16) for the highly oscillatory SHS (14) nearly preserve the symplectic structure with error of root mean-square order 3/2, i.e.,
${\left( {\frac{{\partial \left( {{P_{n + 1}},{Q_{n + 1}}} \right)}}{{\partial \left( {{P_n},{Q_n}} \right)}}} \right)^{\rm{T}}}\mathit{\boldsymbol{J}}\left( {\frac{{\partial \left( {{P_{n + 1}},{Q_{n + 1}}} \right)}}{{\partial \left( {{P_n},{Q_n}} \right)}}} \right) = \left( {1 + {R_s}} \right)\mathit{\boldsymbol{J}}$ (17)
with ${(E({R_s}))^2}{)^{\frac{1}{2}}} = O({h^{\frac{3}{2}}})$.
Proof (17) holds if and only if
$\frac{{\partial {P_{n + 1}}}}{{\partial {P_n}}}\frac{{\partial {Q_{n + 1}}}}{{\partial {Q_n}}} - \frac{{\partial {Q_{n + 1}}}}{{\partial {P_n}}}\frac{{\partial {P_{n + 1}}}}{{\partial {Q_n}}} = 1 + {R_s}$ (18)
with ${(E({R_s})^2}{)^{\frac{1}{2}}} = O({h^{\frac{3}{2}}})$.
For convenience, the left parts of (18) for the Lie algebraic schemes (15) and (16) are denoted by I1 and I2, respectively. Then, according to (15) and (16), we have
$\begin{align} &{{{\bar{I}}}_{1}}=1+{{\epsilon }^{\frac{3}{2}}}\sigma \left( 3q_{n}^{2}+p_{n}^{2} \right)h\Delta {{W}_{n}}+O\left( {{h}^{2}} \right), \\ &{{{\bar{I}}}_{2}}=1+{{\epsilon }^{\frac{3}{2}}}\sigma \left( 2q_{n}^{2}+\frac{5}{2}p_{n}^{2} \right)h\Delta {{W}_{n}}+O\left( {{h}^{2}} \right). \\ \end{align}$
Due to ${(E{(\Delta W)^2})^{\frac{1}{2}}} = {h^{\frac{1}{2}}}$, it is not difficult to get the conclusion.
3 Numerical experimentsIn this section, we illustrate the performance of the Lie algebraic schemes via numerical tests. Throughout the section, the reference solution is computed by high-order schemes with a sufficiently small step size.
In Fig. 1(a) we show the sample trajectories of the numerical solutions (15) (blue), (16) (yellow), and a trigonometric integrator in Ref.[11] (green) for the highly oscillatory SHS (13), with the initial values p=0, q=1 and the parameters $\epsilon$=0.01, σ=0.3, on t∈[0, 1]. The step size is h=2-5. The blue and yellow lines coincide visually with the red line which is the sample trajectory of the reference solution. Hereby we construct the two schemes (15) and (16) by involving the time-rescaling change of variable in our Lie algebraic methods, on the equivalent but time-rescaled system (14) of (13), and we apply the trigonometric method directly to (13) to draw the green line, with the same time step size h=2-5.
Fig. 1
Download: JPG
larger image


Fig. 1 The sample trajectories

In Fig. 1(b) is the sample trajectory of the Lie algebraic scheme (15) under a higher frequency parameter $\epsilon$=0.001, which is also visually in goodcoincidence with the reference solution. The initial values are p=0, q=1. We take σ=0.3 and the step size h=2-5.
In Fig. 2(a) and Fig. 2(b) we show the preservation of the invariant quantity P(t)2+Q(t)2=p2+q2 of system (13)[10] by the two Lie algebraic schemes.
Fig. 2
Download: JPG
larger image


Fig. 2 The phase trajectories

In Fig. 2, the initial values p=0, q=1 and the parameters $\epsilon$=0.01, σ=0.3. The step size is h=2-5.
As shown in Fig. 3(a) and Fig. 3(b), the root mean-square convergence orders of the Lie algebraic schemes (15) and (16) are both 1. Here we compute the error at T=1 and take p=0, q=1, $\epsilon$=0.01, σ=0.3. Five hundred trajectories are sampled for approximating the expectation.
Fig. 3
Download: JPG
larger image


