全球气候变暖正严重影响着植物的生长发育和地理分布,并对农业生产领域造成威胁。在高环境温度下,植物会表现叶柄和下胚轴伸长等一系列表型,即高温形态建成。表观遗传修饰在调节植物生长发育和环境响应等方面发挥了重要作用,其中,组蛋白共价修饰通过影响染色质的状态而调控基因表达等过程。组蛋白H3第27位赖氨酸的三甲基化修饰(H3K27me3)通过维持基因的沉默状态,在动植物细胞命运决定以及生长发育中发挥重要的调控作用。基因组中特定位点的H3K27me3修饰水平由组蛋白甲基转移酶和去甲基化酶进行动态调控。中国科学院遗传与发育生物学研究所曹晓风研究组首次报道了拟南芥组蛋白H3K27me3去甲基化酶REF6/JMJ12,它能够通过其自身锌指结构域特异性识别基因组中CTCTGYTY基序从而去除H3K27me3/me2甲基化修饰,调控基因的时空表达 (Lu,et al.Nature Genetics, 2011; Cui,et al.Nature Genetics, 2016; Li,et al.Nature Genetics, 2016),且REF6对靶位点的识别受到DNA甲基化修饰的抑制(Qiu,et al.Nature Commun, 2019)。有意思的是,REF6能够与热激转录因子HSFA2形成正向反馈回路从而维持植物对高温的传代记忆(Liu,et al.Cell Research, 2019)。REF6参与植物多方面生长发育过程,如开花、器官边界形成、侧根发育、叶片衰老、种子休眠等。研究者发现REF6功能缺失突变表现为高温诱导的下胚轴伸长受阻表型。尽管研究者在表观修饰因子REF6对靶基因的识别方面已有所了解,但是对REF6在识别靶基因、发挥酶活性以及靶基因激活表达的顺序关系方面的认知并不全面。鉴于前人在下胚轴响应温度变化方面有较多研究,因此研究者利用该温度响应系统对表观遗传动态调控机理进行了深入研究。
该研究利用遗传学、染色质组学、转录组学、及生物化学等研究手段,揭示了REF6参与拟南芥高温响应的分子机制,证明了表观遗传修饰因子与转录因子协同作用调控基因表达从而响应环境信号的重要作用。表型分析发现REF6功能缺失突变导致植物高温形态建成受到显著抑制,而其他组蛋白H3K27me3去甲基化酶JMJ11和JMJ13功能缺失突变对高温响应正常,表明REF6在拟南芥高温响应过程中发挥主效功能;染色质组和转录组分析发现,REF6的直接靶基因赤霉素合成相关基因GA20ox2(GA 20-oxidases 2)和转录因子bHLH87(basic helix-loop-helix 87)的表达在高温下被激活,而在ref6突变体中却被抑制;遗传学分析发现REF6参与拟南芥高温响应过程至少是部分通过在高温下激活这两个靶基因的表达实现的,且REF6的酶活性对于靶基因的激活是必须的;进一步研究发现,bHLH87的基因表达同时受到REF6和高温形态建成核心转录因子PHYTOCHROME INTERACTING FACTOR 4 (PIF4)的共同调控,即REF6负责去除bHLH87基因上的H3K27me3,PIF4负责在高温下激活bHLH87的基因表达,它们之间相互依赖、缺一不可。该研究揭示了植物高温形态建成的表观遗传调控机制,同时为表观遗传修饰的动态调控与关键转录因子的结合协同调控基因转录提供了直接的证据。
该项研究成果于2021年11月25日在National Science Review在线发表(DOI:10.1093/nsr/nwab213),中国科学院大学已毕业博士生何凯璇(培养单位:中国科学院遗传与发育生物学研究所;导师:曹晓风研究员)、博士后梅海亮为本文的共同第一作者,邓娴副研究员与曹晓风研究员为共同通讯作者。该研究工作由国家自然科学基金委、中国科学院、中科院青年创新促进会、海南省崖州湾种子实验室博士后基金、植物基因组学国家重点实验室等提供经费支持。
图:表观遗传因子REF6与高温转录因子协同促进基因转录激活和高温形态建成
责任编辑:李暄妍
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
遗传发育所曹晓风研究组在植物表观遗传动态调控及其在环境温度响应中的作用研究中取得新进展
本站小编 Free考研考试/2021-12-25
相关话题/基因 遗传 植物 过程 中国科学院
动物研究所与西北工业大学等单位合作研究揭示麂属动物染色体融合的分子机制及其基因组三维构象的演化
麂属动物是鲸偶蹄目、反刍亚目、鹿科、麂亚科下的一类哺乳动物,因属内各物种间差异巨大的染色体数目而受到生物学家的广泛关注,是研究哺乳动物成种机制和染色体演化的绝佳模型。其中,小麂、黑麂是我国特有的物种,黑麂和贡山麂是我国重点保护野生动物。黑麂和贡山麂都有8条(雌性)和9条(雄性)染色体,但是它们的核型 ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25广州地化所通过磷灰石矿物探针指示斑岩系统岩浆-热液演化过程
