生长激素释放激素受体(Growth hormone-releasing hormone receptor, GHRHR)属于B类G蛋白偶联受体,在细胞增殖、生长激素合成与分泌等方面发挥重要作用1。结合内源性配体生长激素释放激素(GHRH)后,GHRHR主要通过激活cAMP信号通路而产生生理效应。前人早在1960年就发现下丘脑损伤会使垂体减少分泌生长激素(GH)进而减缓生长,表明下丘脑存在刺激GH释放的激素即GHRH2。由于后者在下丘脑存留时间短暂且有生长抑制素的干扰,分离提纯极为困难,直到1982年才在人胰腺肿瘤中成功获得3。1993年,人源GHRHR的cDNA在肢端肥大症患者的垂体肿瘤中首次被克隆4。由于在生长发育中所起的关键作用,GHRHR的基因突变会导致生长发育障碍,是特发性生长激素缺乏症(Isolated growth hormone deficiency, IGHD)的病因之一5。除了调节生长外,GHRHR的激活还能改善艾滋病患者的脂肪代谢障碍,减少腹部脂肪堆积。近期的多个研究显示GHRHR及其剪接变异体(Splice variant)与多种肿瘤的发生和发展相关6,7,目前已有数个GHRH多肽类似物如舍莫瑞林(Sermorelin)和替莫瑞林(Tesamorelin)上市。
2020年10月15日,中国科学院上海药物研究所王明伟/杨德华团队和徐华强团队联合浙江大学基础医学院张岩团队在Nature Communications发表了题为“Structural basis for activation of the growth hormone-releasing hormone receptor”的研究论文, 首次报道了人源GHRHR与GHRH和Gs蛋白复合物的高分辨率冷冻电镜结构,揭示了GHRHR的配体识别、信号激活及疾病发生的分子机制,为相关新药的研发奠定了坚实的基础。
为了增强GHRHR与Gs蛋白的组装效率,研究人员创新地采用NanoBiT系连技术8分别在GHRHR和Gs蛋白上引入LgBiT和HiBiT以增加蛋白之间的相互作用,提高复合物的稳定性,最终获得分辨率高达2.6 ?的三维结构(图1)。该项研究揭示了除第4跨膜螺旋(Transmembrane helix 4, TM4)外,其他跨膜螺旋和所有胞外侧环(Extracellular loop, ECL)与GHRH和GHRHR形成广泛和复杂的相互作用,并被受体点突变实验所证实。值得注意的是,尽管GHRH与胰高血糖素样肽-1(GLP-1)和长效甲状旁腺激素(LA-PTH)都采用螺旋构型插入受体跨膜域的结合口袋,但GHRH氨基端首个残基的侧链取向尤为特别,提示受体-配体选择性结合的精细调控模式。
图1. 人源生长激素释放激素受体与内源性配体和Gs蛋白复合物的冷冻电镜结构
左,GHRH-GHRHR-Gs复合物的冷冻电镜密度图;中,GHRHR识别GHRH的细节图;右,多肽配体氨基端插入受体跨膜域结合口袋的构象比较
在此基础上,研究人员应用信号转导通路实验(cAMP 水平和β-arrestin 2招募)分析了25个与IGHD相关的致病错义突变,并对其中4个代表性突变(D60G、R94Q、S140P和R357C)进行了分子动力学模拟,发现它们至少通过三种机制影响GHRHR的功能而致病:1)破坏胞外域以削弱其同GHRH的结合能力,如D60G(即“小老鼠”―Little mouse表型的致病突变9)和R94Q;2)破坏受体跨膜域与配体或Gs蛋白的结合,如R357C;3)破坏跨膜信号转导,如S140P。上述成果增进了对B 类G蛋白偶联受体相关性疾病发生机制的认识。
上海药物所博士后周富来、浙江大学基础医学院博士研究生张会冰、复旦大学药学院博士研究生丛朝彤、上海药物所副研究员赵丽华和上海科技大学研究助理教授周庆同是该论文的共同第一作者。国科大博士生导师、上海药物所/复旦大学王明伟讲座教授、浙江大学张岩研究员、国科大博士生导师、上海药物所徐华强研究员和国科大硕士生导师、上海药物所杨德华研究员为该论文的共同通讯作者。该研究工作的第一完成单位是上海药物所,先后获得了国家自然科学基金委员会、国家科学技术部、上海市科学技术委员会和中国科学院先导专项等的经费资助。
原文链接:https://www.nature.com/articles/s41467-020-18945-0
责任编辑:脱畅
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
上海药物研究所王明伟/杨德华团队和徐华强团队参与的生长激素释放激素受体相关研究取得重要进展
本站小编 Free考研考试/2021-12-25
相关话题/上海 药物 信号 论文 浙江大学
上海硅酸盐所在热电器件研究中取得进展
热电发电器件是利用半导体材料的泽贝克效应将热能直接转换成电能,可用于空间特种电源、工业余废热回收等领域。在实际应用中,转换效率和功率密度是热电发电系统设计的重要技术指标。长期以来,热电器件的研究聚焦在如器件能量转换效率的最大化,而另一个关键性能参数——功率密度一直被忽略。开发同时具有高转换效率和高功 ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25Angew. Chem.:上海药物所糖肽合成取得新突破