Fig. 3 The convergence orders

References
[1] Higham D J. An algorithmic introduction to numerical simulation of stochastic differential equations[J]. SIAM review, 2001, 43(3): 525-546. DOI:10.1137/S0036144500378302
[2] Misawa T. A Lie algebraic approach to numerical integration of stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2001, 23(3): 866-890. DOI:10.1137/S106482750037024X
[3] Feng K, Qin M. Symplectic geometric algorithms for hamiltonian systems[M]. Berlin: Springer, 2010.
[4] Milstein G N, Repin Y M, Tretyakov M V. Symplectic integration of Hamiltonian systems with additive noise[J]. SIAM Journal on Numerical Analysis, 2002, 39(6): 2066-2088. DOI:10.1137/S0036142901387440
[5] Milstein G N, Repin Y M, Tretyakov M V. Numerical methods for stochastic systems preserving symplectic structure[J]. SIAM Journal on Numerical Analysis, 2002, 40(4): 1583-1604. DOI:10.1137/S0036142901395588
[6] Kloeden P E, Platen E. Numerical solution of stochastic differential equations[M]. Springer-Verlag, 1992.
[7] Milstein G N. Numerical integration of stochastic differential equations[M]. Springer Science & Business Media, 1994.
[8] Milstein G N, Tretyakov M V. Stochastic numerics for mathematical physics[M]. Springer Science & Business Media, 2013.
[9] Chartier P, Makazaga J, Murua A, et al. Multi-revolution composition methods for highly oscillatory differential equations[J]. Numerische Mathematik, 2014, 128(1): 167-192. DOI:10.1007/s00211-013-0602-0
[10] Vilmart G. Weak second order multirevolution composition methods for highly oscillatory stochastic differential equations with additive or multiplicative noise[J]. Siam Journal on Scientific Computing, 2015, 36(4): A1770-A1796.
[11] Cohen D. On the numerical discretisation of stochastic oscillators[J]. Mathematics & Computers in Simulation, 2012, 82(8): 1478-1495.
[12] Cohen D. Convergence analysis of trigonometric methods for stiff second-order stochastic differential equations[J]. Numerische Mathematik, 2012, 121(1): 1-29.
[13] Hairer E, Lubich C, Wanner G. Geometric numerical integration:structure-preserving algorithms for ordinary differential equations[J]. Series in Computational Mathematics, 2006, 25(1): 805-882.
[14] Kunita H. On the representation of solutions of stochastic differential equations[M]. Séminaire de Probabilités XIV 1978/79. Springer Berlin Heidelberg, 1980: 282-304.