斑岩型矿床是全球铜钼的主要来源,提供了全球60%的铜和95%的钼。通常认为斑岩型矿床的形成与长英质斑岩体的高度岩浆-热液演化和岩浆后期强烈的流体交代作用密切相关。但是,在斑岩成矿模型中,这些所谓的岩浆-热液过渡演化和流体交代成矿过程一直缺乏有效的、令人信服的矿物学记录。磷灰石是一种常见的副矿物,可形 ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25遗传发育所刘翠敏研究组在叶绿体蛋白质稳态研究中取得新进展
植物叶绿体内的蛋白质大部分直接或间接参与光合作用,而蛋白质稳态主要由两类蛋白质调控:一类是负责蛋白质折叠的分子伴侣,另一类是负责蛋白质降解的蛋白酶体。中国科学院大学博士生导师、中国科学院遗传与发育生物学研究所刘翠敏研究组发现叶绿体辅分子伴侣素Cpn20与分子伴侣Cpn60相互作用协助蛋白质折叠,同时 ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25遗传发育所薛勇彪研究组合作揭示被子植物自交不亲和性起源、丢失和重获的高度动态进化机制
现存被子植物中,约40%具有自交不亲和性(Self-incompatibility,SI)。SI是一种正常可育的雌雄同花被子植物自花授粉后不能产生合子的现象。被子植物在进化过程中,由于受到起伏不定的来自自交或异交的选择压力,其SI也会发生频繁的丢失和重获。在真双子叶植物中,目前共发现四类不同分子机制 ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25西北高原生物研究所青藏高原植物资源繁育与植被恢复学科组在高寒草原氧化亚氮排放研究中取得新进展
氧化亚氮(N2O)是一种非碳型温室气体,在100年时间尺度上,其全球增温潜势(GWP)是二氧化碳(CO2)的近300倍。大气中N2O的积累会破坏臭氧层并导致温室效应。当前,全球尺度上,大气N2O浓度已由270ppb增加到331ppb(1750-2018),排放的增长速率(每10年增加2%)已高于IP ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25遗传发育所程祝宽研究组在减数分裂联会复合体组装研究中取得重要进展
联会复合体组装是减数分裂过程中,配对的同源染色体之间发生的重要事件,对于保障同源重组的正确进行起着至关重要的作用。但是,对于联会复合体组装的遗传调控及其对重组影响的分子机制,目前还缺乏深入的了解。 中国科学院大学博士生导师、中国科学院遗传与发育生物学研究所程祝宽研究组利用图位克隆技术,鉴定到一个新 ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25中国科学院农业资源研究中心阐明我国食物需求及其对全球贸易和环境效应的影响
保障粮食安全并减少资源环境代价是中国政府长期以来努力的目标,也是实现全球可持续性发展目标(SustainableDevelopmentGoals,SDGs)和中国农业绿色发展的重要挑战。随着我国社会经济的发展和全球化的趋势,未来食物需求将会持续增加,而过去的研究缺乏中国在全球SDGs挑战下未来全球农 ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25水生所取得跨亚科鱼类基因编辑配子“借腹生殖”的突破
精原干细胞(Spermatogonialstemcells,SSCs)是成体雄性性腺中具有自我更新和分化潜能的一类生殖干细胞。利用精原干细胞移植(Spermatogonialstemcelltransplantation,SSCT)技术,有可能实现跨个体甚至是跨物种的“借腹生殖”,也就是利用个体(或 ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25华南植物园在果蔬食品活性物质领域研究获进展
世界人口老龄化的现象日益严重,阿尔茨海默症和帕金森症等神经退行性疾病已经成为我国乃至全球亟待解决的公众健康问题。如何预防上述疾病,是食品科学领域的研究热点。作为药食同源植物,桑叶富含多种食品功能因子。以桑叶为主要原料的食品已被国际公认为“人类21世纪健康食品之一”。桑叶提取物被认为与桑叶具有实质等同 ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25西北生态环境资源研究院铀在微生物-黏土矿物复合界面的吸附过程研究获进展
从铀矿开采、核燃料加工、核能发电、乏燃料处理到核废料处置的整个过程中,铀(U)都将不可避免地进入到环境系统,给生态环境系统和人类的生命健康带来直接危害和潜在威胁。环境系统中,U主要以+6和+4两种化学种态存在。一旦U(VI)进入土壤系统后,将不可避免地与土壤各种组分发生吸附-解吸、氧化-还原、沉淀- ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25