糖肽是一类寡糖与多肽相结合的大分子化合物。糖肽在糖类药物研发如糖肽类抗生素和抗肿瘤疫苗的研发中有着十分重要的应用。经过几十年的发展,多肽的合成技术目前已经十分成熟,寡糖的合成在最近几年也取得了很重要的进展。然而关于糖肽的合成,却仍然是一个极具挑战的难题。 2020年8月31日,Angew.Chem ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25上海药物所在人血管活性肠肽受体1的结构与功能研究取得进展
2020年8月17日,中国科学院上海药物研究所蒋轶研究员、徐华强研究员团队联合浙江大学医学院张岩研究员团队在人血管活性肠肽受体1(VIP1R)研究领域取得重大进展——首次解析了VIP1R与多肽配体PACAP27和Gs蛋白复合物的冷冻电镜结构。该研究论文“Cryo-EMstructureofanact ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25上海药物所揭示miR-552-3p调节肝脏糖脂代谢紊乱的功能及分子机制
糖脂代谢病(GLMD)包括2型糖尿病、非酒精性脂肪性肝病、肥胖、高血压、高血脂和动脉粥样硬化等一系列与糖脂代谢紊乱相关的高患病率的慢性疾病,是公认的威胁人类健康的世界性难题。肝脏作为糖脂代谢的中心枢纽,在多种糖脂代谢病的发生发展中作用不容忽视,然而肝内糖脂代谢的调节机制尚未完全阐明。 2020年8 ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25上海硅酸盐所在固态电池界面激活研究中取得重要进展
锂金属作为负极材料具有高的理论比容量(3860mAhg-1)与低的氧化还原电位(-3.04Vvs.标准氢电极),能满足高比能电池的要求,然而不可控制的锂枝晶生长会引起与有机液态电解质的严重副反应,甚至导致电解液耗干。差的循环性能以及高的安全风险(例如电液泄漏和电池爆炸)严重阻碍了锂金属电池(LMB) ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25西北高原生物研究所退化草地恢复与生态畜牧业学科组的研究论文入选“2019年领跑者5000-中国精品科技期刊顶尖学术论文”和“《生物多样性》2019年度高影响力论文”
根据中国科学技术信息研究所公布的2019年F5000论文名单和《生物多样性》发布的年度高影响力论文目录,中国科学院西北高原生物研究所、中国科学院大学研究生张中华,中国科学院大学博士研究生导师周华坤研究员、赵新全研究员等人在《生物多样性》撰写的论文“青藏高原高寒草地生物多样性与生态系统功能的关系”入选 ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25上海硅酸盐所在肿瘤治疗与组织再生一体化生物玻璃研究方面取得新进展
光热治疗(PTT)作为一种新型肿瘤治疗方式显示了其独特的优势,但在常规的PTT中,很难测量肿瘤部位的准确温度。PTT温度过低不能杀死肿瘤细胞,而过高的温度又可能烫伤周围的正常组织。因此,在PTT过程中,原位监测温度以确定PTT治疗的最佳温度,同时修复PTT治疗时可能产生的对周边正常组织烫伤是需要解决 ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25上海硅酸盐所在反铁电陶瓷研究中取得重要进展
脉冲功率技术可以在极短时间内释放出兆瓦级功率的电能量,在很多特殊领域具有广泛的应用。作为脉冲功率电源的关键部件,高性能电容器对减小设备的重量和体积,满足小型化、高功率化发展具有重要作用。反铁电陶瓷具有储能密度高、放电电流大和放电速度快等优点,是新一代高性能脉冲电容器的重要候选材料。深刻理解反铁电陶瓷 ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25上海药物所发现miR-30b-5p在细胞核内抑制TFEB介导的溶酶体生成及自噬
自噬与神经退行性疾病、心血管疾病以及肿瘤等诸多疾病密切相关。自噬底物与溶酶体融合后并最终通过溶酶体内的酸性水解酶降解,因此溶酶体的生成在自噬过程中至关重要。 近年来,有诸多研究发现微小核酸(miRNA)能够通过靶向不同的自噬溶酶体相关基因调节自噬过程,但这些研究发现miRNA均是在细胞质中通过经典 ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25上海药物所在人源胰高血糖素受体小分子全激动剂结构与功能研究取得突破进展
2020年7月28日,中国科学院上海药物研究所徐华强课题组联合上海齐鲁锐格医药研发有限公司在GPCR小分子激活研究领域取得重大进展——首次解析了全激动剂小分子化合物与胰高血糖素受体复合物的冷冻电镜结构,阐述了全激动剂小分子激活高血糖素受体分子机制。该研究成果在线发表于国际知名学术期刊《细胞研究》(C ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25