相关话题/系统 代数 图片 中国科学院大学 数学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 参数可调椭圆滑动轴承转子系统动力学研究及抑振机理
    张磊1,裴世源1,徐华1,21.西安交通大学现代设计及转子轴承系统教育部重点实验室,西安710049;2.新疆大学机械工程学院,乌鲁木齐8300472017年8月31日收稿;2018年1月22日收修改稿基金项目:国家自然科学基金(51605367,51575421)资助通信作者:裴世源,E-mail ...
    本站小编 Free考研考试 2021-12-25
  • 毫米波MIMO系统中基于射频链路选择的高能效混合预编码设计
    孙霁含,邱玲中国科学技术大学中国科学院无线光电通信重点实验室,合肥2300272017年6月23日收稿;2017年10月23日收修改稿基金项目:国家自然科学基金(61672484)资助通信作者:邱玲,E-mail:lqiu@ustc.edu.cn摘要:为减少射频链路开销的同时满足系统高容量需求,提出 ...
    本站小编 Free考研考试 2021-12-25
  • 分离式飞机应急数据记录跟踪系统设计与试验*
    在法航AF447和马航MH370等海上空难中,由于飞行数据记录器(FlightDataRecorder,FDR),也称“黑匣子”,固定在机身中,空难发生时记录器随飞机残骸沉入海底,给打捞和定位造成困难,甚至无法打捞,严重制约了及时救援和事故调查。特别是马航MH370事故,数国历时几年竭尽全力的救援和 ...
    本站小编 Free考研考试 2021-12-25
  • 改进型自抗扰四旋翼无人机控制系统设计与实现*
    四旋翼无人机是目前发展最为迅速的一种小型飞行器,具有结构简单、便于悬停及垂直起降的特点,同时具有较为良好的可控性,既在近地监视与侦察等军事任务中有着广泛的应用[1],又在环境监测、森林防火、农业植保等民用方面具有广阔的研究和应用前景[2-3]。由于四旋翼无人机是一个非线性、欠驱动、强耦合且存在多个变 ...
    本站小编 Free考研考试 2021-12-25
  • 飞行包线下燃油箱耗氧型催化惰化系统性能研究*
    飞机燃油箱上部空余空间充满可燃的燃油蒸气与空气混合物,存在燃烧爆炸的风险[1-3]。目前,燃油箱惰化技术是一种降低油箱可燃性的可行措施[4-6]。耗氧型惰化技术由于流程简单、惰化效率高,被认为是最有可能应用的下一代惰化方式[7-8]。其基本原理是:将气相空间油气混合物导入反应器中进行低温无焰催化燃烧 ...
    本站小编 Free考研考试 2021-12-25
  • 北斗三号系统广域差分服务精度评估*
    随着全球导航卫星系统(GNSS)的广泛应用,为满足导航用户更高精度的服务需求,很多国家和地区建立了星基增强系统,如美国的WAAS系统、欧洲的EGNOS系统、日本的MASA系统以及印度的GAGAN系统等[1-4]。通过在服务区域内均匀布设监测站,解算卫星的轨道与钟差误差改正信息、格网电离层延迟改正信息 ...
    本站小编 Free考研考试 2021-12-25
  • 压电式高速开关阀控液压缸位置系统*
    开关阀相比传统的比例阀和伺服阀,能够直接实现数字量控制,省去了伺服和比例控制中的D/A转换器,控制性能更好[1-2],同时具有结构简单、成本低、抗污染能力强、工作稳定可靠、能耗低等优点。高速开关阀大多采用新型电-机械执行器直接驱动阀芯结构,由计算机输出的PWM脉冲信号控制高速开关阀的开关,随着计算机 ...
    本站小编 Free考研考试 2021-12-25
  • 垂直起降固定翼无人机串联混电系统优化设计*
    垂直起降固定翼无人机是一种结合了多旋翼无人机和固定翼飞机优势的新型无人飞行器[1]。这类无人机具有较高的巡航效率、较快的飞行速度,以及非常便捷的起降能力,因而可以应付较为复杂的应用场景,是近年来无人机领域的研究热点之一。目前正在开发的垂直起降固定翼无人机有很多,典型的代表有GL-10[2]、Song ...
    本站小编 Free考研考试 2021-12-25
  • 面向电力系统的多粒度隐患检测方法*
    电力资源是国民经济的基础和命脉,与国计民生密切相关。然而,由于受自然环境或人为因素等影响,输电线路往往存在诸多隐患,如输电杆塔中的销钉缺损和输电线路通道中的机械(如挖掘机)施工等,这些隐患往往会造成巨大的经济损失和人身伤害。据国家能源局的相关数据统计,2020年第一季度全国发生多起电力事故,其中电力 ...
    本站小编 Free考研考试 2021-12-25
  • 电力系统厂站接线图拓扑关系检测技术*
    电力系统作为国家经济发展的支柱,支撑着各行各业几乎所有环节的正常运转。自国家公布电网智能化发展计划以来,中国电力系统得以快速发展,完成了从旧时代传统电力系统向新时代智能电力系统的转变。随着电网规模的日益扩大,电力系统的调度工作越来越难以进行,这给电力系统的优化带来了新的挑战。厂站接线图作为电力系统中 ...
    本站小编 Free考研考试 2021-12-25